Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.358
Filter
1.
Lancet Planet Health ; 8(5): e297-e308, 2024 May.
Article in English | MEDLINE | ID: mdl-38723642

ABSTRACT

BACKGROUND: Pregnancy air pollution exposure (PAPE) has been linked to a wide range of adverse birth and childhood outcomes, but there is a paucity of data on its influence on the placental epigenome, which can regulate the programming of physiological functions and affect child development. This study aimed to investigate the association between prenatal air pollutant exposure concentrations and changes in placental DNA methylation patterns, and to explore the potential windows of susceptibility and sex-specific alterations. METHODS: This multi-site study used three prospective population-based mother-child cohorts: EDEN, PELAGIE, and SEPAGES, originating from four French geographical regions (Nancy, Poitiers, Brittany, and Grenoble). Pregnant women were included between 2003 and 2006 for EDEN and PELAGIE, and between 2014 and 2017 for SEPAGES. The main eligibility criteria were: being older than 18 years, having a singleton pregnancy, and living and planning to deliver in one of the maternity clinics in one of the study areas. A total of 1539 mother-child pairs were analysed, measuring placental DNA methylation using Illumina BeadChips. We used validated spatiotemporally resolved models to estimate PM2·5, PM10, and NO2 exposure over each trimester of pregnancy at the maternal residential address. We conducted a pooled adjusted epigenome-wide association study to identify differentially methylated 5'-C-phosphate-G-3' (CpG) sites and regions (assessed using the Infinium HumanMethylationEPIC BeadChip array, n=871), including sex-specific and sex-linked alterations, and independently validated our results (assessed using the Infinium HumanMethylation450 BeadChip array, n=668). FINDINGS: We identified four CpGs and 28 regions associated with PAPE in the total population, 469 CpGs and 87 regions in male infants, and 150 CpGs and 66 regions in female infants. We validated 35% of the CpGs available. More than 30% of the identified CpGs were related to one (or more) birth outcome and most significant alterations were enriched for neural development, immunity, and metabolism related genes. The 28 regions identified for both sexes overlapped with imprinted genes (four genes), and were associated with neurodevelopment (nine genes), immune system (seven genes), and metabolism (five genes). Most associations were observed for the third trimester for female infants (134 of 150 CpGs), and throughout pregnancy (281 of 469 CpGs) and the first trimester (237 of 469 CpGs) for male infants. INTERPRETATION: These findings highlight the molecular pathways through which PAPE might affect child health in a widespread and sex-specific manner, identifying the genes involved in the major physiological functions of a developing child. Further studies are needed to elucidate whether these epigenetic changes persist and affect health later in life. FUNDING: French Agency for National Research, Fondation pour la Recherche Médicale, Fondation de France, and the Plan Cancer.


Subject(s)
Air Pollutants , Air Pollution , DNA Methylation , Maternal Exposure , Placenta , Humans , Female , Pregnancy , Placenta/drug effects , Placenta/metabolism , Prospective Studies , Maternal Exposure/adverse effects , Adult , Air Pollution/adverse effects , Male , Air Pollutants/adverse effects , Air Pollutants/analysis , France , Prenatal Exposure Delayed Effects/genetics , Pregnancy Outcome , Infant, Newborn , Young Adult
2.
Clin Epigenetics ; 16(1): 65, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741114

