Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.413
Filter
1.
Hematology ; 29(1): 2356292, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38785187

ABSTRACT

OBJECTIVES: This study aims to investigate the role of excessive Protein Tyrosine Phosphatase Non-Receptor Type 21 (PTPN21) in the proliferation of Acute Lymphoblastic Leukemia (ALL) cells with EGF stimulation. METHODS: PTPN21 was overexpressed in ALL cell lines by lentiviral transfection. Apoptosis was assayed by Annexin V/7-AAD staining. The proliferation and cell cycle of EGF-treated ALL cells were assessed by MTT and Ki-67/7-AAD staining respectively. The phosphorylation of Src tyrosine kinase and mediators of distinct MAPK pathways were assessed by Western blot. RESULTS: Overexpression of PTPN21 had minimal effect on the apoptosis of ALL cells, but significantly promoted the proliferation and cell cycle progression of ALL cells stimulated with EGF. The activity of Src tyrosine kinase and the MAPK pathways was elevated. Inhibition of MAPK pathways by specific inhibitors mitigated this pro-proliferative effect of excessive PTPN21 on EGF-stimulated ALL cells. CONCLUSION: PTPN21 may facilitate ALL progression by promoting cell proliferation via the Src/MAPK signaling pathways.


Subject(s)
Cell Proliferation , Epidermal Growth Factor , MAP Kinase Signaling System , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Protein Tyrosine Phosphatases, Non-Receptor , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Proliferation/drug effects , MAP Kinase Signaling System/drug effects , Epidermal Growth Factor/pharmacology , Cell Line, Tumor , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Apoptosis/drug effects
2.
Biomolecules ; 14(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38785930

ABSTRACT

Herpesvirus entry mediator (HVEM) is a molecular switch that can modulate immune responses against cancer. The significance of HVEM as an immune checkpoint target and a potential prognostic biomarker in malignancies is still controversial. This study aims to determine whether HVEM is an immune checkpoint target with inhibitory effects on anti-tumor CD4+ T cell responses in vitro and whether HVEM gene expression is dysregulated in patients with acute lymphocytic leukemia (ALL). HVEM gene expression in tumor cell lines and peripheral blood mononuclear cells (PBMCs) from ALL patients and healthy controls was measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Tumor cells were left untreated (control) or were treated with an HVEM blocker before co-culturing with CD4+ T cells in vitro in a carboxyfluorescein succinimidyl ester (CFSE)-dependent proliferation assay. HVEM expression was upregulated in the chronic myelogenous leukemia cell line (K562) (FC = 376.3, p = 0.086) compared with normal embryonic kidney cells (Hek293). CD4+ T cell proliferation was significantly increased in the HVEM blocker-treated K562 cells (p = 0.0033). Significant HVEM differences were detected in ALL PBMCs compared with the controls, and these were associated with newly diagnosed ALL (p = 0.0011) and relapsed/refractory (p = 0.0051) B cell ALL (p = 0.0039) patients. A significant differentiation between malignant ALL and the controls was observed in a receiver operating characteristic (ROC) curve analysis with AUC = 0.78 ± 0.092 (p = 0.014). These results indicate that HVEM is an inhibitory molecule that may serve as a target for immunotherapy and a potential ALL biomarker.


Subject(s)
Biomarkers, Tumor , Receptors, Tumor Necrosis Factor, Member 14 , Humans , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Receptors, Tumor Necrosis Factor, Member 14/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Male , Female , Prognosis , Middle Aged , Adult , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , K562 Cells , HEK293 Cells , Cell Proliferation , Aged , Cell Line, Tumor , Young Adult , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
3.
Talanta ; 274: 125979, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38537358

ABSTRACT

Terminal deoxynucleotidyl transferase (TdT), a specialized DNA polymerase, is recognized as a promising biomarker for acute leukemia. Herein, taking the advantage of the self-mediated strand elongation property of TdT, a simple and sensitive method for TdT activity assay was developed based on gold nanoparticles (AuNPs) labeling inductively coupled plasma mass spectrometry (ICP-MS). In the presence of TdT, the primer DNA on magnetic beads is elongated with an adenine-rich single stranded long chain that can label poly-thymine modified AuNPs. After acid elution, the labeled AuNPs were detected by ICP-MS, and the signal intensity of 197Au reflected the TdT activity. Under the optimal conditions, the limit of detection for TdT activity is down to 0.054 U mL-1, along with good selectivity and strong tolerance to other interfering proteins. Furthermore, it achieves a straightforward and accurate detection of TdT activity in acute lymphoblastic leukemia cells without sample pre-processing and tool enzyme addition. Therefore, the proposed method shows great promise as a valuable tool for TdT-related biological research and leukemia therapeutics.


