Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
1.
Food Res Int ; 178: 113878, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309896

ABSTRACT

Coffee processing generates large amounts of residues of which a portion still has bioactive properties due to their richness in phenolic compounds. This study aimed to obtain a coffee husks extract (CHE) and to encapsulate it (ECHE) with polyvinylpyrrolidone using a one-step procedure of solid dispersion. The extraction and encapsulation yields were 9.1% and 92%, respectively. Thermal analyses revealed that the encapsulation increased the thermal stability of CHE and dynamic light scattering analyses showed a bimodal distribution of size with 81% of the ECHE particles measuring approximately 711 nm. Trigonelline and caffeine were the main alkaloids and quercetin the main phenolic compound in CHE, and the encapsulation tripled quercetin extraction. The total phenolics content and the antioxidant activity of ECHE, assayed with three different procedures, were higher than those of CHE. The antioxidant activity and the bioaccessibility of the phenolic compounds of ECHE were also higher than those of CHE following simulated gastrointestinal digestion (SGID). Both CHE and ECHE were not toxic against Alliumcepa cells and showed similar capacities for inhibiting the pancreatic α-amylase in vitro. After SGID, however, ECHE became a 1.9-times stronger inhibitor of the α-amylase activity in vitro (IC50 = 8.5 mg/mL) when compared to CHE. Kinetic analysis revealed a non-competitive mechanism of inhibition and in silico docking simulation suggests that quercetin could be contributing significantly to the inhibitory action of both ECHE and CHE. In addition, ECHE (400 mg/kg) was able to delay by 50% the increases of blood glucose in vivo after oral administration of starch to rats. This finding shows that ECHE may be a candidate ingredient in dietary supplements used as an adjuvant for the treatment of diabetes.


Subject(s)
Antioxidants , Coffea , Rats , Animals , Antioxidants/analysis , Quercetin , Povidone , Coffea/chemistry , Kinetics
2.
Exp Parasitol ; 256: 108626, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972848

ABSTRACT

Among all the neglected diseases, schistosomiasis is considered the second most important parasitic infection after malaria. Praziquantel is the most widely used drug for this disease, but its exclusive use may result in the development of drug-resistant schistosomiasis. To increase the control of the disease, new drugs have been developed as alternative treatments, among them 2-(-5-bromo-1-h-indole-3-yl-methylene)-N-(naphthalene-1-ylhydrazine-carbothiamide (LQIT/LT-50), which showed promising schistosomicidal activity in nonclinical studies. However, LQIT/LT-50 presents low solubility in water, resulting in reduced bioavailability. To overcome this solubility problem, the present study aimed to develop LQIT/LT-50 solid dispersions for the treatment of schistosomiasis. Solid dispersions were prepared through the solvent method using Soluplus©, polyethylene glycol (PEG) or polyvinylpyrrolidone (PVP K-30) as hydrophilic carriers. The formulations with the best results in the compatibility tests, aqueous solubility and preliminary stability studies have undergone solubility tests and physicochemical characterizations by Fourier-transform infrared spectroscopy (FTIR), x-ray diffractometry (XRD), exploratory differential calorimetry (DSC), thermogravimetry (TG) and Raman spectroscopy. Finally, the schistosomicidal activity was evaluated in vitro. The phycochemical analyzes showed that when using PVP K-30, there was an interaction between the PVP K-30 and LQIT/LT-50, proving the successful development of the solid dispersion. Furthermore, an increase in the solubility of the new system was observed (LQIT/LT-50:PVP K-30) in addition to the improvement in the in vitro shistosomidal activity at 1:4 (w/w) molar ratio (i.e., 20% drug loading) when compared to LQIT/LT-50 alone. The development of the LQIT/LT-50:PVP K-30 1:4 solid dispersion is encouraging for the future development of new pharmaceutical solid formulations, aiming the schistosomicidal treatment.


Subject(s)
Schistosomiasis , Schistosomicides , Humans , Schistosomicides/pharmacology , Chemistry, Pharmaceutical/methods , Povidone/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Naphthalenes , Water , Indoles/pharmacology , X-Ray Diffraction , Drug Carriers/chemistry
3.
Exp Parasitol ; 256: 108670, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092297

