Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.746
Filter
1.
PLoS One ; 19(5): e0295106, 2024.
Article in English | MEDLINE | ID: mdl-38753609

ABSTRACT

Camouflage is a widespread and well-studied anti-predator strategy, yet identifying which patterns provide optimal protection in any given scenario remains challenging. Besides the virtually limitless combinations of colours and patterns available to prey, selection for camouflage strategies will depend on complex interactions between prey appearance, background properties and predator traits, across repeated encounters between co-evolving predators and prey. Experiments in artificial evolution, pairing psychophysics detection tasks with genetic algorithms, offer a promising way to tackle this complexity, but sophisticated genetic algorithms have so far been restricted to screen-based experiments. Here, we present methods to test the evolution of colour patterns on physical prey items, under selection from wild predators in the field. Our techniques expand on a recently-developed open-access pattern generation and genetic algorithm framework, modified to operate alongside artificial predation experiments. In this system, predators freely interact with prey, and the order of attack determines the survival and reproduction of prey patterns into future generations. We demonstrate the feasibility of these methods with a case study, in which free-flying birds feed on artificial prey deployed in semi-natural conditions, against backgrounds differing in three-dimensional complexity. Wild predators reliably participated in this experiment, foraging for 11 to 16 generations of artificial prey and encountering a total of 1,296 evolved prey items. Changes in prey pattern across generations indicated improvements in several metrics of similarity to the background, and greater edge disruption, although effect sizes were relatively small. Computer-based replicates of these trials, with human volunteers, highlighted the importance of starting population parameters for subsequent evolution, a key consideration when applying these methods. Ultimately, these methods provide pathways for integrating complex genetic algorithms into more naturalistic predation trials. Customisable open-access tools should facilitate application of these tools to investigate a wide range of visual pattern types in more ecologically-relevant contexts.


Subject(s)
Algorithms , Biological Evolution , Predatory Behavior , Animals , Predatory Behavior/physiology , Birds/physiology , Selection, Genetic
2.
Biol Lett ; 20(5): 20240050, 2024 May.
Article in English | MEDLINE | ID: mdl-38773926

ABSTRACT

Larval Lepidoptera gain survival advantages by aggregating, especially when combined with aposematic warning signals, yet reductions in predation risk may not be experienced equally across all group members. Hamilton's selfish herd theory predicts that larvae that surround themselves with their group mates should be at lower risk of predation, and those on the periphery of aggregations experience the greatest risk, yet this has rarely been tested. Here, we expose aggregations of artificial 'caterpillar' targets to predation from free-flying, wild birds to test for marginal predation when all prey are equally accessible and for an interaction between warning coloration and marginal predation. We find that targets nearer the centre of the aggregation survived better than peripheral targets and nearby targets isolated from the group. However, there was no difference in survival between peripheral and isolated targets. We also find that grouped targets survived better than isolated targets when both are aposematic, but not when they are non-signalling. To our knowledge, our data provide the first evidence to suggest that avian predators preferentially target peripheral larvae from aggregations and that prey warning signals enhance predator avoidance of groups.


Subject(s)
Larva , Predatory Behavior , Animals , Larva/physiology
3.
Proc Biol Sci ; 291(2023): 20232849, 2024 May.
Article in English | MEDLINE | ID: mdl-38775542

ABSTRACT

Recent experiments have demonstrated that carnivores and ungulates in Africa, Asia, Europe and North America fear the human 'super predator' far more than other predators. Australian mammals have been a focus of research on predator naiveté because it is suspected they show atypical antipredator responses. To experimentally test if mammals in Australia also most fear humans, we quantified the responses of four native marsupials (eastern grey kangaroo, Bennett's wallaby, Tasmanian pademelon, common brushtail possum) and introduced fallow deer to playbacks of predator (human, dog, Tasmanian devil, wolf) or non-predator control (sheep) vocalizations. Native marsupials most feared the human 'super predator', fleeing humans 2.4 times more often than the next most frightening predator (dogs), and being most, and significantly, vigilant to humans. These results demonstrate that native marsupials are not naïve to the peril humans pose, substantially expanding the taxonomic and geographic scope of the growing experimental evidence that wildlife worldwide generally perceive humans as the planet's most frightening predator. Introduced fallow deer fled humans, but not more than other predators, which we suggest may result from their being introduced. Our results point to both challenges concerning marsupial conservation and opportunities for exploiting fear of humans as a wildlife management tool.


