Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.910
Filter
1.
BMC Pulm Med ; 24(1): 240, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750544

ABSTRACT

BACKGROUND: Previous research has emphasized the potential benefits of anti-diabetic medications in inhibiting the exacerbation of Chronic Obstructive Pulmonary Disease (COPD), yet the role of anti-diabetic drugs on COPD risk remains uncertain. METHODS: This study employed a Mendelian randomization (MR) approach to evaluate the causal association of genetic variations related to six classes of anti-diabetic drug targets with COPD. The primary outcome for COPD was obtained from the Global Biobank Meta-analysis Initiative (GBMI) consortium, encompassing a meta-analysis of 12 cohorts with 81,568 cases and 1,310,798 controls. Summary-level data for HbA1c was derived from the UK Biobank, involving 344,182 individuals. Positive control analysis was conducted for Type 2 Diabetes Mellitus (T2DM) to validate the choice of instrumental variables. The study applied Summary-data-based MR (SMR) and two-sample MR for effect estimation and further adopted colocalization analysis to verify evidence of genetic variations. RESULTS: SMR analysis revealed that elevated KCNJ11 gene expression levels in blood correlated with reduced COPD risk (OR = 0.87, 95% CI = 0.79-0.95; p = 0.002), whereas an increase in DPP4 expression corresponded with an increased COPD incidence (OR = 1.18, 95% CI = 1.03-1.35; p = 0.022). Additionally, the primary method within MR analysis demonstrated a positive correlation between PPARG-mediated HbA1c and both FEV1 (OR = 1.07, 95% CI = 1.02-1.13; P = 0.013) and FEV1/FVC (OR = 1.08, 95% CI = 1.01-1.14; P = 0.007), and a negative association between SLC5A2-mediated HbA1c and FEV1/FVC (OR = 0.86, 95% CI = 0.74-1.00; P = 0.045). No colocalization evidence with outcome phenotypes was detected (all PP.H4 < 0.7). CONCLUSION: This study provides suggestive evidence for anti-diabetic medications' role in improving COPD and lung function. Further updated MR analyses are warranted in the future, following the acquisition of more extensive and comprehensive data, to validate our results.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Mendelian Randomization Analysis , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Glycated Hemoglobin , Potassium Channels, Inwardly Rectifying/genetics , Genetic Variation , Polymorphism, Single Nucleotide , Risk Factors
2.
Cell Stem Cell ; 31(4): 519-536.e8, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579683

ABSTRACT

Traumatic brain injury (TBI) strongly correlates with neurodegenerative disease. However, it remains unclear which neurodegenerative mechanisms are intrinsic to the brain and which strategies most potently mitigate these processes. We developed a high-intensity ultrasound platform to inflict mechanical injury to induced pluripotent stem cell (iPSC)-derived cortical organoids. Mechanically injured organoids elicit classic hallmarks of TBI, including neuronal death, tau phosphorylation, and TDP-43 nuclear egress. We found that deep-layer neurons were particularly vulnerable to injury and that TDP-43 proteinopathy promotes cell death. Injured organoids derived from C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) patients displayed exacerbated TDP-43 dysfunction. Using genome-wide CRISPR interference screening, we identified a mechanosensory channel, KCNJ2, whose inhibition potently mitigated neurodegenerative processes in vitro and in vivo, including in C9ORF72 ALS/FTD organoids. Thus, targeting KCNJ2 may reduce acute neuronal death after brain injury, and we present a scalable, genetically flexible cerebral organoid model that may enable the identification of additional modifiers of mechanical stress.


Subject(s)
Amyotrophic Lateral Sclerosis , Brain Injuries, Traumatic , Frontotemporal Dementia , Neurodegenerative Diseases , Potassium Channels, Inwardly Rectifying , Humans , Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/pathology , Brain/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/therapy , C9orf72 Protein/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/etiology , Frontotemporal Dementia/pathology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/metabolism
3.
BMJ Open Diabetes Res Care ; 12(2)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575153