ABSTRACT

OBJECTIVE: Youth-onset type 2 diabetes (T2D) is physiologically distinct from adult-onset, but it is not clear how the two diseases differ at a molecular level. In utero exposure to maternal type 2 diabetes (T2D) is known to be a specific risk factor for youth-onset T2D. DNA methylation (DNAm) changes associated with T2D but which differ between youth- and adult-onset might delineate the impacts of T2D development at different ages and could also determine the contribution of exposure to in utero diabetes. METHODS: We performed an epigenome-wide analysis of DNAm on whole blood from 218 youth with T2D and 77 normoglycemic controls from the iCARE (improving renal Complications in Adolescents with type 2 diabetes through REsearch) cohort. Associations were tested using multiple linear regression models while adjusting for maternal diabetes, sex, age, BMI, smoking status, second-hand smoking exposure, cell-type proportions and genetic ancestry. RESULTS: We identified 3830 differentially methylated sites associated with youth T2D onset, of which 3794 were moderately (adjusted p-value < 0.05 and effect size estimate > 0.01) associated and 36 were strongly (adjusted p-value < 0.05 and effect size estimate > 0.05) associated. A total of 3725 of these sites were not previously reported in the EWAS Atlas as associated with T2D, adult obesity or youth obesity. Moreover, three CpGs associated with youth-onset T2D in the PFKFB3 gene were also associated with maternal T2D exposure (FDR < 0.05 and effect size > 0.01). This is the first study to link PFKFB3 and T2D in youth. CONCLUSION: Our findings support that T2D in youth has different impacts on DNAm than adult-onset, and suggests that changes in DNAm could provide an important link between in utero exposure to maternal diabetes and the onset of T2D.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 2 , Prenatal Exposure Delayed Effects , Humans , Diabetes Mellitus, Type 2/genetics , Female , DNA Methylation/genetics , Pregnancy , Adolescent , Male , Prenatal Exposure Delayed Effects/genetics , Epigenesis, Genetic/genetics , Age of Onset , Child , Case-Control Studies , Diabetes, Gestational/genetics , Adult , Epigenome/genetics
3.
Clin Epigenetics ; 16(1): 61, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715048

ABSTRACT

BACKGROUND: Diabetes in pregnancy is associated with increased risk of long-term metabolic disease in the offspring, potentially mediated by in utero epigenetic variation. Previously, we identified multiple differentially methylated single CpG sites in offspring of women with gestational diabetes mellitus (GDM), but whether stretches of differentially methylated regions (DMRs) can also be identified in adolescent GDM offspring is unknown. Here, we investigate which DNA regions in adolescent offspring are differentially methylated in blood by exposure to diabetes in pregnancy. The secondary aim was to characterize the RNA expression of the identified DMR, which contained the nc886 non-coding RNA. METHODS: To identify DMRs, we employed the bump hunter method in samples from young (9-16 yr, n = 92) offspring of women with GDM (O-GDM) and control offspring (n = 94). Validation by pyrosequencing was performed in an adult offspring cohort (age 28-33 years) consisting of O-GDM (n = 82), offspring exposed to maternal type 1 diabetes (O-T1D, n = 67) and control offspring (O-BP, n = 57). RNA-expression was measured using RT-qPCR in subcutaneous adipose tissue and skeletal muscle. RESULTS: One significant DMR represented by 10 CpGs with a bimodal methylation pattern was identified, located in the nc886/VTRNA2-1 non-coding RNA gene. Low methylation status across all CpGs of the nc886 in the young offspring was associated with maternal GDM. While low methylation degree in adult offspring in blood, adipose tissue, and skeletal muscle was not associated with maternal GDM, adipose tissue nc886 expression was increased in O-GDM compared to O-BP, but not in O-T1D. In addition, adipose tissue nc886 expression levels were positively associated with maternal pre-pregnancy BMI (p = 0.006), but not with the offspring's own adiposity. CONCLUSIONS: Our results highlight that nc886 is a metastable epiallele, whose methylation in young offspring is negatively correlated with maternal obesity and GDM status. The physiological effect of nc886 may be more important in adipose tissue than in skeletal muscle. Further research should aim to investigate how nc886 regulation in adipose tissue by exposure to GDM may contribute to development of metabolic disease.