Subject(s)
DNA Nucleotidylexotransferase , Gold , Mass Spectrometry , Metal Nanoparticles , DNA Nucleotidylexotransferase/metabolism , DNA Nucleotidylexotransferase/chemistry , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Mass Spectrometry/methods , Enzyme Assays/methods , DNA/chemistry , DNA/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Limit of Detection
4.
J Transl Med ; 22(1): 274, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38475814

ABSTRACT

BACKGROUND: Chimeric antigen receptor natural killer (CAR-NK) cells represent a promising advancement in CAR cell therapy, addressing limitations observed in CAR-T cell therapy. However, our prior study revealed challenges in CAR-NK cells targeting CD19 antigens, as they failed to eliminate CD19+ Raji cells in NSG tumor-bearing mice, noting down-regulation or loss of CD19 antigen expression in some Raji cells. In response, this study aims to enhance CD19 CAR-NK cell efficacy and mitigate the risk of tumor recurrence due to target antigen escape by developing CD19 and CD20 (CD19/CD20) dual-targeted CAR-NK cells. METHODS: Initially, mRNA encoding anti-CD19 CARs (FMC63 scFv-CD8α-4-1BB-CD3ζ) and anti-CD20 CARs (LEU16 scFv-CD8α-4-1BB-CD3ζ) was constructed via in vitro transcription. Subsequently, CD19/CD20 dual-targeted CAR-NK cells were generated through simultaneous electrotransfection of CD19/CD20 CAR mRNA into umbilical cord blood-derived NK cells (UCB-NK). RESULTS: Following co-electroporation, the percentage of dual-CAR expression on NK cells was 86.4% ± 1.83%, as determined by flow cytometry. CAR expression was detectable at 8 h post-electric transfer, peaked at 24 h, and remained detectable at 96 h. CD19/CD20 dual-targeted CAR-NK cells exhibited increased specific cytotoxicity against acute lymphoblastic leukemia (ALL) cell lines (BALL-1: CD19+CD20+, REH: CD19+CD20-, Jurkat: CD19-CD20-) compared to UCB-NK, CD19 CAR-NK, and CD20 CAR-NK cells. Moreover, CD19/CD20 dual-targeted CAR-NK cells released elevated levels of perforin, IFN-γ, and IL-15. Multiple activation markers such as CD69 and cytotoxic substances were highly expressed. CONCLUSIONS: The creation of CD19/CD20 dual-targeted CAR-NK cells addressed the risk of tumor escape due to antigen heterogeneity in ALL, offering efficient and safe 'off-the-shelf' cell products. These cells demonstrate efficacy in targeting CD20 and/or CD19 antigens in ALL, laying an experimental foundation for their application in ALL treatment.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Mice , Animals , Receptors, Chimeric Antigen/metabolism , Antigens, CD19/genetics , Antigens, CD19/metabolism , Cytotoxicity, Immunologic/genetics , Cell Line, Tumor , Killer Cells, Natural , Immunotherapy, Adoptive , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , RNA, Messenger/metabolism
5.
Exp Biol Med (Maywood) ; 249: 10111, 2024.
Article in English | MEDLINE | ID: mdl-38510491