ABSTRACT

INTRODUCTION: Congenital hyperinsulinism (HI) is the leading cause of persistent hypoglycemia in infants. Current models to study the most common and severe form of HI resulting from inactivating mutations in the ATP-sensitive potassium channel (KATP) are limited to primary islets from patients and the Sur1 -/- mouse model. Zebrafish exhibit potential as a novel KATPHI model since they express canonical insulin secretion pathway genes and those with identified causative HI mutations. Moreover, zebrafish larvae transparency provides a unique opportunity for in vivo visualization of pancreatic islets. RESEARCH DESIGN AND METHODS: We evaluated zebrafish as a model for KATPHI using a genetically encoded Ca2+ sensor (ins:gCaMP6s) expressed under control of the insulin promoter in beta cells of an abcc8 -/- zebrafish line. RESULTS: We observed significantly higher islet cytosolic Ca2+ in vivo in abcc8 -/- compared with abcc8 +/+ zebrafish larvae. Additionally, abcc8 -/- larval zebrafish had significantly lower whole body glucose and higher whole body insulin levels compared with abcc8 +/+ controls. However, adult abcc8 -/- zebrafish do not show differences in plasma glucose, plasma insulin, or glucose tolerance when compared with abcc8 +/+ zebrafish. CONCLUSIONS: Our results identify that zebrafish larvae, but not adult fish, are a demonstrable novel model for advancement of HI research.


Subject(s)
Congenital Hyperinsulinism , Potassium Channels, Inwardly Rectifying , Infant , Adult , Animals , Mice , Humans , KATP Channels/genetics , Zebrafish/genetics , Zebrafish/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Congenital Hyperinsulinism/genetics , Insulin/metabolism , Glucose , Adenosine Triphosphate
4.
Biomolecules ; 14(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38672523

ABSTRACT

Andersen-Tawil syndrome (ATS) is a multisystem channelopathy characterized by periodic paralysis, ventricular arrhythmias, prolonged QT interval, and facial dysmorphisms occurring in the first/second decade of life. High phenotypic variability and incomplete penetrance of the genes causing the disease make its diagnosis still a challenge. We describe a three-generation family with six living individuals affected by ATS. The proband is a 37-year-old woman presenting since age 16, with episodes of muscle weakness and cramps in the pre-menstrual period. The father, two brothers, one paternal uncle and one cousin also complained of cramps, muscle stiffness, and weakness. Despite normal serum potassium concentration, treatment with potassium, magnesium, and acetazolamide alleviated paralysis attacks suggesting a dyskalemic syndrome. Dysmorphic features were noted in the proband, only later. On the ECG, all but one had normal QT intervals. The affected males developed metabolic syndrome or obesity. The father had two myocardial infarctions and was implanted with an intracardiac cardioverter defibrillator (ICD). A genetic investigation by WES analysis detected the heterozygous pathogenic variant (NM_000891.2: c.652C>T, p. Arg218Trp) in the KCNJ2 gene related to ATS, confirmed by segregation studies in all affected members. Furthermore, we performed a review of cases with the same mutation in the literature, looking for similarities and divergences with our family case.


Subject(s)
Alleles , Andersen Syndrome , Phenotype , Potassium Channels, Inwardly Rectifying , Adult , Female , Humans , Male , Andersen Syndrome/genetics , Mutation , Pedigree , Potassium Channels, Inwardly Rectifying/genetics
5.
Molecules ; 29(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38675722

ABSTRACT

Diabetes mellitus (DM) represents a problem for the healthcare system worldwide. DM has very serious complications such as blindness, kidney failure, and cardiovascular disease. In addition to the very bad socioeconomic impacts, it influences patients and their families and communities. The global costs of DM and its complications are huge and expected to rise by the year 2030. DM is caused by genetic and environmental risk factors. Genetic testing will aid in early diagnosis and identification of susceptible individuals or populations using ATP-sensitive potassium (KATP) channels present in different tissues such as the pancreas, myocardium, myocytes, and nervous tissues. The channels respond to different concentrations of blood sugar, stimulation by hormones, or ischemic conditions. In pancreatic cells, they regulate the secretion of insulin and glucagon. Mutations in the KCNJ11 gene that encodes the Kir6.2 protein (a major constituent of KATP channels) were reported to be associated with Type 2 DM, neonatal diabetes mellitus (NDM), and maturity-onset diabetes of the young (MODY). Kir6.2 harbors binding sites for ATP and phosphatidylinositol 4,5-diphosphate (PIP2). The ATP inhibits the KATP channel, while the (PIP2) activates it. A Kir6.2 mutation at tyrosine330 (Y330) was demonstrated to reduce ATP inhibition and predisposes to NDM. In this study, we examined the effect of mutations on the Kir6.2 structure using bioinformatics tools and molecular dynamic simulations (SIFT, PolyPhen, SNAP2, PANTHER, PhD&SNP, SNP&Go, I-Mutant, MuPro, MutPred, ConSurf, HOPE, and GROMACS). Our results indicated that M199R, R201H, R206H, and Y330H mutations influence Kir6.2 structure and function and therefore may cause DM. We conclude that MD simulations are useful techniques to predict the effects of mutations on protein structure. In addition, the M199R, R201H, R206H, and Y330H variant in the Kir6.2 protein may be associated with DM. These results require further verification in protein-protein interactions, Kir6.2 function, and case-control studies.