Subject(s)
Adipose Tissue , DNA Methylation , Diabetes, Gestational , Epigenesis, Genetic , Muscle, Skeletal , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Diabetes, Gestational/genetics , Epigenesis, Genetic/genetics , Adult , DNA Methylation/genetics , Muscle, Skeletal/metabolism , Adolescent , Adipose Tissue/metabolism , Male , Prenatal Exposure Delayed Effects/genetics , Child , Diabetes Mellitus, Type 1/genetics , RNA, Untranslated/genetics , RNA, Untranslated/blood , RNA, Long Noncoding/genetics , CpG Islands/genetics
4.
Sci Adv ; 10(18): eadl3747, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701212

ABSTRACT

Early-life tobacco exposure serves as a non-negligible risk factor for aging-related diseases. To understand the underlying mechanisms, we explored the associations of early-life tobacco exposure with accelerated biological aging and further assessed the joint effects of tobacco exposure and genetic susceptibility. Compared with those without in utero exposure, participants with in utero tobacco exposure had an increase in Klemera-Doubal biological age (KDM-BA) and PhenoAge acceleration of 0.26 and 0.49 years, respectively, but a decrease in telomere length of 5.34% among 276,259 participants. We also found significant dose-response associations between the age of smoking initiation and accelerated biological aging. Furthermore, the joint effects revealed that high-polygenic risk score participants with in utero exposure and smoking initiation in childhood had the highest accelerated biological aging. There were interactions between early-life tobacco exposure and age, sex, deprivation, and diet on KDM-BA and PhenoAge acceleration. These findings highlight the importance of reducing early-life tobacco exposure to improve healthy aging.


Subject(s)
Aging , Genetic Predisposition to Disease , Prenatal Exposure Delayed Effects , Humans , Female , Male , Prenatal Exposure Delayed Effects/genetics , Aging/genetics , Adult , Pregnancy , Nicotiana/adverse effects , Nicotiana/genetics , Smoking/adverse effects , Risk Factors , Middle Aged
5.
Biochem J ; 481(10): 615-642, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38722301

ABSTRACT

Early-life adversities, whether prenatal or postnatal exposure, have been linked to adverse mental health outcomes later in life increasing the risk of several psychiatric disorders. Research on its neurobiological consequences demonstrated an association between exposure to adversities and persistent alterations in the structure, function, and connectivity of the brain. Consistent evidence supports the idea that regulation of gene expression through epigenetic mechanisms are involved in embedding the impact of early-life experiences in the genome and mediate between social environments and later behavioral phenotypes. In addition, studies from rodent models and humans suggest that these experiences and the acquired risk factors can be transmitted through epigenetic mechanisms to offspring and the following generations potentially contributing to a cycle of disease or disease risk. However, one of the important aspects of epigenetic mechanisms, unlike genetic sequences that are fixed and unchangeable, is that although the epigenetic markings are long-lasting, they are nevertheless potentially reversible. In this review, we summarize our current understanding of the epigenetic mechanisms involved in the mental health consequences derived from early-life exposure to malnutrition, maltreatment and poverty, adversities with huge and pervasive impact on mental health. We also discuss the evidence about transgenerational epigenetic inheritance in mammals and experimental data suggesting that suitable social and pharmacological interventions could reverse adverse epigenetic modifications induced by early-life negative social experiences. In this regard, these studies must be accompanied by efforts to determine the causes that promote these adversities and that result in health inequity in the population.


Subject(s)
Epigenesis, Genetic , Mental Disorders , Humans , Animals , Mental Disorders/genetics , Mental Disorders/etiology , Mental Health , Prenatal Exposure Delayed Effects/genetics , Pregnancy , Female , Adverse Childhood Experiences , DNA Methylation
6.
Environ Toxicol ; 39(6): 3523-3536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38465474