ABSTRACT

MicroRNAs (mRNAs) were believed to play an important role in cancers, and this study aimed to explore the mechanism of miRNA regulating Treg in B-cell acute lymphoblastic leukemia (B-ALL). Firstly, the differentially expressed miRNAs and target genes significantly associated with Tregs were screened out by high-throughput sequencing, and their enrichment pathways were analyzed. The binding relationship between miRNA and target genes was further verified, and the effects of miRNA on the proliferation and apoptosis of B-ALL Nalm-6 cells and Treg activation were analyzed. Results showed that differentially expressed miR-539-5p was significantly under-expressed, and its target gene BMP2 was significantly over-expressed in B-ALL, and significantly enriched in the TGF-ß1 pathway. In addition, both miR-539-5p and BMP2 were significantly correlated with Treg activity in B-ALL. In vitro experiments further confirmed that miR-539-5p could directly target BMP2. The low expression of miR-539-5p in B-ALL significantly promoted BMP2 expression to promote the proliferation and inhibit apoptosis of Nalm-6 cells. Furthermore, the high expression of BMP2 in B-ALL could cooperate with TGF-ß1 to promote the activation of human CD4+CD25-T cells to Treg, and significantly activate the TGF-ß/Smads/MAPK pathway. In vivo experiments also confirmed that overexpression of miR-539-5p significantly inhibited BMP2 to suppress Treg activation and Smad1 and Smad2 phosphorylation, and finally inhibit the B-ALL process. In conclusion, miR-539-5p was significantly under-expressed in B-ALL and could target BMP2 to promote its expression, and the overexpressed BMP2 further promoted Treg activation in B-ALL by regulating TGF-ß/Smads/MAPK pathway.


Subject(s)
MicroRNAs , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , T-Lymphocytes, Regulatory , MicroRNAs/genetics , MicroRNAs/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Cell Proliferation/genetics , Bone Morphogenetic Protein 2/genetics
7.
Asian Pac J Cancer Prev ; 25(1): 325-332, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38285800

ABSTRACT

INTRODUCTION: Up-regulation of the anti-apoptotic proteins such as Mcl-1 is associated with the primary and secondary resistance of tumor cells to ABT-737 Bcl-2 inhibitor. The combined treatment of Bcl-2 inhibitors with Mcl-1 inhibitors has been proposed as an attractive therapeutic strategy to overcome this drug resistance. Here, we investigated the effect of dihydroartemisinin on Mcl-1 expression and sensitization of T-ALL cells to ABT-737. METHODS: The cell growth and survival were tested by the cell proliferation and MTT assays, respectively. The mRNA levels of Bcl-2, Mcl-1, Bax and P21 were examined by qRT-PCR. Apoptosis were detected by Hoechst 33342 staining and caspase-3 activity assay. RESULTS: Our data showed that combination treatment with dihydroartemisinin and ABT-737 caused a significant decrease in the IC50 value and synergistically reduced the cell survival compared with dihydroartemisinin or ABT-737 alone. ABT-737 enhanced the Mcl-1 mRNA expression. Dihydroartemisinin also down-regulated the expression of Bcl-2 and Mcl-1 and enhanced the P21 and Bax expression. Moreover, dihydroartemisinin enhanced the apoptosis induced by ABT-737 in MOLT-4 and MOLT-17 cell lines. CONCLUSION: In conclusion, dihydroartemisinin demonstrates anti-tumor activities in human ALL cells via inhibition of cell survival and growth. Dihydroartemisinin augments the apoptotic effect of ABT-737 by inhibiting the expression of Mcl-1.


Subject(s)
Antineoplastic Agents , Artemisinins , Nitrophenols , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Sulfonamides , Humans , Myeloid Cell Leukemia Sequence 1 Protein/genetics , bcl-2-Associated X Protein , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Biphenyl Compounds/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Drug Synergism , Piperazines
8.
Cancer ; 130(5): 713-726, 2024 03 01.
Article in English | MEDLINE | ID: mdl-37819686