Subject(s)
Diabetes Mellitus , Molecular Dynamics Simulation , Potassium Channels, Inwardly Rectifying , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/chemistry , Humans , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Mutation , Genetic Predisposition to Disease , Binding Sites , Protein Binding
6.
Nat Commun ; 15(1): 3583, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678030

ABSTRACT

Fragile X syndrome (FXS) is an inherited form of intellectual disability caused by the loss of the mRNA-binding fragile X mental retardation protein (FMRP). FXS is characterized by neuronal hyperexcitability and behavioral defects, however the mechanisms underlying these critical dysfunctions remain unclear. Here, using male Fmr1 knockout mouse model of FXS, we identify abnormal extracellular potassium homeostasis, along with impaired potassium channel Kir4.1 expression and function in astrocytes. Further, we reveal that Kir4.1 mRNA is a binding target of FMRP. Finally, we show that the deficit in astroglial Kir4.1 underlies neuronal hyperexcitability and several behavioral defects in Fmr1 knockout mice. Viral delivery of Kir4.1 channels specifically to hippocampal astrocytes from Fmr1 knockout mice indeed rescues normal astrocyte potassium uptake, neuronal excitability, and cognitive and social performance. Our findings uncover an important role for astrocyte dysfunction in the pathophysiology of FXS, and identify Kir4.1 channel as a potential therapeutic target for FXS.


Subject(s)
Astrocytes , Disease Models, Animal , Fragile X Mental Retardation Protein , Fragile X Syndrome , Hippocampus , Mice, Knockout , Neurons , Potassium Channels, Inwardly Rectifying , Animals , Astrocytes/metabolism , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/physiopathology , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Male , Mice , Neurons/metabolism , Hippocampus/metabolism , Behavior, Animal , Potassium/metabolism , Mice, Inbred C57BL , RNA, Messenger/metabolism , RNA, Messenger/genetics
7.
Am J Physiol Cell Physiol ; 326(5): C1543-C1555, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38586877

ABSTRACT

Obesity imposes deficits on adipose tissue and vascular endothelium, yet the role that distinct adipose depots play in mediating endothelial dysfunction in local arteries remains unresolved. We recently showed that obesity impairs endothelial Kir2.1 channels, mediators of nitric oxide production, in arteries of visceral adipose tissue (VAT), while Kir2.1 function in subcutaneous adipose tissue (SAT) endothelium remains intact. Therefore, we determined if VAT versus SAT from lean or diet-induced obese mice affected Kir2.1 channel function in vitro. We found that VAT from obese mice reduces Kir2.1 function without altering channel expression whereas AT from lean mice and SAT from obese mice had no effect on Kir2.1 function as compared to untreated control cells. As Kir2.1 is well known to be inhibited by fatty acid derivatives and obesity is strongly associated with elevated circulating fatty acids, we next tested the role of the fatty acid translocase CD36 in mediating VAT-induced Kir2.1 dysfunction. We found that the downregulation of CD36 restored Kir2.1 currents in endothelial cells exposed to VAT from obese mice. In addition, endothelial cells exposed to VAT from obese mice exhibited a significant increase in CD36-mediated fatty acid uptake. The importance of CD36 in obesity-induced endothelial dysfunction of VAT arteries was further supported in ex vivo pressure myography studies where CD36 ablation rescued the endothelium-dependent response to flow via restoring Kir2.1 and endothelial nitric oxide synthase function. These findings provide new insight into the role of VAT in mediating obesity-induced endothelial dysfunction and suggest a novel role for CD36 as a mediator of endothelial Kir2.1 impairment.NEW & NOTEWORTHY Our findings suggest a role for visceral adipose tissue (VAT) in the dysfunction of endothelial Kir2.1 in obesity. We further reveal a role for CD36 as a major contributor to VAT-mediated Kir2.1 and endothelial dysfunction, suggesting that CD36 offers a potential target for preventing the early development of obesity-associated cardiovascular disease.