Subject(s)
Deer , Fear , Marsupialia , Predatory Behavior , Animals , Deer/physiology , Humans , Marsupialia/physiology , Australia , Introduced Species , Wolves/physiology , Dogs , Vocalization, Animal
4.
Behav Processes ; 218: 105043, 2024 May.
Article in English | MEDLINE | ID: mdl-38692462

ABSTRACT

Acoustic communication plays a vital role in predator-prey interactions. Although habitat structure has been shown to affect anti-predator tactics, little is known about how animals vary their behaviors in response to predator calls or heterospecific alarm calls in different environments. Here we used sound playbacks to test the responses of Eurasian tree sparrows (Passer montanus) foraging in harvested/unharvested rice paddy and open residential area. In the first experiment, we tested their behavioral responses to dove calls, male common cuckoo (Cuculus canorus) calls, hawk-like calls mimicked by female common cuckoo, sparrowhawk (Accipiter nisus) calls, and human yell calls produced to scare birds (predator signal playbacks). In the second experiment, we tested their behavioral responses to the Japanese tit's (Parus minor) territorial songs and alarm calls (heterospecific alarm signal playbacks). Results showed that the tree sparrows had less fleeing in unharvested ripe rice paddy than in harvested rice paddy and open residential area. In predator signal playbacks, call type affected the escape behavior of sparrows in unharvested rice paddy and open residential area but not harvested rice paddy. In alarm signal playbacks, tit alarm calls evoked more fleeing than territorial songs in harvested rice paddy and open residential area but not unharvested rice paddy. These results suggest that anthropogenic habitat changes may influence avian anti-predator tactics.


Subject(s)
Ecosystem , Predatory Behavior , Sparrows , Vocalization, Animal , Animals , Vocalization, Animal/physiology , Sparrows/physiology , Predatory Behavior/physiology , Male , Female , Behavior, Animal/physiology , Territoriality
5.
Vet Parasitol ; 328: 110191, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723410

ABSTRACT

Small ruminants (sheep and goats) constantly suffer from endoparasitoses caused by gastrointestinal nematodes. Among these, the species Haemonchus contortus (Rudolphi, 1803) is considered to be the one of greatest importance within sheep farming. This nematode is difficult to control due to its resistance to most commercial anthelmintics. The aim of the present study was to assess the potential of macrochelid mites as macrobiological agents for controlling endoparasitoses of sheep caused by the nematode, H. contortus. For this, novel in vitro methodology was used, in which assessments were made not only of the predatory ability but also the population growth of mite species (Macrocheles merdarius, Macrocheles robustulus and Holostaspella bifoliata) when offered larvae of the nematode, H. contortus. The predatory ability of the mites, M. merdarius and H. bifoliata were efficient regarding their predatory ability against H. contortus nematode larvae. The mite, M. merdarius exhibited the highest predation rate with mean distribution values for the treated group of 18656 ± 10091 and for the control group of 1178 ± 712 (P < 0.0001). The species, H. bifoliata presented the highest population growth rate, with a percentage acarid recovery rate of 263% in relation to the number added initially. The data from this in vitro predation experiment suggest that, M. merdarius and H. bifoliata showed promise as macrobiological agents for controlling gastrointestinal endoparasitoses of sheep caused by the nematode, H. contortus given that both species reduced the population of this helminth by more 70% and the number of mites recovered was three times greater than the number added.


Subject(s)
Haemonchiasis , Mites , Pest Control, Biological , Sheep Diseases , Haemonchus , Haemonchiasis/prevention & control , Mites/physiology , Larva , Predatory Behavior , Pest Control, Biological/standards , Population Growth , Female , Animals , Sheep , Sheep Diseases/parasitology , Sheep Diseases/prevention & control , Feces/parasitology , Species Specificity , In Vitro Techniques
6.
PLoS One ; 19(5): e0302028, 2024.
Article in English | MEDLINE | ID: mdl-38718094