ABSTRACT

BACKGROUND: Philadelphia chromosome (Ph)-like B-acute lymphoblastic leukemia (B-ALL) is a clinically significant, high-risk genetic subtype of B-ALL cases. There are few data on the incidence, characterization, and treatment outcomes of Ph-like ALL cases from low- and middle-income countries. There is a pressing need to establish a well-organized/cost-effective approach for identifying Ph-like ALL instances. METHODS: Multiplex reverse transcriptase polymerase chain reaction, nCounter NanoString, and fluorescence in situ hybridization were used to detect and characterize Ph-like ALL cases among recurrent genetic abnormalities (RGA)neg B-ALL cases. At the end of induction therapy, flow cytometry-minimal residual disease (MRD) assay was used to quantify MRD positivity in Ph-like ALL cases. RESULTS: Of 130 newly diagnosed B-ALL cases, 25% (BCR::ABL1), 4% (ETV6::RUNX1), 5% (TCF3::PBX1), 2% (KM2TA::AFF1), and 65% RGAneg B-ALL cases were revealed by multiplex reverse transcriptase polymerase chain reaction. Among RGAneg B-ALL cases, 24% Ph-like ALL cases using nCounter NanoString were identified, with 48% CRLF2high cases with 45% CRLF2::P2RY8 and 18% CRLF2::IGH rearrangements(∼r) revealed by fluorescence in situ hybridization. In 52% of CRLF2low cases, 17% ABL1 and JAK2∼r 8% EPOR::IGH & PDGRFB∼r were identified. Ph-like ALL cases had higher total leukocyte count (p < .05), male preponderance (p < .05), and high MRD-positivity/induction failure compared with RGAneg B-ALL cases. Furthermore, in Ph-like ALL cases, 11 significant genes using quantitative polymerase chain reaction were identified and validated. CRLF2, IGJ, CEACAM6, MUC4, SPATS2L and NRXN3 genes were overexpressed and show statistical significance (p < .05) in Ph-like ALL cases. CONCLUSIONS: This study showed the high incidence of Ph-like ALL cases with kinase activating alterations and treatment outcomes from low- and middle-income region. Furthermore, a surrogate cost-effective multiplex panel of 11 overexpressed genes for the prompt detection of Ph-like ALL cases is proposed. PLAIN LANGUAGE SUMMARY: Identification of recurrent gene abnormalities (RGA)neg B-acute lymphoblastic leukemia (B-ALL) cases using multiplex-reverse transcriptase polymerase chain reaction. Identification and characterization of Philadelphia (Ph)-like ALL cases using nCounter NanoString gene expression profiling and fluorescence in situ hybridization. Furthermore, Ph-like ALL cases were characterized according to CRLF2 expression and kinase-activating genomic alterations. Minimal residual disease of Ph-like ALL cases were quantified using flow cytometry-minimal residual disease assay. A surrogate molecular approach was established to detect Ph-like ALL cases from low- and middle-income countries.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Male , Philadelphia Chromosome , In Situ Hybridization, Fluorescence , Neoplasm, Residual , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Acute Disease
9.
Biomed Pharmacother ; 170: 115936, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039755

ABSTRACT

Isogarcinol (ISO), a cytotoxic polycyclic polyprenylated acylphloroglucinol isolated from the edible fruits of Garcinia multiflora. However, synergistic combination of ISO and dexamethasone (DEX) to overcome leukemia glucocorticoid resistance has never been investigated. Therefore, in this study, the effects of ISO in combination with DEX was conducted on leukemia in vivo and glucocorticoid resistance in vitro. As a result, the combination of the two compounds could efficiently inhibit leukemia progression in mice and reverse DEX resistance in acute lymphoblastic leukemia (ALL) Jurkat cells. Significantly, our findings indicated that c-Myc may be a potential target of ISO, as it is involved in cell cycle arrest and apoptosis by the combination of ISO and DEX in Jurkat cells. Furthermore, western blot analysis revealed that ISO and DEX inhibits the PI3K/Akt/mTOR signaling pathway and promotes the nuclear translocation of glucocorticoid receptor (GR), which activates target genes NR3C1 and TSC22D3, leading to apoptosis in Jurkat cells. Hence, our results suggest that ISO, as a safe and effective food-derived agent, can enhance the anti-leukemia effects of DEX.


Subject(s)
Garcinia , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Animals , Mice , Glucocorticoids/pharmacology , Receptors, Glucocorticoid/metabolism , Dexamethasone/pharmacology , Fruit , Phosphatidylinositol 3-Kinases , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Apoptosis
10.
Biochim Biophys Acta Gen Subj ; 1868(1): 130499, 2024 01.
Article in English | MEDLINE | ID: mdl-37914146