Subject(s)
CD36 Antigens , Endothelial Cells , Intra-Abdominal Fat , Mice, Inbred C57BL , Obesity , Potassium Channels, Inwardly Rectifying , Animals , CD36 Antigens/metabolism , CD36 Antigens/genetics , Intra-Abdominal Fat/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Obesity/metabolism , Mice , Male , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Mice, Obese , Subcutaneous Fat/metabolism , Diet, High-Fat
8.
Sci Rep ; 14(1): 7834, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570597

ABSTRACT

Potassium channels belong to the super family of ion channels and play a fundamental role in cell excitability. Kir channels are potassium channels with an inwardly rectifying property. They play a role in setting the resting membrane potential of many excitable cells including neurons. Although putative Kir channel family genes can be found in the Apis mellifera genome, their functional expression, biophysical properties, and sensitivity to small molecules with insecticidal activity remain to be investigated. We cloned six Kir channel isoforms from Apis mellifera that derive from two Kir genes, AmKir1 and AmKir2, which are present in the Apis mellifera genome. We studied the tissue distribution, the electrophysiological and pharmacological characteristics of three isoforms that expressed functional currents (AmKir1.1, AmKir2.2, and AmKir2.3). AmKir1.1, AmKir2.2, and AmKir2.3 isoforms exhibited distinct characteristics when expressed in Xenopus oocytes. AmKir1.1 exhibited the largest potassium currents and was impermeable to cesium whereas AmKir2.2 and AmKir2.3 exhibited smaller currents but allowed cesium to permeate. AmKir1 exhibited faster opening kinetics than AmKir2. Pharmacological experiments revealed that both AmKir1.1 and AmKir2.2 are blocked by the divalent ion barium, with IC50 values of 10-5 and 10-6 M, respectively. The concentrations of VU041, a small molecule with insecticidal properties required to achieve a 50% current blockade for all three channels were higher than those needed to block Kir channels in other arthropods, such as the aphid Aphis gossypii and the mosquito Aedes aegypti. From this, we conclude that Apis mellifera AmKir channels exhibit lower sensitivity to VU041.


Subject(s)
Potassium Channels, Inwardly Rectifying , Animals , Bees/genetics , Potassium Channels, Inwardly Rectifying/genetics , Membrane Potentials/physiology , Potassium , Cloning, Molecular , Protein Isoforms/genetics , Cesium
9.
Nat Commun ; 15(1): 2502, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509107

ABSTRACT

ATP-sensitive potassium (KATP) channels, composed of four pore-lining Kir6.2 subunits and four regulatory sulfonylurea receptor 1 (SUR1) subunits, control insulin secretion in pancreatic ß-cells. KATP channel opening is stimulated by PIP2 and inhibited by ATP. Mutations that increase channel opening by PIP2 reduce ATP inhibition and cause neonatal diabetes. Although considerable evidence has implicated a role for PIP2 in KATP channel function, previously solved open-channel structures have lacked bound PIP2, and mechanisms by which PIP2 regulates KATP channels remain unresolved. Here, we report the cryoEM structure of a KATP channel harboring the neonatal diabetes mutation Kir6.2-Q52R, in the open conformation, bound to amphipathic molecules consistent with natural C18:0/C20:4 long-chain PI(4,5)P2 at two adjacent binding sites between SUR1 and Kir6.2. The canonical PIP2 binding site is conserved among PIP2-gated Kir channels. The non-canonical PIP2 binding site forms at the interface of Kir6.2 and SUR1. Functional studies demonstrate both binding sites determine channel activity. Kir6.2 pore opening is associated with a twist of the Kir6.2 cytoplasmic domain and a rotation of the N-terminal transmembrane domain of SUR1, which widens the inhibitory ATP binding pocket to disfavor ATP binding. The open conformation is particularly stabilized by the Kir6.2-Q52R residue through cation-π bonding with SUR1-W51. Together, these results uncover the cooperation between SUR1 and Kir6.2 in PIP2 binding and gating, explain the antagonistic regulation of KATP channels by PIP2 and ATP, and provide a putative mechanism by which Kir6.2-Q52R stabilizes an open channel to cause neonatal diabetes.