ABSTRACT

Ivermectin (IVM) resistance in parasitic nematodes such as Haemonchus contortus has spurred a search for substances that help to recover its efficacy. One potential agent is the natural product curcumin (CUR). In this study, CUR was combined with polyvinylpyrrolidone (PVP) (CUR/PVP) to improve its solubility and biological applicability. This study determined the effect of CUR preincubation on the effective concentration 50% (EC50) of IVM in three H. contortus isolates with different susceptibilities to IVM. The IVM EC50 was determined for three H. contortus isolates with different IVM susceptibilities using the larval migration inhibition (LMI) test. The three isolates were (i) PARAISO (IVM resistant), (ii) FMVZ-UADY (IVM susceptible), and (iii) CENID-SAI INIFAP (reference IVM susceptible). The L3 of each isolate were preincubated for 3 h with one of three concentrations of CUR (µg curcumin/mL): CONC-1 (3.67), CONC-2 (5.67), or CONC-3 (8.48). Corresponding controls were performed without CUR. The EC50 of IVM was determined for each isolate after they were exposed to the different CUR concentrations. The EC50 of IVM differed between the isolates PARAISO > FMVZ-UADY > CENID-SAI INIFAP (P < 0.05). The CUR preincubation at CONC-1 did not decrease the EC50 of IVM for any of the three isolates, suggesting a hormetic effect. By contrast, CUR preincubation at CONC-2 or CONC-3 decreased the IVM EC50 for the PARAISO isolate (P < 0.05) compared with the reference isolate and reduced the EC50 of IVM for the FMVZ-UADY and CENID-SAI INIFAP isolates below the EC50 for the CENID-SAI INIFAP isolate without CUR preincubation. In conclusion, preincubation of H. contortus L3 with CUR reduced the EC50 of IVM for field isolates classified as resistant and susceptible to IVM. The CUR preincubation reduced the IVM resistance factor in the different isolates tested.


Subject(s)
Anthelmintics , Curcumin , Haemonchiasis , Haemonchus , Animals , Ivermectin/pharmacology , Ivermectin/therapeutic use , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Curcumin/pharmacology , Curcumin/therapeutic use , Povidone/pharmacology , Povidone/therapeutic use , Drug Resistance , Larva , Haemonchiasis/drug therapy , Haemonchiasis/veterinary
4.
Int J Biol Macromol ; 257(Pt 1): 128554, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056731

ABSTRACT

In this study, pectins from commercial citrus and isolated from gabiroba (Campomanesia xanthocarpa) fruits, were obtained with different degrees of methyl-esterification (DM) and applied in the films. The DM ranged from 0 % to 62.5 % and the gradual de-esterification process was confirmed by mono-dimensional analysis (1H NMR). In order to investigate the influence of DM values in pectin film properties, PCP (DM: 62.5 %); PCP-5 (DM: 37.4 %); PCP-15 (DM: 19.1 %), and a fully de-esterified sample PCP-35 (DM: 0 %) were selected. The functional properties of the films clearly showed that the DM and cross-linking process are necessary to obtain a material with water resistance. Furthermore, pectin isolated from the fruits of gabiroba was purified (GW-Na, DM: 51.9 %) and partially de-esterified (GW-Na-5, DM: 37.1 %). These pectins were used, for the first time, in development of films and the physical and mechanical properties were compared with films made with PCP and PCP-5 samples. GW-Na and GW-Na-5 films presented suitable properties, with reduced solubility reduced (57.1 and 26.2 %), high degree of swelling (2.14 and 2.26), low flexibility (18.05 and 6.11 MPa), respectively. High strength and rigidity (99.36 and 1040.9 MPa), for both films (GW-Na and GW-Na-5) were demonstrated, similar to that obtained by analyzed citrus pectin.


Subject(s)
Acrylic Resins , Citrus , Myrtaceae , Povidone/analogs & derivatives , Esterification , Pectins/chemistry , Myrtaceae/chemistry , Citrus/chemistry
5.
Int J Nanomedicine ; 18: 3007-3020, 2023.
Article in English | MEDLINE | ID: mdl-37312931

ABSTRACT

Background: Photodynamic inactivation (PDI) is an attractive alternative to treat Candida albicans infections, especially considering the spread of resistant strains. The combination of the photophysical advantages of Zn(II) porphyrins (ZnPs) and the plasmonic effect of silver nanoparticles (AgNPs) has the potential to further improve PDI. Here, we propose the novel association of polyvinylpyrrolidone (PVP) coated AgNPs with the cationic ZnPs Zn(II) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin or Zn(II) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin to photoinactivate C. albicans. Methods: AgNPs stabilized with PVP were chosen to allow for (i) overlap between the NP extinction and absorption spectra of ZnPs and (ii) favor AgNPs-ZnPs interaction; prerequisites for exploring the plasmonic effect. Optical and zeta potential (ζ) characterizations were performed, and reactive oxygen species (ROS) generation was also evaluated. Yeasts were incubated with individual ZnPs or their respective AgNPs-ZnPs systems, at various ZnP concentrations and two proportions of AgNPs, then irradiated with a blue LED. Interactions between yeasts and the systems (ZnP alone or AgNPs-ZnPs) were evaluated by fluorescence microscopy. Results: Subtle spectroscopic changes were observed for ZnPs after association with AgNPs, and the ζ analyses confirmed AgNPs-ZnPs interaction. PDI using ZnP-hexyl (0.8 µM) and ZnP-ethyl (5.0 µM) promoted a 3 and 2 log10 reduction of yeasts, respectively. On the other hand, AgNPs-ZnP-hexyl (0.2 µM) and AgNPs-ZnP-ethyl (0.6 µM) systems led to complete fungal eradication under the same PDI parameters and lower porphyrin concentrations. Increased ROS levels and enhanced interaction of yeasts with AgNPs-ZnPs were observed, when compared with ZnPs alone. Conclusion: We applied a facile synthesis of AgNPs which boosted ZnP efficiency. We hypothesize that the plasmonic effect combined with the greater interaction between cells and AgNPs-ZnPs systems resulted in an efficient and improved fungal inactivation. This study provides insight into the application of AgNPs in PDI and helps diversify our antifungal arsenal, encouraging further developments toward inactivation of resistant Candida spp.