ABSTRACT

Determining the dietary spectrum of European insectivorous bats over time is the cornerstone of their conservation, as it will aid our understanding of foraging behavior plasticity in response to plummeting insect populations. Despite the global decline in insects, a restricted number of arthropod pest species thrive. Yet past research has overlooked the potential of European bats to suppress pests harmful to woodlands or livestock, in spite of their economic relevance. Here we investigated the diet composition, its breeding season variations and pest consumption of an insectivorous bat species (Myotis emarginatus), at the northern edge of its range (Wallonia, Belgium). We also explored the prey ecology to gain insight into the hunting strategies and foraging habitats of this bat species. We used DNA metabarcoding to amplify two COI markers within 195 bat droppings collected in June, July and August, thereby identifying 512 prey taxa predominated by Diptera, Araneae and Lepidoptera. Overall, in 97% of the samples we detected at least one of the 58 potential pest taxa, 41 of which targeting trees. The June samples were marked by a diet rich in orb-weaver spiders, in accordance with the archetypal diet of M. emarginatus bats. However, during the highly energy demanding July-August parturition and lactation period, roughly 55% of the dropping samples contained two cattle fly pests (Stomoxys calcitrans and Musca domestica). Moreover, among the 88 Diptera species preyed upon by M. emarginatus in July and August, these flies accounted for around 50% of the taxa occurrences. This plasticity-the switch from a spider-rich to a fly-rich diet-seems providential considering the dramatic ongoing drop in insect populations but this involves ensuring bat-friendly cattle farming. Our results revealed that bats widely consume pest entomofauna, thereby highlighting their potential role as allies of forest managers and farmers.


Subject(s)
Chiroptera , Predatory Behavior , Spiders , Animals , Chiroptera/parasitology , Chiroptera/physiology , Cattle , Spiders/physiology , Feeding Behavior , Seasons , Diet , Diptera/physiology , Belgium , Ecosystem
7.
J Exp Biol ; 227(9)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38722696

ABSTRACT

Animals deliver and withstand physical impacts in diverse behavioral contexts, from competing rams clashing their antlers together to archerfish impacting prey with jets of water. Though the ability of animals to withstand impact has generally been studied by focusing on morphology, behaviors may also influence impact resistance. Mantis shrimp exchange high-force strikes on each other's coiled, armored telsons (tailplates) during contests over territory. Prior work has shown that telson morphology has high impact resistance. I hypothesized that the behavior of coiling the telson also contributes to impact energy dissipation. By measuring impact dynamics from high-speed videos of strikes exchanged during contests between freely moving animals, I found that approximately 20% more impact energy was dissipated by the telson as compared with findings from a prior study that focused solely on morphology. This increase is likely due to behavior: because the telson is lifted off the substrate, the entire body flexes after contact, dissipating more energy than exoskeletal morphology does on its own. While variation in the degree of telson coil did not affect energy dissipation, proportionally more energy was dissipated from higher velocity strikes and from strikes from more massive appendages. Overall, these findings show that analysis of both behavior and morphology is crucial to understanding impact resistance, and suggest future research on the evolution of structure and function under the selective pressure of biological impacts.


Subject(s)
Crustacea , Animals , Biomechanical Phenomena , Crustacea/physiology , Crustacea/anatomy & histology , Energy Metabolism , Predatory Behavior/physiology , Behavior, Animal/physiology , Video Recording
8.
J Exp Biol ; 227(9)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38726757

ABSTRACT

Differences in the physical and behavioral attributes of prey are likely to impose disparate demands of force and speed on the jaws of a predator. Because of biomechanical trade-offs between force and speed, this presents an interesting conundrum for predators of diverse prey types. Loggerhead shrikes (Lanius ludovicianus) are medium-sized (∼50 g) passeriform birds that dispatch and feed on a variety of arthropod and vertebrate prey, primarily using their beaks. We used high-speed video of shrikes biting a force transducer in lateral view to obtain corresponding measurements of bite force, upper and lower bill linear and angular displacements, and velocities. Our results show that upper bill depression (about the craniofacial hinge) is more highly correlated with bite force, whereas lower bill elevation is more highly correlated with jaw-closing velocity. These results suggest that the upper and lower jaws might play different roles for generating force and speed (respectively) in these and perhaps other birds as well. We hypothesize that a division of labor between the jaws may allow shrikes to capitalize on elements of force and speed without compromising performance. As expected on theoretical grounds, bite force trades-off against jaw-closing velocity during the act of biting, although peak bite force and jaw-closing velocity across individual shrikes show no clear signs of a force-velocity trade-off. As a result, shrikes appear to bite with jaw-closing velocities and forces that maximize biting power, which may be selectively advantageous for predators of diverse prey that require both jaw-closing force and speed.