Subject(s)
Diabetes Mellitus , Potassium Channels, Inwardly Rectifying , Infant, Newborn , Humans , Sulfonylurea Receptors/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Binding Sites , Adenosine Triphosphate/metabolism , KATP Channels/genetics , KATP Channels/metabolism
10.
Mov Disord ; 39(5): 897-905, 2024 May.
Article in English | MEDLINE | ID: mdl-38436103

ABSTRACT

BACKGROUND: Although the group of paroxysmal kinesigenic dyskinesia (PKD) genes is expanding, the molecular cause remains elusive in more than 50% of cases. OBJECTIVE: The aim is to identify the missing genetic causes of PKD. METHODS: Phenotypic characterization, whole exome sequencing and association test were performed among 53 PKD cases. RESULTS: We identified four causative variants in KCNJ10, already associated with EAST syndrome (epilepsy, cerebellar ataxia, sensorineural hearing impairment and renal tubulopathy). Homozygous p.(Ile209Thr) variant was found in two brothers from a single autosomal recessive PKD family, whereas heterozygous p.(Cys294Tyr) and p.(Thr178Ile) variants were found in six patients from two autosomal dominant PKD families. Heterozygous p.(Arg180His) variant was identified in one additional sporadic PKD case. Compared to the Genome Aggregation Database v2.1.1, our PKD cohort was significantly enriched in both rare heterozygous (odds ratio, 21.6; P = 9.7 × 10-8) and rare homozygous (odds ratio, 2047; P = 1.65 × 10-6) missense variants in KCNJ10. CONCLUSIONS: We demonstrated that both rare monoallelic and biallelic missense variants in KCNJ10 are associated with PKD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Mutation, Missense , Potassium Channels, Inwardly Rectifying , Humans , Male , Mutation, Missense/genetics , Female , Potassium Channels, Inwardly Rectifying/genetics , Adult , Adolescent , Child , Dystonia/genetics , Young Adult , Pedigree , Middle Aged , Exome Sequencing , Child, Preschool
11.
Brain ; 147(5): 1726-1739, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38462589

ABSTRACT

Progressive neuronal loss is a hallmark feature distinguishing neurodegenerative diseases from normal ageing. However, the underlying mechanisms remain unknown. Extracellular K+ homeostasis is a potential mediator of neuronal injury as K+ elevations increase excitatory activity. The dysregulation of extracellular K+ and potassium channel expressions during neurodegeneration could contribute to this distinction. Here we measured the cortical extracellular K+ concentration ([K+]e) in awake wild-type mice as well as murine models of neurodegeneration using K+-sensitive microelectrodes. Unexpectedly, aged wild-type mice exhibited significantly lower cortical [K+]e than young mice. In contrast, cortical [K+]e was consistently elevated in Alzheimer's disease (APP/PS1), amyotrophic lateral sclerosis (ALS) (SOD1G93A) and Huntington's disease (R6/2) models. Cortical resting [K+]e correlated inversely with neuronal density and the [K+]e buffering rate but correlated positively with the predicted neuronal firing rate. Screening of astrocyte-selective genomic datasets revealed a number of potassium channel genes that were downregulated in these disease models but not in normal ageing. In particular, the inwardly rectifying potassium channel Kcnj10 was downregulated in ALS and Huntington's disease models but not in normal ageing, while Fxyd1 and Slc1a3, each of which acts as a negative regulator of potassium uptake, were each upregulated by astrocytes in both Alzheimer's disease and ALS models. Chronic elevation of [K+]e in response to changes in gene expression and the attendant neuronal hyperexcitability may drive the neuronal loss characteristic of these neurodegenerative diseases. These observations suggest that the dysregulation of extracellular K+ homeostasis in a number of neurodegenerative diseases could be due to aberrant astrocytic K+ buffering and as such, highlight a fundamental role for glial dysfunction in neurodegeneration.