ABSTRACT

BACKGROUND: L-asparaginase (ASNase) has played a key role in the management of acute lymphoblastic leukaemia (ALL). As an amidohydrolase, it catalyzes the hydrolysis of L-asparagine, a crucial step in the treatment of ALL. Various ASNase variants have evolved from diverse sources since it was first used in paediatric patients in the 1960s. This review describes the available ASNase and approaches being used to develop ASNase as a biobetter candidate. SCOPE OF REVIEW: The review discusses the Glycosylation and PEGylation techniques, which are frequently used to develop biobetter versions of the majority of the therapeutic proteins. Further, it explores current ASNase biobetters in therapeutic use and discusses the protein engineering and chemical modification approaches that were employed to reduce immunogenicity, extend protein half-life, and enhance protease stability of ASNase. Emerging strategies like immobilization and encapsulation are also highlighted as potential pathways for improving ASNase properties. MAJOR CONCLUSIONS: The purpose of the development of ASNase biobetter is to achieve a novel therapeutic candidate that could improve catalytic efficiency, in vivo stability with minimum glutaminase (GLNase) activity and toxicity. Modification of ASNase by immobilization and encapsulation or by fusion technologies like Albumin fusion, Fc fusion, ELP fusion, XTEN fusion, etc. can be exploited to develop a novel biobetter candidate suitable for therapeutic approaches. GENERAL SIGNIFICANCE: This review emphasizes the importance of biobetter development for therapeutic proteins like ASNase. Improved ASNase molecules have the potential to significantly advance the treatment of ALL and have broader implications in the pharmaceutical industry.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Asparaginase/genetics , Asparaginase/therapeutic use , Asparaginase/chemistry , Antineoplastic Agents/chemistry , Asparagine , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Glutamine/metabolism
11.
ACS Appl Bio Mater ; 6(12): 5789-5797, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38047730

ABSTRACT

l-asparaginase (ASNase), an enzyme that catalyzes the hydrolysis of l-asparagine into l-aspartic acid, is frequently used as a medication for acute lymphoblastic leukemia (ALL). However, when derived from bacterial sources, this enzyme can elicit side effects, including allergic or hypersensitivity reactions, owing to immune responses. Here, we describe the synthesis of polyoxazoline-conjugated ASNase (POx-ASNase) and investigate its enzyme activity, anticancer efficacy, immunogenicity, and retention in the bloodstream. The water-soluble POx was coupled with surface lysine residues of ASNase using a bifunctional cross-linker. The average number of polymers bound to each enzyme was determined as 10. Although the enzymatic activity of POx-ASNase decreased to 56% of that of native ASNase, its temperature and pH dependencies remained unaltered. Remarkably, the lyophilized powder form of POx-ASNase retained its catalytic ability for 24 months. POx-ASNase demonstrated nearly identical anticancer efficacy compared to naked ASNase against leukemia and lymphoma cells (MOLT-4, CLBL-1, and K562) while displaying no cytotoxicity toward normal cells. Animal experiments conducted using rats revealed that the POx decoration suppressed the generation of anti-ASNase IgM and IgG antibodies with no detection of anti-POx antibodies. The half-life within the bloodstream extended to 34 h, representing a 17-fold increase compared to unmodified ASNase. These findings suggest that POx-ASNase serves as an anticancer therapeutic agent, characterized by the absence of antibody production and notably extended circulation persistence.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Animals , Rats , Asparaginase/therapeutic use , Asparaginase/chemistry , Antibody Formation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Antineoplastic Agents/therapeutic use , Asparagine/metabolism , Asparagine/therapeutic use
12.
Br J Haematol ; 203(4): 637-650, 2023 11.
Article in English | MEDLINE | ID: mdl-37700538

ABSTRACT

Blinatumomab is the first bi-specific T-cell engager approved for relapsed or refractory B-cell precursor acute lymphoblastic leukaemia (B-ALL). Despite remarkable clinical results, the effects of blinatumomab on the host immune cell repertoire are not fully elucidated. In the present study, we characterized the peripheral blood (PB) and, for the first time, the bone marrow (BM) immune cell repertoire upon blinatumomab treatment. Twenty-nine patients with B-ALL received blinatumomab according to clinical practice. Deep multiparametric flow cytometry was used to characterize lymphoid subsets during the first treatment cycle. Blinatumomab induced a transient redistribution of PB effector T-cell subsets and Treg cells with a persistent increase in cytotoxic NK cells, which was associated with a transient upregulation of immune checkpoint receptors on PB CD4 and CD8 T-cell subpopulations and of CD39 expression on suppressive Treg cells. Of note, BM immune T-cell subsets showed a broader post-treatment subversion, including the modulation of markers associated with a T-cell-exhausted phenotype. In conclusion, our study indicates that blinatumomab differentially modulates the PB and BM immune cell repertoire, which may have relevant clinical implications in the therapeutic setting.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Bone Marrow/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Remission Induction , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
13.
Mol Cancer Ther ; 22(11): 1261-1269, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37596239