Subject(s)
Metal Nanoparticles , Porphyrins , Candida albicans , Silver/pharmacology , Reactive Oxygen Species , Povidone , Zinc/pharmacology
6.
Exp Parasitol ; 248: 108455, 2023 May.
Article in English | MEDLINE | ID: mdl-36764643

ABSTRACT

Schistosomiasis is an endemic disease in Brazil. It is important to broaden the treatment options to control and containment of the disease. Thiazolidine derivatives appear as important alternatives to treatment. In vitro studies have demonstrated excellent schistosomiasis activity for LPSF/GQ-238. The molecule, however, has poorly water-soluble. This study focused on increasing the aqueous solubility of LPSF/GQ-238 by obtaining solid dispersions. Were prepared by the solvent techniques, using Soluplus®, Polyethylene glycol (PEG), and Polyvinylpyrrolidone (PVP-K30) as carriers. Solubility tests, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Exploratory Differential Calorimetry (DSC), and Raman Spectroscopy characterized these new intermediate products. The solubility tests showed that the higher the proportion of polymer used in the preparation of the dispersion, the greater the solubility presented. The observation of the morphology by SEM analysis, elucidated, that the new chemical entity (NCE) has a characteristic crystalline structure. The folding of this structure by the polymer was observed in all analyzed dispersions, thus demonstrating the amorphous state of the product. The scales observed in the structures of the dispersions demonstrate the successive wrinkles that occurred. The greater the proportion of the polymer, the greater the number of folds that occurred, which may explain the greater solubility observed in these preparations. The X-ray diffraction profile of the NCE reveals the presence of intense peaks, presenting a crystalline pattern. The polymer, on the other hand, shows amorphous nature, evidenced by the absence of peaks. All the analyzed dispersions did not present the characteristic peaks of the NCE, evidencing the amorphous behavior of the products. The thermal degradation profile of the NCE presents a characteristic crystalline structure endothermic peak. This peak was not observed in any of the obtained dispersions, evidencing the obtaining of a new solid state. Raman spectroscopy showed that peaks in the range 200-400 (cm-1) by NCE were lost when compared to all analyzed dispersions, showing a slight change in the structure of the molecule when dispersed, probably due to the formation of hydrogen bonds with the polymer. The in vitro study showed a significant improvement in the activity of the NCE against the adult worm and to the schistosomulae. It was possible to observe that the obtained solid dispersions were physicochemically and biologically viable for schistosomicidal treatment due to the increase of solubility of the molecule.


Subject(s)
Schistosomiasis , Schistosomicides , Humans , Thiazolidines , Schistosomicides/pharmacology , Spectroscopy, Fourier Transform Infrared , Polymers/chemistry , Povidone , X-Ray Diffraction
7.
Sci Rep ; 12(1): 16935, 2022 10 08.
Article in English | MEDLINE | ID: mdl-36209280

ABSTRACT

A biomaterial made of coir and Multi-Walled Carbon Nanotubes (MWCNTs) is presented which exhibits a relatively high-Temperature Coefficient of Resistance (TCR) and thermal insulation properties. Bolometers usually offer acceptable thermal isolation, electrical resistance, and high TCR. Fibers from agricultural waste materials such as coir has a synergistic effect as thermal insulating material and noise reducer. Based on it, powdered coir pills were used as pilot samples, as well as 2 other samples with different dispersions of MWCNTs, sodium dodecyl benzene sulfonate (SDBS) and polyvinylpyrrolidone (PVP) solution. The 3 kinds of samples were thermo-electrically characterized to determine their bolometric performance. Thermal conductivity of k = 0.045 W/m K was obtained by solving the Fourier's law substituting the data into the equation describing heat flux on the sample around room temperature. Results show that adding different concentrations of MWCNT to powdered coir will lead to films with lower electrical resistance, therefore the thermal conductivity increases while thermal resistance decreases. Finally, the bolometric performance shows a maximum peak with a relatively high TCR of - 40.4% at a temperature of 300.3 K, this synthesized material outperforms by almost 1 order of magnitude larger than commercial materials. Results in this work also indicate that it is possible to tune bolometric parameters of this kind of samples and to use them as thermal insulators in the construction industry, when building roofs and walls.