Subject(s)
Aging , Neurodegenerative Diseases , Potassium , Animals , Potassium/metabolism , Aging/metabolism , Mice , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Mice, Transgenic , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Male , Mice, Inbred C57BL , Neurons/metabolism , Humans , Disease Models, Animal , Cerebral Cortex/metabolism , Huntington Disease/metabolism , Huntington Disease/genetics , Female , Astrocytes/metabolism
12.
J Clin Invest ; 134(9)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530364

ABSTRACT

G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR with largely unknown functions. Here, we report that Gpr37l1/GRP37L1 ranks among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs) and is selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy induced by streptozotoxin (STZ) and paclitaxel (PTX) led to reduced GPR37L1 expression on the plasma membrane in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX- and STZ-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 is coexpressed with potassium channels, including KCNJ10 (Kir4.1) in mouse SGCs and both KCNJ3 (Kir3.1) and KCNJ10 in human SGCs. GPR37L1 regulates the surface expression and function of the potassium channels. Notably, the proresolving lipid mediator maresin 1 (MaR1) serves as a ligand of GPR37L1 and enhances KCNJ10- or KCNJ3-mediated potassium influx in SGCs through GPR37L1. Chemotherapy suppressed KCNJ10 expression and function in SGCs, which MaR1 rescued through GPR37L1. Finally, genetic analysis revealed that the GPR37L1-E296K variant increased chronic pain risk by destabilizing the protein and impairing the protein's function. Thus, GPR37L1 in SGCs offers a therapeutic target for the protection of neuropathy and chronic pain.


Subject(s)
Docosahexaenoic Acids , Ganglia, Spinal , Neuroglia , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Humans , Male , Mice , Ganglia, Spinal/metabolism , Homeostasis , Mice, Knockout , Mice, Transgenic , Neuralgia/metabolism , Neuralgia/genetics , Neuralgia/pathology , Neuroglia/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
13.
Channels (Austin) ; 18(1): 2327708, 2024 12.
Article in English | MEDLINE | ID: mdl-38489043

ABSTRACT

KATP channels are ligand-gated potassium channels that couple cellular energetics with membrane potential to regulate cell activity. Each channel is an eight subunit complex comprising four central pore-forming Kir6 inward rectifier potassium channel subunits surrounded by four regulatory subunits known as the sulfonylurea receptor, SUR, which confer homeostatic metabolic control of KATP gating. SUR is an ATP binding cassette (ABC) protein family homolog that lacks membrane transport activity but is essential for KATP expression and function. For more than four decades, understanding the structure-function relationship of Kir6 and SUR has remained a central objective of clinical significance. Here, we review progress in correlating the wealth of functional data in the literature with recent KATP cryoEM structures.


Subject(s)
Potassium Channels, Inwardly Rectifying , Sulfonylurea Receptors/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Membrane Potentials , Adenosine Triphosphate/metabolism , KATP Channels/genetics
14.
ACS Chem Biol ; 19(3): 763-773, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38449446

ABSTRACT

The inwardly rectifying potassium Kir4.2 channel plays a crucial role in regulating membrane potentials and maintaining potassium homeostasis. Kir4.2 has been implicated in various physiological processes, including insulin secretion, gastric acid regulation, and the pathogenesis of central nervous system diseases. Despite its significance, the number of identified ligands for Kir4.2 remains limited. In this study, we established a method to directly observe ligands avoiding a requirement to observe the high-mass ligand-membrane protein-detergent complexes. This method used collision-induced affinity selection mass spectrometry (CIAS-MS) to identify ligands dissociated from the Kir4.2 channel-detergent complex. The CIAS-MS approach integrated all stages of affinity selection within the mass spectrometer, offering advantages in terms of time efficiency and cost-effectiveness. Additionally, we explored the effect of collisional voltage ramps on the dissociation behavior of the ligand and the ligand at different concentrations, demonstrating dose dependency.


Subject(s)
Detergents , Potassium Channels, Inwardly Rectifying , Ligands , Potassium/metabolism
15.
Diabetologia ; 67(5): 940-951, 2024 May.
Article in English | MEDLINE | ID: mdl-38366195

ABSTRACT

AIMS/HYPOTHESIS: The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life. METHODS: A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays. RESULTS: Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/INTERPRETATION: Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.