Subject(s)
Bite Force , Jaw , Animals , Biomechanical Phenomena , Jaw/physiology , Passeriformes/physiology , Predatory Behavior/physiology , Beak/physiology , Video Recording
9.
Elife ; 132024 May 07.
Article in English | MEDLINE | ID: mdl-38711355

ABSTRACT

Collaborative hunting, in which predators play different and complementary roles to capture prey, has been traditionally believed to be an advanced hunting strategy requiring large brains that involve high-level cognition. However, recent findings that collaborative hunting has also been documented in smaller-brained vertebrates have placed this previous belief under strain. Here, using computational multi-agent simulations based on deep reinforcement learning, we demonstrate that decisions underlying collaborative hunts do not necessarily rely on sophisticated cognitive processes. We found that apparently elaborate coordination can be achieved through a relatively simple decision process of mapping between states and actions related to distance-dependent internal representations formed by prior experience. Furthermore, we confirmed that this decision rule of predators is robust against unknown prey controlled by humans. Our computational ecological results emphasize that collaborative hunting can emerge in various intra- and inter-specific interactions in nature, and provide insights into the evolution of sociality.


From wolves to ants, many animals are known to be able to hunt as a team. This strategy may yield several advantages: going after bigger preys together, for example, can often result in individuals spending less energy and accessing larger food portions than when hunting alone. However, it remains unclear whether this behavior relies on complex cognitive processes, such as the ability for an animal to represent and anticipate the actions of its teammates. It is often thought that 'collaborative hunting' may require such skills, as this form of group hunting involves animals taking on distinct, tightly coordinated roles ­ as opposed to simply engaging in the same actions simultaneously. To better understand whether high-level cognitive skills are required for collaborative hunting, Tsutsui et al. used a type of artificial intelligence known as deep reinforcement learning. This allowed them to develop a computational model in which a small number of 'agents' had the opportunity to 'learn' whether and how to work together to catch a 'prey' under various conditions. To do so, the agents were only equipped with the ability to link distinct stimuli together, such as an event and a reward; this is similar to associative learning, a cognitive process which is widespread amongst animal species. The model showed that the challenge of capturing the prey when hunting alone, and the reward of sharing food after a successful hunt drove the agents to learn how to work together, with previous experiences shaping decisions made during subsequent hunts. Importantly, the predators started to exhibit the ability to take on distinct, complementary roles reminiscent of those observed during collaborative hunting, such as one agent chasing the prey while another ambushes it. Overall, the work by Tsutsui et al. challenges the traditional view that only organisms equipped with high-level cognitive processes can show refined collaborative approaches to hunting, opening the possibility that these behaviors may be more widespread than originally thought ­ including between animals of different species.


Subject(s)
Deep Learning , Predatory Behavior , Reinforcement, Psychology , Animals , Cooperative Behavior , Humans , Computer Simulation , Decision Making
10.
Nat Commun ; 15(1): 3979, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729972

ABSTRACT

A primary response of many marine ectotherms to warming is a reduction in body size, to lower the metabolic costs associated with higher temperatures. The impact of such changes on ecosystem dynamics and stability will depend on the resulting changes to community size-structure, but few studies have investigated how temperature affects the relative size of predators and their prey in natural systems. We utilise >3700 prey size measurements from ten Southern Ocean lanternfish species sampled across >10° of latitude to investigate how temperature influences predator-prey size relationships and size-selective feeding. As temperature increased, we show that predators became closer in size to their prey, which was primarily associated with a decline in predator size and an increase in the relative abundance of intermediate-sized prey. The potential implications of these changes include reduced top-down control of prey populations and a reduction in the diversity of predator-prey interactions. Both of these factors could reduce the stability of community dynamics and ecosystem resistance to perturbations under ocean warming.