Subject(s)
Nanotubes, Carbon , Biocompatible Materials , Lignin/analogs & derivatives , Povidone , Receptors, Antigen, T-Cell
8.
Biosensors (Basel) ; 12(10)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36290997

ABSTRACT

This work reports the development and application of a simple, rapid and low-cost voltammetric method for the determination of 3-methylmorphine at nanomolar levels in clinical and environmental samples. The proposed method involves the combined application of a glassy carbon electrode modified with reduced graphene oxide, chitosan and bismuth film (Bi-rGO-CTS/GCE) via square-wave voltammetry using 0.04 mol L-1 Britton-Robinson buffer solution (pH 4.0). The application of the technique yielded low limit of detection of 24 × 10-9 mol L-1 and linear concentration range of 2.5 × 10-7 to 8.2 × 10-6 mol L-1. The Bi-rGO-CTS/GCE sensor was successfully applied for the detection of 3-methylmorphine in the presence of other compounds, including paracetamol and caffeine. The results obtained also showed that the application of the sensor for 3-methylmorphine detection did not experience any significant interference in the presence of silicon dioxide, povidone, cellulose, magnesium stearate, urea, ascorbic acid, humic acid and croscarmellose. The applicability of the Bi-rGO-CTS/GCE sensor for the detection of 3-methylmorphine was evaluated using synthetic urine, serum, and river water samples through addition and recovery tests, and the results obtained were found to be similar to those obtained for the high-performance liquid chromatography method (HPLC)-used as a reference method. The findings of this study show that the proposed voltammetric method is a simple, fast and highly efficient alternative technique for the detection of 3-methylmorphine in both biological and environmental samples.


Subject(s)
Chitosan , Graphite , Carbon/chemistry , Bismuth , Acetaminophen , Humic Substances , Povidone , Caffeine , Limit of Detection , Graphite/chemistry , Electrodes , Silicon Dioxide , Cellulose , Ascorbic Acid , Urea , Water , Electrochemical Techniques/methods
9.
Colloids Surf B Biointerfaces ; 218: 112778, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35998523

ABSTRACT

Silver nanoparticles are versatile platforms with a variety of applications in the biomedical field. In this framework, their presence in biological media inevitably leads to the interaction with proteins thus conducting to the formation of biomolecular coronas. This feature alters the identity of the nanomaterial and may affect many biological events. These considerations motivated the investigation of protein adsorption onto the surface of polymer-stabilized AgNPs. The metallic colloids were coated by polyethyleneimine (PEI), polyvinylpyrrolidone (PVP), and poly(2-vinyl pyridine)-b-poly(ethylene oxide) (PEO-b-P2VP), and nanoparticle-protein interaction was probed by using a library of analytical techniques. The experimental data revealed a higher extent of protein adsorption at the surface of AgNPs@PVP whereas PEO-b-P2VP coating conducted to the least amount. The main component of the protein coronas was evidenced to be bovine serum albumin (BSA), which is indeed the protein at the highest abundancy in the model biological media. We have further demonstrated reduced cytotoxicity of the silver colloids coated by biomolecular coronas as compared to the pristine counterparts. Nevertheless, the protein coatings did not notably reduce the antimicrobial performance of the polymer-stabilized AgNPs. Accordingly, although the protein-repelling property is frequently targeted towards longer in vivo circulation of nanoparticles, we herein underline that protein coatings, which are commonly treated as artifacts to be avoided, may indeed enhance the biological performance of nanomaterials. These findings are expected to be highly relevant in the design of polymer-stabilized metallic colloids intended to be used in healthcare.


Subject(s)
Metal Nanoparticles , Protein Corona , Anti-Bacterial Agents/pharmacology , Colloids , Ethylene Oxide , Polyethyleneimine/pharmacology , Polymers/pharmacology , Povidone/pharmacology , Protein Corona/metabolism , Pyridines , Serum Albumin, Bovine , Silver/pharmacology
10.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 73-79, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-34817365

ABSTRACT

Xanthan gum (XG) and polyvinylpyrrolidone (PVP) are two polymers with low toxicity, high biocompatibility, biodegradability, and high hydrophilicity, making them promising candidates for multiple medical aspects. The present work aimed to synthesize a hydrogel from a mixture of XG and PVP and crosslinked by gamma irradiation. We assessed the hydrogel through a series of physicochemical (FT-IR, TGA, SEM, and percentage of swelling) and biological (stability of the hydrogel in cell culture medium) methods that allowed to determine its applicability. The structural evaluation by infrared spectrum demonstrated that a crosslinked hydrogel was obtained from the combination of polymers. The calorimetric test and swelling percentage confirmed the formation of the bonds responsible for the crosslinked structure. The calorimetric test evidenced that the hydrogel was resistant to decomposition in contrast to non- irradiated material. The determination of the swelling degree showed constant behavior over time, indicating a structure resistant to hydrolysis. This phenomenon also occurred during the test of stability in a cell culture medium. Additionally, microscopic analysis of the sample revealed an amorphous matrix with the presence of porosity. Thus, the findings reveal the synthesis of a novel material that has desirable attributes for its potential application in pharmaceutical and biomedical areas.