Subject(s)
Congenital Hyperinsulinism , Diabetes, Gestational , Potassium Channels, Inwardly Rectifying , Infant, Newborn , Adult , Middle Aged , Female , Pregnancy , Humans , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics , Sulfonylurea Receptors/metabolism , Congenital Hyperinsulinism/genetics , Sulfonylurea Compounds/therapeutic use , Mutation/genetics , Glyburide , Adenosine Triphosphate/metabolism
16.
Ophthalmic Genet ; 45(2): 126-132, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411150

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) occurs due to high blood glucose damage to the retina and leads to blindness if left untreated. KATP and related genes (KCNJ11 and ABCC8) play an important role in insulin secretion by glucose-stimulated pancreatic beta cells and the regulation of insulin secretion. KCNJ11 E23K (rs5219), ABCC8-3 C/T (rs1799854), Thr759Thr (rs1801261) and Arg1273Arg (rs1799859) are among the possible related single nucleotide polymorphisms (SNPs). The aim of this study is to find out how DR and these SNPs are associated with one another in the Turkish population. MATERIALS AND METHODS: This study included 176 patients with type 2 diabetes mellitus without retinopathy (T2DM-rp), 177 DR patients, and 204 controls. Genomic DNA was extracted from whole blood, and genotypes were determined by the PCR-RFLP method. RESULTS: In the present study, a significant difference was not found between all the groups in terms of Arg1273Arg polymorphism located in the ABCC8 gene. The T allele and the TT genotype in the -3 C/T polymorphism in this gene may have a protective effect in the development of DR (p = 0.036 for the TT genotype; p = 0.034 for T allele) and PDR (p = 0.042 and 0.025 for the TT genotype). The AA genotype showed a significant increase in the DR group compared to T2DM-rp in the KCNJ11 E23K polymorphism (p = 0.046). CONCLUSIONS: Consequently, the T allele and TT genotype in the -3 C/T polymorphism of the ABCC8 gene may have a protective marker on the development of DR and PDR, while the AA genotype in the E23K polymorphism of the KCNJ11 gene may be effective in the development of DR in the Turkish population.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Potassium Channels, Inwardly Rectifying , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetic Retinopathy/genetics , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics
17.
Sci Rep ; 14(1): 3038, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321040

ABSTRACT

The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP. These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.


Subject(s)
Ear, Inner , Potassium Channels, Inwardly Rectifying , Animals , Mice , Stria Vascularis/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Cochlea/metabolism , Ear, Inner/metabolism , Mice, Transgenic , Mammals/metabolism
18.
J Am Chem Soc ; 146(7): 4421-4432, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38334076

ABSTRACT

Lipids adhere to membrane proteins to stimulate or suppress molecular and ionic transport and signal transduction. Yet, the molecular details of lipid-protein interaction and their functional impact are poorly characterized. Here we combine NMR, coarse-grained molecular dynamics (CGMD), and functional assays to reveal classic cooperativity in the binding and subsequent activation of a bacterial inward rectifier potassium (Kir) channel by phosphatidylglycerol (PG), a common component of many membranes. Past studies of lipid activation of Kir channels focused primarily on phosphatidylinositol bisphosphate, a relatively rare signaling lipid that is tightly regulated in space and time. We use solid-state NMR to quantify the binding of unmodified 13C-PG to the K+ channel KirBac1.1 in liposomes. This specific lipid-protein interaction has a dissociation constant (Kd) of ∼7 mol percentage PG (ΧPG) with positive cooperativity (n = 3.8) and approaches saturation near 20% ΧPG. Liposomal flux assays show that K+ flux also increases with PG in a cooperative manner with an EC50 of ∼20% ΧPG, within the physiological range. Further quantitative fitting of these data reveals that PG acts as a partial (80%) agonist with fivefold K+ flux amplification. Comparisons of NMR chemical shift perturbation and CGMD simulations at different ΧPG confirm the direct interaction of PG with key residues, several of which would not be accessible to lipid headgroups in the closed state of the channel. Allosteric regulation by a common lipid is directly relevant to the activation mechanisms of several human ion channels. This study highlights the role of concentration-dependent lipid-protein interactions and tightly controlled protein allostery in the activation and regulation of ion channels.