ABSTRACT

A previous study using miRNA sequencing revealed that exposure to a mixture of phthalates during pregnancy and lactation dysregulated rno-miR-184 and rno-miR-141-3p in the ventral prostate (VP) of offspring. Here, rno-miR-184 and rno-miR-141-3 expressions were obtained by RT-qPCR in the VP of F1 males as well as in F2 offspring, aiming to establish a relationship with possible oncogenic targets through in silico analyses with multigenerational approach. Additionally, some targets were measured by western blots to highlight a possible relationship between the deregulated miRNAs and some of their targets. VP samples from rats exposed to a mixture of phthalates maternally during pregnancy and lactation (GD10 to PND21-F1) and VP from offspring (F2) were examined. The phthalate mixture at both concentrations (20 µg and 200 mg/kg/day) increased the expression of both miRNAs in the F1 (PND22 and 120) and F2 (descendants of F1-treated males) prostate. Target prediction analysis revealed that both microRNAs are responsible for modulating the expression and synthesis of 40 common targets. A phthalate target association analysis and the HPA database showed an interesting relationship among these possible miRNAs modulated targets with prostate adenocarcinoma and other oncogenic processes. Western blots showed alteration in P63, P53, WNT5, and STAT3 expression, which are targeted by the miRNAs, in the VP of F1/F2 males. The data draw attention to the epigenetic modulation in the prostate of descendants exposed to phthalates and adds to one of the few currently found in the literature to point to microRNAs signature as biomarkers of exposure to plasticizers.


Subject(s)
MicroRNAs , Phthalic Acids , Prenatal Exposure Delayed Effects , Prostatic Neoplasms , MicroRNAs/genetics , MicroRNAs/metabolism , Male , Animals , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Female , Phthalic Acids/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/genetics , Maternal Exposure/adverse effects , Prostate/drug effects , Prostate/pathology , Rats, Wistar , Rats , Computer Simulation
7.
Ecotoxicol Environ Saf ; 273: 116164, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38447517

ABSTRACT

BACKGROUND: An increasing amount of evidence suggests that telomere length (TL) at birth can predict lifespan and is associated with chronic diseases later in life, but newborn TL may be affected by environmental pollutants. Neonicotinoids (NEOs) are widely used worldwide, and despite an increasing number of studies showing that they may have adverse effects on birth in mammals and even humans, few studies have examined the effect of NEO exposure on newborn TLs. OBJECTIVE: To investigate the effects of prenatal exposure to NEOs and the interactions between NEOs and sampling season on newborn TL. METHODS: We conducted a prospective cohort study of 500 mother-newborn pairs from the Guangxi Zhuang Birth Cohort. Ultraperformance liquid chromatographymass spectrometry was used to detect ten NEOs in maternal serum, and fluorescence quantitative PCR was used to estimate the newborn TL. A generalized linear model (GLM) was used to evaluate the relationships between individual NEO exposures and TLs , and quantile g-computation (Qgcomp) model and Bayesian kernel machine regression (BKMR) model were used to evaluate the combined effect of mixtures of components. RESULTS: The results of the GLM showed that compared with maternal TMX levels < LOD, maternal TMX levels < median were negatively correlated with newborn TL (-6.93%, 95% CI%: -11.92%, -1.66%), and the decrease in newborn TL was more pronounced in girls (-9.60%, 95% CI: -16.84%, -1.72%). Moreover, different kinds of maternal NEO exposure had different effects on newborn TL in different sampling seasons, and the effect was statistically significant in all seasons except in autumn. Mixed exposure analysis revealed a potential positive trend between NEOs and newborn TL, but the association was not statistically significant. CONCLUSION: Prenatal exposure to TMX may shorten newborn TL, and this effect is more pronounced among female newborns. Furthermore, the relationship between NEO exposure and TL may be modified by the sampling season.