Subject(s)
Gamma Rays , Hydrogels/radiation effects , Polymers/radiation effects , Polysaccharides, Bacterial/radiation effects , Povidone/radiation effects , Hydrogels/chemical synthesis , Hydrogels/chemistry , Microscopy, Electron, Scanning , Models, Chemical , Molecular Structure , Polymers/chemical synthesis , Polymers/chemistry , Polysaccharides, Bacterial/chemical synthesis , Polysaccharides, Bacterial/chemistry , Porosity , Povidone/chemical synthesis , Povidone/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Temperature , Thermogravimetry/methods
11.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 64-72, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-34817366

ABSTRACT

The purpose of our study was to obtain new wound dressings in the form of hydrogels that promote wound healing taking advantage of the broad activities of elastin (ELT) in physiological processes. The hydrogel of ELT and polyvinylpyrrolidone (PVP; ELT-PVP) was obtained by cross-linking induced by gamma irradiation at a dose of 25 kGy. The physicochemical changes attributed to cross-linking were analyzed through scanning electron microscopy (SEM), infrared spectroscopy analysis with Fourier transform (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Furthermore, we performed a rheological study to determine the possible changes in the fluidic macroscopic properties produced by the cross-linking method. Finally, we accomplished viability and proliferation analyses of human dermal fibroblasts in the presence of the hydrogel to evaluate its biological characteristics. The hydrogel exhibited a porous morphology, showing interconnected porous with an average pore size of 16 ± 8.42 µm. The analysis of FTIR, DSC, and TGA revealed changes in the chemical structure of the ELT-PVP hydrogel after the irradiation process. Also, the hydrogel exhibited a rheological behavior of a pseudoplastic and thixotropic fluid. The hydrogel was biocompatible, demonstrating high cell viability, whereas ELT presented low biocompatibility at high concentrations. In summary, the hydrogel obtained by gamma irradiation revealed the appropriate morphology to be applied as a wound dressing. Interestingly, the hydrogel exhibited a higher percentage of cell viability compared with ELT, suggesting that the cross-linking of ELT with PVP is a suitable strategy for biological applications of ELT without generating cellular damage.


Subject(s)
Biocompatible Materials/metabolism , Elastin/metabolism , Occlusive Dressings , Polymerization/radiation effects , Povidone/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Calorimetry, Differential Scanning/methods , Cell Proliferation/drug effects , Cells, Cultured , Elastin/chemistry , Elastin/ultrastructure , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Hydrogels/chemistry , Hydrogels/metabolism , Hydrogels/pharmacology , Microscopy, Electron, Scanning , Povidone/chemistry , Povidone/pharmacology , Spectroscopy, Fourier Transform Infrared/methods , Thermogravimetry/methods , Wound Healing/drug effects
12.
BMC Microbiol ; 21(1): 211, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34253188

ABSTRACT

BACKGROUND: Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and presents different clinical manifestations. The adverse effects, immunosuppression and resistant strains associated with this disease necessitate the development of new drugs. Nanoparticles have shown potential as alternative antileishmanial drugs. We showed in a previous study the biosynthesis, characterization and ideal concentration of a nanocomposite that promoted leishmanicidal activity. In the present study, we conducted a specific analysis to show the mechanism of action of AgNP-PVP-MA (silver nanoparticle-polyvinylpyrrolidone-[meglumine antimoniate (Glucantime®)]) nanocomposite during Leishmania amazonensis infection in vitro. RESULTS: Through ultrastructural analysis, we observed significant alterations, such as the presence of small vesicles in the flagellar pocket and in the extracellular membrane, myelin-like structure formation in the Golgi complex and mitochondria, flagellum and plasma membrane rupture, and electrodense material deposition at the edges of the parasite nucleus in both evolutive forms. Furthermore, the Leishmania parasite infection index in macrophages decreased significantly after treatment, and nitric oxide and reactive oxygen species production levels were determined. Additionally, inflammatory, and pro-inflammatory cytokine and chemokine production levels were evaluated. The IL-4, TNF-α and MIP-1α levels increased significantly, while the IL-17 A level decreased significantly after treatment. CONCLUSIONS: Thus, we demonstrate in this study that the AgNP-PVP-MA nanocomposite has leishmanial potential, and the mechanism of action was demonstrated for the first time, showing that this bioproduct seems to be a potential alternative treatment for leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Leishmania/drug effects , Nanocomposites/therapeutic use , Animals , Cells, Cultured , In Vitro Techniques , Leishmania/physiology , Leishmania/ultrastructure , Macrophages/parasitology , Meglumine Antimoniate/chemistry , Meglumine Antimoniate/pharmacology , Meglumine Antimoniate/therapeutic use , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Mice , Mice, Inbred BALB C , Povidone/chemistry , Povidone/pharmacology , Povidone/therapeutic use , Silver/chemistry , Silver/pharmacology , Silver/therapeutic use
13.
Int. j. morphol ; 39(3): 816-822, jun. 2021. ilus
Article in English | LILACS | ID: biblio-1385394