Subject(s)
Potassium Channels, Inwardly Rectifying , Humans , Potassium Channels, Inwardly Rectifying/chemistry , Potassium Channels, Inwardly Rectifying/metabolism , Liposomes , Membrane Proteins/metabolism , Lipids , Magnetic Resonance Spectroscopy
19.
Genes (Basel) ; 15(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397239

ABSTRACT

(1) Background: Copy number variation (CNV) is a critical component of genome structural variation and has garnered significant attention. High-throughput screening of the KCNJ15 gene has revealed a correlation between the CNV region and the growth traits of goats. We aimed to identify the CNV of the KCNJ15 gene in five goat breeds and analyze its association with growth characteristics. (2) Methods: We utilized 706 goats from five breeds: Guizhou black goat (GZB), Guizhou white goat (GZW), Bohuai goat (BH), Huai goat (HH), and Taihang goat (TH). To evaluate the number of copies of the KCNJ15 gene using qPCR, we analyzed the correlation between the CNV and growth characteristics and then used a universal linear model. The findings revealed variations in the distribution of different copy number types among the different goat breeds. (3) Results: Association analysis revealed a positive influence of the CNV in the KCNJ15 gene on goat growth. In GZB, individuals with duplication types exhibited superior performance in terms of cannon bone circumference (p < 0.05). In HH, individuals with duplication types exhibited superior performance in terms of body slanting length (p < 0.05). Conversely, normal TH demonstrated better body height and body weight (p < 0.05), while in GZW, when CN = 3, it performed better than other types in terms of body weight and chest circumference (p < 0.05). However, in BH, it had no significant effect on growth traits. (4) Conclusions: We confirmed that the CNV in the KCNJ15 gene significantly influences the growth characteristics of four distinct goat breeds. The correlation between KCNJ15 gene CNVs and goat growth traits offers valuable insights to breeders, enabling them to employ precise and efficient breeding methods that enhance livestock welfare, productivity, and overall economic benefits in the industry.


Subject(s)
Goats , Potassium Channels, Inwardly Rectifying , Animals , Body Weight/genetics , DNA Copy Number Variations/genetics , Gene Dosage , Goats/genetics , Goats/growth & development , Phenotype , Potassium Channels, Inwardly Rectifying/genetics
20.
Clin Genet ; 105(5): 549-554, 2024 05.
Article in English | MEDLINE | ID: mdl-38225536

ABSTRACT

Congenital hyperinsulinism (CHI; OMIM: 256450) is characterized by persistent insulin secretion despite severe hypoglycemia. The most common causes are variants in the ATP-binding cassette subfamily C member 8(ABCC8) and potassium inwardly-rectifying channel subfamily J member 11(KCNJ11) genes. These encode ATP-sensitive potassium (KATP) channel subunit sulfonylurea receptor 1 (SUR1) and inwardly rectifying potassium channel (Kir6.2) proteins. A 7-day-old male infant presented with frequent hypoglycemic episodes and was clinically diagnosed with CHI, underwent trio-whole-exome sequencing, revealing compound heterozygous ABCC8 variants (c.307C>T, p.His103Tyr; and c.3313_3315del, p.Ile1105del) were identified. In human embryonic kidney 293 (HEK293) and rat insulinoma cells (INS-1) transfected with wild-type and variant plasmids, KATP channels formed by p.His103Tyr were delivered to the plasma membrane, whereas p.Ile1105del or double variants (p.His103Tyr coupled with p.Ile1105del) failed to be transported to the plasma membrane. Compared to wild-type channels, the channels formed by the variants (p.His103Tyr; p.Ile1105del) had elevated basal [Ca2+]i, but did not respond to stimulation by glucose. Our results provide evidence that the two ABCC8 variants may be related to CHI owing to defective trafficking and dysfunction of KATP channels.


Subject(s)
Congenital Hyperinsulinism , Potassium Channels, Inwardly Rectifying , Infant , Animals , Rats , Male , Humans , Sulfonylurea Receptors/genetics , Sulfonylurea Receptors/metabolism , Potassium Channels, Inwardly Rectifying/genetics , HEK293 Cells , Receptors, Drug/genetics , Receptors, Drug/metabolism , Mutation/genetics , Congenital Hyperinsulinism/genetics , Adenosine Triphosphate , Potassium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...