Subject(s)
Prenatal Exposure Delayed Effects , Pregnancy , Humans , Infant, Newborn , Female , Prenatal Exposure Delayed Effects/genetics , Seasons , Prospective Studies , Bayes Theorem , Cohort Studies , China , Maternal Exposure/adverse effects , Telomere
8.
Environ Int ; 186: 108575, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38507935

ABSTRACT

Although toxicology uses animal models to represent real-world human health scenarios, a critical translational gap between laboratory-based studies and epidemiology remains. In this study, we aimed to understand the toxicoepigenetic effects on DNA methylation after developmental exposure to two common toxicants, the phthalate di(2-ethylhexyl) phthalate (DEHP) and the metal lead (Pb), using a translational paradigm that selected candidate genes from a mouse study and assessed them in four human birth cohorts. Data from mouse offspring developmentally exposed to DEHP, Pb, or control were used to identify genes with sex-specific sites with differential DNA methylation at postnatal day 21. Associations of human infant DNA methylation in homologous mouse genes with prenatal DEHP or Pb were examined with a meta-analysis. Differential methylation was observed on 6 cytosines (adjusted-p < 0.05) and 90 regions (adjusted-p < 0.001). This translational approach offers a unique method that can detect conserved epigenetic differences that are developmentally susceptible to environmental toxicants.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Lead , Phthalic Acids , Prenatal Exposure Delayed Effects , Animals , Female , Humans , Infant , Male , Mice , Pregnancy , Diethylhexyl Phthalate/toxicity , DNA Methylation/drug effects , Environmental Pollutants/toxicity , Epigenesis, Genetic/drug effects , Lead/toxicity , Phthalic Acids/toxicity , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/chemically induced
9.
Ecotoxicol Environ Saf ; 273: 116079, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38377778

ABSTRACT

Nicotine, an addictive component of cigarettes, causes cognitive defects, particularly when exposure occurs early in life. However, the exact mechanism through which nicotine causes toxicity and alters synaptic plasticity is still not fully understood. The aim of the current study is to examine how non-coding developmental regulatory RNA impacts the hippocampus of mice offspring whose mothers were exposed to nicotine. Female C57BL/6J mice were given nicotine water from one week before pregnancy until end of lactation. Hippocampal tissue from offspring at 20 days post-birth was used for LncRNA and mRNA microarray analysis. Differential expression of LncRNAs and mRNAs associated with neuronal development were screened and validated, and the CeRNA pathway mediating neuronal synaptic plasticity GM13530/miR-7119-3p/mef2c was predicted using LncBase Predicted v.2. Using protein immunoblotting, Golgi staining and behavioral tests, our findings revealed that nicotine exposure in offspring mice increased hippocampal NMDAR receptor, activated receptor-dependent calcium channels, enhanced the formation of NMDAR/nNOS/PSD95 ternary complexes, increased NO synthesis, mediated p38 activation, induced neuronal excitability toxicity. Furthermore, an epigenetic CeRNA regulatory mechanism was identified, which suppresses Mef2c-mediated synaptic plasticity and leads to modifications in the learning and social behavior of the offspring during adolescence. This study uncovers the way in which maternal nicotine exposure results in neurotoxicity in offspring.


Subject(s)
Nicotine , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Mice , Animals , Female , Nicotine/toxicity , Nicotine/metabolism , RNA, Competitive Endogenous , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Mice, Inbred C57BL , Maternal Exposure/adverse effects , Hippocampus/metabolism
10.
Mutagenesis ; 39(3): 196-204, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38417824