ABSTRACT

SUMMARY: The purpose of this study was to evaluate by morphological methods, if a mixture of Fibroquel® and hyaluronic acid implanted in an animal model of cranial bone injury could promote bone regeneration. 12 Wistar rats were divided in three groups, control group, bone injury without treatment and bone injury with treatment. After experimental period, bone samples were taken and stained with H & E, Masson trichrome, PAS-D, immunohistochemistry with anti-PCNA monoclonal antibody and applied a semiquantitative morphometric method. Treatment group showed extensive areas of collagen fibers in contact with normal bone tissue, areas of normal histology, PAS positive material and less cellular proliferation. We demonstrated for the first time that a mixture of Fibroquel® and hyaluronic acid implanted in an animal model of cranial bone injury promotes bone regeneration.


RESUMEN: El propósito de este estudio fue evaluar por métodos morfológicos, si una mezcla de Fibroquel® y ácido hialurónico implantado en un modelo animal de lesión del hueso craneal podría promover la regeneración ósea. Se dividieron 12 ratas Wistar en tres grupos, grupo control, lesión ósea sin tratamiento y lesión ósea con tratamiento. Después del período experimental, se tomaron muestras de hueso y se tiñeron con H & E, tricrómico de Masson, PAS-D, inmunohistoquímica con anticuerpo monoclonal anti-PCNA y se aplicó un método morfométrico semicuantitativo. El grupo de tratamiento mostró áreas extensas de fibras de colágeno en contacto con tejido óseo normal, áreas de histología normal, material PAS positivo y menor proliferación celular. Demostramos por primera vez que una mezcla de Fibroquel® y ácido hialurónico implantado en un modelo animal de lesión del hueso craneal promueve la regeneración ósea.


Subject(s)
Animals , Rats , Skull/drug effects , Bone Regeneration/drug effects , Povidone/pharmacology , Collagen Type I/pharmacology , Hyaluronic Acid/pharmacology , Immunohistochemistry , Rats, Wistar
14.
Zygote ; 29(6): 476-483, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33818357

ABSTRACT

Although bovine embryo in vitro production (IVP) is a common assisted reproductive technology, critical points warrant further study, including sperm traits and oxidative status of sperm for in vitro fertilization (IVF). Our aim was to evaluate whether the lipid peroxidation index of commercial bull semen is influenced by sperm traits and oxidative status of sperm populations selected using Percoll® gradient. Semen straws from 48 batches from 14 Nelore bulls were thawed individually, analyzed for motility and subjected to Percoll selection. After Percoll, the lipid peroxidation index of the extender was evaluated, whereas selected sperm were analyzed for motility, acrosome and membrane integrity, mitochondrial membrane potential, chromatin resistance and oxidative potential under IVF conditions. Batches were divided retrospectively in four groups according to lipid peroxidation index. Sperm from Group 4 with the lowest index of lipid peroxidation had, after Percoll selection, greater plasma membrane integrity (81.3%; P = 0.004), higher mitochondrial potential (81.1%; P = 0.009) and lower oxidative potential (135.3 ng thiobarbituric acid reactive substances (TBARS)/ml; P = 0.026) compared with Group 1 with highest lipid peroxidation index (74.3%, 73% and 213.1 ng TBARS/ml, respectively). Furthermore, we observed negative correlations for the lipid peroxidation index with motility, membrane integrity and mitochondrial potential, and positive correlations with oxidative potential. In conclusion, oxidative stress in semen straws, as determined using lipid peroxidation in the extender, is associated with sperm traits and their oxidative potential under IVF conditions. These results provided further insights regarding the importance of preventing oxidative stress during semen handling and cryopreservation, as this could affect sperm selected for IVF. Finally, Percoll selection did not completely remove sperm with oxidative markers.


Subject(s)
Semen Preservation , Semen , Animals , Cattle , Cryopreservation , Lipid Peroxidation , Male , Oxidative Stress , Povidone , Retrospective Studies , Semen Analysis , Silicon Dioxide , Sperm Motility , Spermatozoa
15.
J Nanosci Nanotechnol ; 21(9): 4830-4839, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33691874

ABSTRACT

In this study, microparticles of bionanomaterials were obtained by polyvinylpyrrolidone, montmoril-lonite, and zinc oxide bionanosystems produced through solution intercalation technique combined with a spray-drying process, aiming for possible application as drug delivery systems. The final microparticles obtained were evaluated in terms of their production yield, which varies between 39.2% and 56.9%. Thermal analysis showed no major changes in Tg of the nanocomposites, compared to the pure PVP polymer. Scanning electron microscopy analysis revealed a pseudo-spherical shape and confirmed the micrometric size of the microparticles. Transmission electron microscopy analysis corroborated the embedding of montmorillonite and ZnO within the polymer phase. Nuclear magnetic resonance and X-rays diffraction were used to study the nanoparticles dispersion, indicating a predominant intercalated morphology. This study suggests that the applied methodology is suitable for the high yields synthesis of nanocomposites PVP based microparticles with uniform size and shape, which can be promising for the production of a new drug delivery system.