ABSTRACT

In immunotherapy with T cells genetically modified to express chimeric antigen receptors (CAR), autologous lymphocytes are extracted from the patient, genetically modified to obtain CAR-T cells, and reintroduced into the patient to attack cancer cells. The success of this therapy has been achieved in the area of CD19-positive leukemias and lymphomas, being approved for the treatment of non-Hodgkin's lymphomas, acute lymphoblastic leukemia, and multiple myeloma. CARs are proteins that combine antibody specificity with T-cell cytotoxicity. The most common toxicities associated with therapy were not predicted by preclinical testing and include cytokine release syndrome, neurotoxicity, and cytopenias. These toxicities are usually reversible. One of the main challenges facing the field is the high economic cost that therapy entails, so the search for ways to reduce this cost must be a priority. In addition, other challenges to overcome include the situation that not all patients are supplied with the product and the existence of long waiting times for the start of therapy. The aim of this review is to present the development of the structure of CAR-T cells, the therapies approved to date, the toxicity associated with them, and the advantages and limitations that they present as immunotherapy.


Subject(s)
Lymphoma , Multiple Myeloma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/therapy , Multiple Myeloma/metabolism , Receptors, Antigen, T-Cell , Immunotherapy, Adoptive , Antigens, CD19 , Lymphoma/metabolism , Immunotherapy , T-Lymphocytes , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
14.
Pediatr Hematol Oncol ; 40(8): 701-718, 2023.
Article in English | MEDLINE | ID: mdl-37440691

ABSTRACT

Children with acute lymphoblastic leukemia (ALL) are at high risk of developing long-term cardiometabolic complications during their survivorship. Maximal fat oxidation (MFO) is a marker during exercise of cardiometabolic health, and is associated with metabolic risk factors. Our aim was to characterize the carbohydrate and fat oxidation during exercise in childhood ALL survivors. Indirect calorimetry was measured in 250 childhood ALL survivors to quantify substrate oxidation rates during a cardiopulmonary exercise test. A best-fit third-order polynomial curve was computed for fat oxidation rate (mg/min) against exercise intensity (%V̇O2peak) and was used to determine the MFO and the peak fat oxidation (Fatmax). The crossover point was also identified. Differences between prognostic risk groups were assessed (ie, standard risk [SR], high risk with and without cardio-protective agent dexrazoxane [HR + DEX and HR]). MFO, Fatmax and crossover point were not different between the groups (p = .078; p = .765; p = .726). Fatmax and crossover point were achieved at low exercise intensities. A higher MFO was achieved by men in the SR group (287.8 ± 111.2 mg/min) compared to those in HR + DEX (239.8 ± 97.0 mg/min) and HR groups (229.3 ± 98.9 mg/min) (p = .04). Childhood ALL survivors have low fat oxidation during exercise and oxidize carbohydrates at low exercise intensities, independently of the cumulative doses of doxorubicin they received. These findings alert clinicians on the long-term impact of cancer treatments on childhood ALL survivors' substrate oxidation.


Subject(s)
Cardiovascular Diseases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Male , Child , Humans , Adipose Tissue/metabolism , Oxygen Consumption , Oxidation-Reduction , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Survivors
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(3): 621-627, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37356917