Subject(s)
Body Size , Fishes , Oceans and Seas , Predatory Behavior , Temperature , Animals , Predatory Behavior/physiology , Body Size/physiology , Fishes/physiology , Food Chain , Ecosystem , Population Dynamics
11.
PeerJ ; 12: e17235, 2024.
Article in English | MEDLINE | ID: mdl-38708337

ABSTRACT

The low survival rate of leverets may significantly contribute to steep population declines and slow recovery of European hares (Lepus europaeus). However, the leveret survival rate in farmlands with different landscape structures is poorly understood, and the existing evidence comes mainly from Western Europe. In this study, we explored the survival of leveret hare dummies along linear semi-natural habitats in homogeneous Central European arable farmland during the main part of the European hare reproduction period (March-April) in 2019 and 2020. The survival rate of hare leverets during the 14-day period was only 22.2%, and all predation events were recorded during the first six days of the experiment. Mammalian predators were responsible for 53.1% of predation events, avian predators for 40.8%, and agricultural operations for 6.1%. The red fox (Vulpes vulpes) was the dominant predator in our study area and was the primary cause of leveret dummy mortality (32.7%), but it also had the highest use-intensity and visit frequency of all of the study plots. Predation by avian predators was associated with patches of lower vegetation height and cover (such as plowed fields) and during daylight hours, whereas the opposite was true for mammalian predators. We propose that improving the habitat quality of arable landscapes by increasing the proportion and quality of extensively used non-farmed habitats (e.g., set-asides, wildflower areas, extensive meadows, fallow land, and semi-natural habitats on arable land) providing cover and shelter for leverets could be an effective management measure for reducing predation risk on leverets.


Subject(s)
Ecosystem , Hares , Predatory Behavior , Animals , Farms , Population Dynamics , Birds , Foxes , Europe , Agriculture
13.
PLoS One ; 19(5): e0302981, 2024.
Article in English | MEDLINE | ID: mdl-38709740

ABSTRACT

An understanding of species-environmental relationships is invaluable for effective conservation and management under anthropogenic climate change, especially for biodiversity hotspots such as riparian habitats. Species distribution models (SDMs) assess present species-environmental relationships which can project potential suitable environments through space and time. An understanding of environmental factors associated with distributions can guide conservation management strategies under a changing climate. We generated 260 ensemble SDMs for five species of Thamnophis gartersnakes (n = 347)-an important riparian predator guild-in a semiarid and biogeographically diverse region under impact from climate change (Arizona, United States). We modeled present species-environmental relationships and projected changes to suitable environment under 12 future climate scenarios per species, including the most and least optimistic greenhouse gas emission pathways, through 2100. We found that Thamnophis likely advanced northward since the turn of the 20th century and overwinter temperature and seasonal precipitation best explained present distributions. Future ranges of suitable environment for Thamnophis are projected to decrease by ca. -37.1% on average. We found that species already threatened with extinction or those with warm trailing-edge populations likely face the greatest loss of suitable environment, including near or complete loss of suitable environment. Future climate scenarios suggest an upward advance of suitable environment around montane areas for some low to mid-elevation species, which may create pressures to ascend. The most suitable environmental areas projected here can be used to identify potential safe zones to prioritize conservation refuges, including applicable critical habitat designations. By bounding the climate pathway extremes to, we reduce SDM uncertainties and provide valuable information to help conservation practitioners mitigate climate-induced threats to species. Implementing informed conservation actions is paramount for sustaining biodiversity in important aridland riparian systems as the climate warms and dries.


Subject(s)
Climate Change , Ecosystem , Animals , Biodiversity , Conservation of Natural Resources/methods , Predatory Behavior , Models, Theoretical
14.
PLoS One ; 19(5): e0302941, 2024.
Article in English | MEDLINE | ID: mdl-38709777