Subject(s)
Povidone , Zinc Oxide , Bentonite , Microscopy, Electron, Scanning , Particle Size , Spray Drying , X-Ray Diffraction
16.
Pharm Dev Technol ; 26(2): 138-149, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33183099

ABSTRACT

Polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) have been extensively studied for their use in film formation. Poloxamer 407 (P407) is a block copolymer that has thermo-responsive and surfactant properties when used in pharmaceutical systems. These polymers are already used in liquid or semi-solid systems for ocular and parenteral drug delivery. However, the effect of P407 presence in solid pharmaceutical films composed of different PVA:PVP ratios have not been investigated yet. Therefore, this work investigated the influence of P407 added to the binary polymer mixture of PVA and PVP for the development of solid films aiming for pharmaceutical applications. The rheological properties of dispersions were investigated, and films were prepared by solvent casting method using different P407:PVA:PVP ratios according to a factorial design 23 (plus center point). The mechanical and in vitro mucoadhesive properties of films, as well as the disintegration time were investigated. Systems presented high mechanical resistance, mucoadhesion, and disintegration timeless than 180 s. It was found that higher concentrations of PVA increase mechanical properties and decrease disintegration time, and higher proportions of PVP and P407 increased mucoadhesion. The films could be classified as fast disintegrating films and represent a promising alternative for modifying drug delivery and pharmaceutical applications.


Subject(s)
Drug Delivery Systems , Poloxamer/chemistry , Polyvinyl Alcohol/chemistry , Povidone/chemistry , Adhesiveness , Excipients/chemistry , Mucous Membrane/metabolism , Polymers/chemistry , Rheology , Solvents/chemistry , Surface-Active Agents/chemistry
17.
Biomed Res Int ; 2020: 3964518, 2020.
Article in English | MEDLINE | ID: mdl-32908887

ABSTRACT

Treatment of tracheal stenosis is occasionally performed in combination with wound healing modulators to manipulate new extracellular matrix (ECM) formation and prevent fibrosis. Hyaluronic acid (HA) and collagen-polyvinylpyrrolidone (collagen-PVP) decrease fibrosis in experimental tracheal healing. However, they have not been used clinically as their effect on ECM components, which modify tracheal scarring, has not been described. Objective. To evaluate the effect of the application of HA, collagen-PVP, a mixture of HA and collagen-PVP (HA+collagen-PVP), and mitomycin C on the expression of decorin, matrix metalloproteinase 1 (MMP1), and MMP9, as well as the type of collagen and deposits formed in the scar after resection and end-to-end anastomosis (REEA) of the cervical trachea using an experimental model. Materials and Methods. Thirty dogs underwent REEA of the cervical trachea and were treated with different wound healing modulators: group I (n = 6), control; group II (n = 6), HA; group III (n = 6), collagen-PVP; group IV (n = 6), HA+collagen-PVP; and group V (n = 6), mitomycin C. The dogs were evaluated clinically and endoscopically for 4 weeks. Subsequently, macroscopic and microscopic changes, expression of ECM proteins, and collagen deposition in tracheal scars were analysed. Results. Groups II, III, and IV showed reduced endoscopic, macroscopic, and microscopic inflammation, improved neovascularization, high decorin expression (p < 0.01, analysis of variance (ANOVA)), and moderate expression of MMP1 (p < 0.003, ANOVA) and type I and III collagen (p < 0.05, Kruskal-Wallis). Groups IV and V developed fewer collagen deposits (p < 0.001, ANOVA). Conclusion. Treatment with HA and collagen-PVP improved post-REEA healing by increasing neovascularization, stimulating the expression of decorin, and regulating the expression of MMP1, as well as type I and III collagen and their deposition.