ABSTRACT

OBJECTIVE: To investigate the mechanism of drug reversing resistance of Agaricus blazei extract FA-2-b-ß on T cell acute lymphoblastic leukemia (T-ALL) cell lines. METHODS: Cell proliferation was detected by CCK-8 assay; the apoptosis, cell cycle mitochondrial membrane potential, and intracellular rhodamine accumulation were detected by flow cytometry, and apoptosis-related gene and protein expression were detected by qPCR and Western blot; the membrane surface protein MDR1 was observed by immunofluorescence microscopy. RESULTS: Different concentrations of FA-2-b-ß significantly inhibited proliferation and induced apoptosis of CCRF-CEM and CEM/C1 (P<0.05), and CCRF-CEM cell cycle were arrested at S phase, and CEM/C1 cells were arrested at G0/G1 phase. Western blot and qPCR results show that FA-2-b-ß inhibited ABCB1、ABCG2、CTNNB、MYC and BCL-2 expression, but upregulated Bax expression. In addition, FA-2-b-ß reversed the resistance characteristics of CEM/C1 drug-resistance cells, which decreased mitochondrial membrane potential, and significantly increased the intracellular rhodamine accumulation, and weakening of the expression of the membrane surface protein MDR1. With the Wnt/ß-catenin inhibitor (ICG001), the process was further intensified. CONCLUSION: Agaricus Blazei Extract FA-2-b-ß inhibits cell proliferation, promotes apoptosis, regulates the cell cycle, reduces mitochondrial energy supply, and down-regulate MDR1 expression to reverse the resistance of CEM/C1, which all suggest it is through regulating the Wnt signaling pathway in T-ALL.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Wnt Signaling Pathway , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Apoptosis , Drug Resistance, Multiple , Membrane Proteins , Cell Line, Tumor , Cell Proliferation
17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(3): 643-648, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37356920

ABSTRACT

OBJECTIVE: To explore the expression level of exosome derived miR-181b-5p in different disease stages of children with acute lymphoblastic leukemia and its relationship with clinical characteristics. METHODS: Bone marrow plasma samples of 86 children with ALL were collected. Exosomes were extracted by exosome extraction kit, and RNA in exosomes was extracted by TRIzol method. The levels of miR-181b-5p in the blood plasma exosomes of the patients in the newly diagnosed group, relapse group, remission group and control group were detected by qRT- PCR. The difference of miR-181b-5p expression level in each group was compared and analyzed, and the relationship between miR-181b-5p expression level and clinical characteristics was analyzed. RESULTS: The expression level of exosomal miR-181b-5p in the newly diagnosed group and the relapsed group was significantly lower than that in the remission group and the control group (P< 0.05). The expression level of exosomal miR-181b-5p in T-ALL children was higher than that in B-ALL children (P<0.05). The expression level of plasma exosomal miR-181b-5p in male children was higher than that in female children (P<0.01). CONCLUSION: Exosome derived miR-181b-5p changes dynamically in the course of ALL children, and can be used as a marker miRNA to monitor disease status. Exosomes can transmit information in the tumor microenvironment and serve as a potential carrier for biomolecular targeted therapy.


Subject(s)
Exosomes , MicroRNAs , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Male , Female , Child , Exosomes/genetics , Exosomes/metabolism , Clinical Relevance , MicroRNAs/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Tumor Microenvironment
18.
Ann Hematol ; 102(9): 2397-2402, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37103615

ABSTRACT

Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk subtype with a poor prognosis under conventional chemotherapy. Ph-like ALL has a similar gene expression profile to Philadelphia chromosome-positive (Ph+) ALL, but is highly heterogeneous in terms of genomic alterations. Approximately 10-20% of patients with Ph-like ALL harbor ABL class (e.g. ABL1, ABL2, PDGFRB, and CSF1R) rearrangements. Additional genes that form fusion genes with ABL class genes are still being researched. These aberrations result from rearrangements including chromosome translocations or deletions and may be targets of tyrosine kinase inhibitors (TKIs). However, due to the heterogeneity and rarity of each fusion gene in clinical practice, there is limited data on the efficacy of tyrosine kinase inhibitors. Here, we report three cases of Ph-like B-ALL with ABL1 rearrangements treated with the dasatinib backbone for the CNTRL::ABL1, LSM14A::ABL1, and FOXP1::ABL1 fusion genes. All three patients achieved rapid and profound remission with no significant adverse events. Our findings suggest that dasatinib is a potent TKI for the treatment of ABL1-rearranged Ph-like ALL and can be used as a first-line treatment option for such patients.