ABSTRACT

Insecticidal Bacillus thuringiensis Berliner (Bt) toxins produced by transgenic cotton (Gossypium hirsutum L.) plants have become an essential component of cotton pest management. Bt toxins are the primary management tool in transgenic cotton for lepidopteran pests, the most important of which is the bollworm (Helicoverpa zea Boddie) (Lepidoptera: Noctuidae) in the United States (U.S.). However, bollworm larvae that survive after consuming Bt toxins may experience sublethal effects, which could alter interactions with other organisms, such as natural enemies. Experiments were conducted to evaluate how sublethal effects of a commercial Bt product (Dipel) incorporated into artificial diet and from Bt cotton flowers impact predation from the convergent lady beetle (Hippodamia convergens Guérin-Méneville) (Coleoptera: Coccinellidae), common in cotton fields of the mid-southern U.S. Sublethal effects were detected through reduced weight and slower development in bollworm larvae which fed on Dipel incorporated into artificial diet, Bollgard II, and Bollgard 3 cotton flowers. Sublethal effects from proteins incorporated into artificial diet were found to significantly alter predation from third instar lady beetle larvae. Predation of bollworm larvae also increased significantly after feeding for three days on a diet incorporated with Bt proteins. These results suggest that the changes in larval weight and development induced by Bt can be used to help predict consumption of bollworm larvae by the convergent lady beetle. These findings are essential to understanding the potential level of biological control in Bt cotton where lepidopteran larvae experience sublethal effects.


Subject(s)
Bacillus thuringiensis , Coleoptera , Flowers , Gossypium , Larva , Plants, Genetically Modified , Predatory Behavior , Animals , Coleoptera/drug effects , Coleoptera/physiology , Gossypium/parasitology , Gossypium/genetics , Predatory Behavior/drug effects , Larva/drug effects , Pest Control, Biological , Moths/drug effects , Moths/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus thuringiensis Toxins
15.
Curr Biol ; 34(9): R351-R353, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38714163

ABSTRACT

When animals using active sensing, e.g., sonar or an electric organ discharge, cooperate while foraging, the emitted sound or electric field is available to neighboring conspecifics. Experimental and modelling studies have shown that an electric fish can use the discharge of neighbors to extend their own electrosensory prey detection range.


Subject(s)
Electric Fish , Predatory Behavior , Animals , Predatory Behavior/physiology , Electric Fish/physiology , Electric Organ/physiology
16.
Biol Lett ; 20(5): 20240058, 2024 May.
Article in English | MEDLINE | ID: mdl-38715463

ABSTRACT

Predation exerts a significant selection pressure on prey, shaping a multitude of traits that serve as antipredator defences. In turn, natural selection could favour combinations of antipredator defences with synergistic effects that enhance prey survival. An especially interesting antipredator defence is death feigning (DF), present in a wide variety of taxa and usually characterized by the prey lying motionless often along with defaecation, musking and autohaemorrhaging (AH). All these aspects of the DF display should work in conjunction with one another, intensifying the overall effect of the display and in turn facilitating quicker escape. To confirm this hypothesis, we tested 263 dice snakes (Natrix tessellata) directly in the field. We noted the occurrence of smearing faeces, musk and AH, and we measured the duration of DF, expecting to see a negative association between the occurrence of these behaviours and the duration of DF. Our results affirm our hypothesis: dice snakes that smeared themselves in musk and faeces prior to DF and had AH during DF spent significantly less time in DF. Our results highlight the functional integration of antipredator behaviours across different phases of predator-prey interactions, emphasizing the need for future research to prioritize studying the sequential display of behaviours.


Subject(s)
Predatory Behavior , Animals , Colubridae/physiology , Feces , Escape Reaction/physiology , Male
17.
J R Soc Interface ; 21(214): 20230737, 2024 May.
Article in English | MEDLINE | ID: mdl-38689546

ABSTRACT

Patterns of collective escape of a bird flock from a predator are fascinating, but difficult to study under natural conditions because neither prey nor predator is under experimental control. We resolved this problem by using an artificial predator (RobotFalcon) resembling a peregrine falcon in morphology and behaviour. We imitated hunts by chasing flocks of corvids, gulls, starlings and lapwings with the RobotFalcon, and compared their patterns of collective escape to those when chased by a conventional drone and, in case of starlings, hunted by wild peregrine falcons. Active pursuit of flocks, rather than only flying nearby by either the RobotFalcon or the drone, made flocks collectively escape more often. The RobotFalcon elicited patterns of collective escape in flocks of all species more often than the drone. Attack altitude did not affect the frequency of collective escape. Starlings escaped collectively equally often when chased by the RobotFalcon or a wild peregrine falcon. Flocks of all species reacted most often by collective turns, second most often by compacting and third by splitting into subflocks. This study demonstrates the potential of an artificial aerial predator for studying the collective escape behaviour of free-living birds, opening exciting avenues in the empirical study of prey-predator interactions.