Subject(s)
Cicatrix/drug therapy , Collagen/administration & dosage , Hyaluronic Acid/administration & dosage , Postoperative Complications/drug therapy , Povidone/administration & dosage , Tracheal Stenosis/surgery , Anastomosis, Surgical , Animals , Cicatrix/etiology , Cicatrix/pathology , Collagen/metabolism , Decorin/metabolism , Disease Models, Animal , Dogs , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Fibrosis , Humans , Male , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 9/metabolism , Mitomycin/administration & dosage , Postoperative Complications/metabolism , Postoperative Complications/pathology , Trachea/drug effects , Trachea/pathology , Trachea/surgery , Wound Healing/drug effects
18.
Acta Trop ; 211: 105644, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32682748

ABSTRACT

Silver nanoparticles (Ag NPs) have been applied in several commercial products due to their antimicrobial properties, while their molluscicide properties, mode of action and toxicity to snail species remain unclear. In this study, the comparative toxicity of polyvinylpyrrolidone (PVP)-functionalized Ag NPs and their dissolved counterpart (Ag ions) was analyzed during the early developmental stages of the freshwater snail Biomphalaria glabrata, intermediate host of Schistosoma mansoni. Ag NPs were synthesized and characterized by multiple techniques, and the snail embryotoxicity was analyzed in terms of mortality, hatching, developmental stages and morphological alterations, while the acute toxicity to newly-hatched snails was analyzed by mortality and behavioral impairments. Results showed that both Ag forms induced mortality, hatching delay and morphological alterations (especially hydropic abnormalities) in snail embryos in a concentration and exposure time dependent patterns. Ag NPs showed low embryotoxic effects and similar toxicity for newly-hatched snails when compared to their dissolved counterparts, indicating that the nanotoxicity was dependent of snail developmental stages. The knowledge about the Ag NP toxicity to different early development stages of B. glabrata contributes to its potential use as molluscicide and control of neglected tropical diseases, including schistosomiasis.


Subject(s)
Biomphalaria/drug effects , Metal Nanoparticles/chemistry , Molluscacides/pharmacology , Povidone/chemistry , Silver/pharmacology , Animals , Molluscacides/chemistry , Silver/chemistry
19.
Ther Deliv ; 11(7): 431-446, 2020 07.
Article in English | MEDLINE | ID: mdl-32627679

ABSTRACT

Aim: This work aimed to develop a mucoadhesive film composed of a triblock copolymer (poloxamer 407), polyvinyl alcohol and polyvinylpyrrolidone for buccal modified delivery of metronidazole. Materials & methods: Three film formulations containing different polymer amounts were prepared by solvent casting. They were characterized as physicochemical, mechanical and mucoadhesive properties, and in vitro metronidazole release profiles. Results: Films displayed physicochemical, mechanical and mucoadhesive characteristics dependent of polymeric composition and drug presence. They could rapidly swell and promote the fast drug release (80% in 20 min) that was governed by Fickian diffusion. The films showed total disintegration in less than 90 s and total drug release in 30 min. Conclusion: Therefore, the formulations represent a promising alternative for modifying of buccal metronidazole delivery for pharmaceutical applications.


Subject(s)
Polyvinyl Alcohol , Povidone , Adhesiveness , Administration, Buccal , Drug Delivery Systems , Metronidazole , Mouth Mucosa , Poloxamer
20.
Anim Reprod Sci ; 216: 106344, 2020 May.
Article in English | MEDLINE | ID: mdl-32414459

ABSTRACT

The aim of this study was to evaluate effects of selection using the Percoll density gradient method on motility, mitochondrial membrane potential (ΔΨMit) and fertility in a subpopulation of testicular spermatozoa obtained from Atlantic salmon (Salmo salar). Samples were divided into three groups: Control (C), T1 (45/90 % Percoll®) and T2 (45/60 % Percoll®). Sperm motility was evaluated using CASA (Computer-Assisted Sperm Analysis), ΔΨMit using flow cytometry, and fertility evaluating whether cleavage of fertilised eggs had occurred after 16 h of incubation at 10 °C. Results indicate that motility was greater in T1 (92 ± 2.91 %) and T2 (89 ± 2.88 %) than in the Control (83.2 ± 2.04 %). The percentage of ΔΨMit was 88.3 ± 0.58 % and 85 ± 2% for T1 and T2, respectively, compared to 35 ± 6.24 % for the control. The fertility rates were 76 ± 9.1 % and 70 ± 8.1 % for T1 and T2, respectively, compared with 66 ± 12 % for the control. The kinetic characteristics for T1 were curvilinear velocity (VCL): 92.44 ± 21.12 µm/s, average path velocity (VAP): 85.87 ± 21.83 µm/s; and for T2 VCL was 78.69 ± 17.63 µm/s and VAP was 73.62 ± 17.08 µm/s. The results indicate sperm motility and ΔΨMit were greater in T1 and T2 compared with the control (P < 0.05). Similarly, there was an increase in the fertilisation rate compared to the control. The results from this study are the first where sperm quality variables were evaluated for Salmo salar testicular sperm using the Percoll® density gradient method.


Subject(s)
Centrifugation, Density Gradient/veterinary , Povidone , Salmo salar/physiology , Semen Analysis/veterinary , Silicon Dioxide , Spermatozoa/physiology , Animals , Fertility/physiology , Male , Membrane Potential, Mitochondrial , Semen , Semen Analysis/methods , Sperm Motility
SELECTION OF CITATIONS
SEARCH DETAIL