Subject(s)
Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Dasatinib/therapeutic use , Fusion Proteins, bcr-abl/genetics , Protein Kinase Inhibitors/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Repressor Proteins/genetics , Forkhead Transcription Factors
19.
JCO Precis Oncol ; 7: e2200580, 2023 03.
Article in English | MEDLINE | ID: mdl-36952646

ABSTRACT

PURPOSE: Acute lymphoblastic leukemia (ALL) is the most prevalent cause of childhood cancer and requires a long course of therapy consisting of three primary phases with interval intensification blocks. Although these phases are necessary to achieve remission, the primary chemotherapeutic agents have potentially serious toxicities, which may lead to delays or discontinuations of therapy. The purpose of this study was to perform a comprehensive pharmacogenomic evaluation of common antileukemic agents and develop a polygenic toxicity risk score predictive of the most common toxicities observed during ALL treatment. METHODS: This cross-sectional study included 75 patients with pediatric ALL treated between 2012 and 2020 at the University of Florida. Toxicity data were collected within 100 days of initiation of therapy using CTCAE v4.0 for toxicity grading. For pharmacogenomic evaluation, single-nucleotide polymorphisms (SNPs) and genes were selected from previous reports or PharmGKB database. 116 unique SNPs were evaluated for incidence of various toxicities. A multivariable multi-SNP modeling for up to 3-SNP combination was performed to develop a polygenic toxicity risk score of prognostic value. RESULTS: We identified several SNPs predictive of toxicity phenotypes in univariate analysis. Further multivariable SNP-SNP combination analysis suggest that susceptibility to chemotherapy-induced toxicities is likely multigenic in nature. For 3-SNPscore models, patients with high scores experienced increased risk of GI (P = 2.07E-05, 3 SNPs: TYMS-rs151264360/FPGS-rs1544105/GSTM1-GSTM5-rs3754446), neurologic (P = .0005, 3 SNPs: DCTD-rs6829021/SLC28A3-rs17343066/CTPS1-rs12067645), endocrine (P = 4.77E-08, 3 SNPs: AKR1C3-rs1937840/TYMS-rs2853539/CTH-rs648743), and heme toxicities (P = .053, 3 SNPs: CYP3A5-rs776746/ABCB1-rs4148737/CTPS1-rs12067645). CONCLUSION: Our results imply that instead of a single-SNP approach, SNP-SNP combinations in multiple genes in drug pathways increases the robustness of prediction of toxicity. These results further provide promising SNP models that can help establish clinically relevant biomarkers allowing for greater individualization of cancer therapy to maximize efficacy and minimize toxicity for each patient.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Pharmacogenetics/methods , Cross-Sectional Studies , Antineoplastic Agents/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Phenotype
20.
Blood Adv ; 7(14): 3479-3484, 2023 07 25.
Article in English | MEDLINE | ID: mdl-36897249

ABSTRACT

Glucocorticoids (GCs) are the cornerstone of acute lymphoblastic leukemia (ALL) therapy. Although mutations in NR3C1, which encodes the GC receptor (GR), and other genes involved in GC signaling occur at relapse, additional mechanisms of adaptive GC resistance are uncertain. We transplanted and treated 10 primary mouse T-lineage acute lymphoblastic leukemias (T-ALLs) initiated by retroviral insertional mutagenesis with GC dexamethasone (DEX). Multiple distinct relapsed clones from 1 such leukemia (T-ALL 8633) exhibited discrete retroviral integrations that upregulated Jdp2 expression. This leukemia harbored a Kdm6a mutation. In the human T-ALL cell line CCRF-CEM, enforced JDP2 overexpression conferred GC resistance, whereas KDM6A inactivation unexpectedly enhanced GC sensitivity. In the context of KDM6A knockout, JDP2 overexpression induced profound GC resistance, counteracting the sensitization conferred by KDM6A loss. These resistant "double mutant" cells with combined KDM6A loss and JDP2 overexpression exhibited decreased NR3C1 mRNA and GR protein upregulation upon DEX exposure. Analysis of paired samples from 2 patients with KDM6A-mutant T-ALL in a relapsed pediatric ALL cohort revealed a somatic NR3C1 mutation at relapse in 1 patient and a markedly elevated JDP2 expression in the other. Together, these data implicate JDP2 overexpression as a mechanism of adaptive GC resistance in T-ALL, which functionally interacts with KDM6A inactivation.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Mice , Animals , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Dexamethasone/pharmacology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Glucocorticoid/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Recurrence , Repressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...