Subject(s)
Escape Reaction , Falconiformes , Robotics , Animals , Escape Reaction/physiology , Falconiformes/physiology , Predatory Behavior/physiology , Birds/physiology , Species Specificity
18.
Ecol Lett ; 27(5): e14427, 2024 May.
Article in English | MEDLINE | ID: mdl-38698677

ABSTRACT

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Subject(s)
Arthropods , Biodiversity , Birds , Climate , Predatory Behavior , Trees , Animals , Arthropods/physiology , Birds/physiology , Food Chain , Larva/physiology
19.
PLoS One ; 19(5): e0302728, 2024.
Article in English | MEDLINE | ID: mdl-38696517

ABSTRACT

Although behavioural defensive responses have been recorded several times in both laboratory and natural habitats, their neural mechanisms have seldom been investigated. To explore how chemical, water-borne cues are conveyed to the forebrain and instruct behavioural responses in anuran larvae, we conditioned newly hatched agile frog tadpoles using predator olfactory cues, specifically either native odonate larvae or alien crayfish kairomones. We expected chronic treatments to influence the basal neuronal activity of the tadpoles' mitral cells and alter their sensory neuronal connections, thereby impacting information processing. Subsequently, these neurons were acutely perfused, and their responses were compared with the defensive behaviour of tadpoles previously conditioned and exposed to the same cues. Tadpoles conditioned with odonate cues differed in both passive and active cell properties compared to those exposed to water (controls) or crayfish cues. The observed upregulation of membrane conductance and increase in both the number of active synapses and receptor density at the postsynaptic site are believed to have enhanced their responsiveness to external stimuli. Odonate cues also affected the resting membrane potential and firing rate of mitral cells during electrophysiological patch-clamp recordings, suggesting a rearrangement of the repertoire of voltage-dependent conductances expressed in cell membranes. These recorded neural changes may modulate the induction of an action potential and transmission of information. Furthermore, the recording of neural activity indicated that the lack of defensive responses towards non-native predators is due to the non-recognition of their olfactory cues.


Subject(s)
Cues , Larva , Predatory Behavior , Animals , Larva/physiology , Predatory Behavior/physiology , Anura/physiology , Olfactory Receptor Neurons/physiology , Astacoidea/physiology
20.
PeerJ ; 12: e17307, 2024.
Article in English | MEDLINE | ID: mdl-38742097

ABSTRACT

Invasive species threaten biodiversity globally. Amphibians are one of the most threatened vertebrate taxa and are particularly sensitive to invasive species, including other amphibians. African clawed frogs (Xenopus laevis) are native to Southern Africa but have subsequently become invasive on multiple continents-including multiple parts of North America-due to releases from the pet and biomedical trades. Despite their prevalence as a global invader, the impact of X. laevis remains understudied. This includes the Pacific Northwest of the USA, which now hosts multiple expanding X. laevis populations. For many amphibians, chemical cues communicate important information, including the presence of predators. Here, we tested the role chemical cues may play in mediating interactions between feral X. laevis and native amphibians in the Pacific Northwest. We tested whether native red-legged frog (Rana aurora) tadpoles display an antipredator response to non-native frog (X. laevis) or native newt (rough-skinned newts, Taricha granulosa) predator chemical stimuli. We found that R. aurora tadpoles exhibited pronounced anti-predator responses when exposed to chemical cues from T. granulosa but did not display anti-predator response to invasive X. laevis chemical cues. We also began experimentally testing whether T. granulosa-which produce a powerful neurotoxin tetrodotoxin (TTX)-may elicit an anti-predator response in X. laevis, that could serve to deter co-occupation. However, our short-duration experiments found that X. laevis were attracted to newt chemical stimuli rather than deterred. Our findings show that X. laevis likely poses a threat to native amphibians, and that these native species may also be particularly vulnerable to this invasive predator, compared to native predators, because toxic native newts may not limit X. laevis invasions. Our research provides some of the first indications that native Pacific Northwest species may be threatened by feral X. laevis and provides a foundation for future experiments testing potential management techniques for X. laevis.


Subject(s)
Cues , Introduced Species , Salamandridae , Xenopus laevis , Animals , Washington , Salamandridae/physiology , Larva , Predatory Behavior , Ranidae
SELECTION OF CITATIONS
SEARCH DETAIL
...