ABSTRACT

The developmental origins of health and disease hypothesis suggest early-life environment impacts health outcomes throughout the life course. In particular, epigenetic marks, including DNA methylation, are thought to be key mechanisms through which environmental exposures programme later-life health. Adequate maternal folate status before and during pregnancy is essential in the protection against neural tube defects, but data are emerging that suggest early-life folate exposures may also influence neurocognitive outcomes in childhood and, potentially, thereafter. Since folate is key to the supply of methyl donors for DNA methylation, we hypothesize that DNA methylation may be a mediating mechanism through which maternal folate influences neurocognitive outcomes. Using bisulphite sequencing, we measured DNA methylation of five genes (Art3, Rsp16, Tspo, Wnt16, and Pcdhb6) in the brain tissue of adult offspring of dams who were depleted of folate (n = 5, 0.4 mg folic acid/kg diet) during pregnancy (~19-21 days) and lactation (mean 22 days) compared with controls (n = 6, 2 mg folic acid/kg diet). Genes were selected as methylation of their promoters had previously been found to be altered by maternal folate intake in mice and humans across the life course, and because they have potential associations with neurocognitive outcomes. Maternal folate depletion was significantly associated with Art3 gene hypomethylation in subcortical brain tissue of adult mice at 28 weeks of age (mean decrease 6.2%, P = .03). For the other genes, no statistically significant differences were found between folate depleted and control groups. Given its association with neurocognitive outcomes, we suggest Art3 warrants further study in the context of lifecourse brain health. We have uncovered a potential biomarker that, once validated in accessible biospecimens and human context, may be useful to track the impact of early-life folate exposure on later-life neurocognitive health, and potentially be used to develop and monitor the effects of interventions.


Subject(s)
Brain , DNA Methylation , Folic Acid , Prenatal Exposure Delayed Effects , Animals , DNA Methylation/drug effects , Female , Brain/metabolism , Brain/drug effects , Pregnancy , Mice , Prenatal Exposure Delayed Effects/genetics , Folic Acid Deficiency/genetics , Epigenesis, Genetic , Male
11.
Cells ; 13(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38334641

ABSTRACT

An adverse perinatal environment can increase long-term cancer risk, although the precise nature of associated perinatal triggers remain unknown. Sleep apnea is a common condition during pregnancy, characterized by recurrent cessations in breathing during sleep, and the potential consequences of sleep apnea during pregnancy as it relates to breast cancer risk in offspring have not been explored. To model sleep apnea, Sprague-Dawley dams were exposed during gestation to nightly intermittent hypoxia (GIH) or normoxia (GNx), and the mammary glands of female offspring were examined. GIH offspring demonstrated increased epithelial stem and progenitor cell populations, which are associated with diminished transforming growth factor beta (TGFß) activity. Elevations in adipose tissue stem cells in the mammary gland were also identified in GIH offspring. In aging females, mammary tumors formed in GIH offspring. These tumors displayed a dramatic increase in stroma compared to tumors from GNx offspring, as well as distinct patterns of expression of stem cell-related pathways. Together, these results suggest that exposure to sleep apnea during pregnancy leads to lasting changes in the mammary glands of female offspring. Increased stem and progenitor cell populations as a result of GIH exposure could enhance long-term breast cancer risk, as well as alter the clinical behavior of resulting breast tumors.


Subject(s)
Mammary Neoplasms, Animal , Prenatal Exposure Delayed Effects , Sleep Apnea Syndromes , Pregnancy , Animals , Humans , Female , Prenatal Exposure Delayed Effects/genetics , Phenotype , Hypoxia/complications , Hypoxia/genetics , Sleep Apnea Syndromes/complications
12.
J Physiol ; 602(9): 2127-2139, 2024 May.
Article in English | MEDLINE | ID: mdl-38285002

ABSTRACT

Maternal stress and glucocorticoid exposure during pregnancy have multigenerational effects on neuroendocrine function and behaviours in offspring. Importantly, effects are transmitted through the paternal lineage. Altered phenotypes are associated with profound differences in transcription and DNA methylation in the brain. In the present study, we hypothesized that maternal prenatal synthetic glucocorticoid (sGC) exposure in the F0 pregnancy will result in differences in miRNA levels in testes germ cells and sperm across multiple generations, and that these changes will associate with modified microRNA (miRNA) profiles and gene expression in the prefrontal cortex (PFC) of subsequent generations. Pregnant guinea-pigs (F0) were treated with multiple courses of the sGC betamethasone (Beta) (1 mg kg-1; gestational days 40, 41, 50, 51, 60 and 61) in late gestation. miRNA levels were assessed in testes germ cells and in F2 PFC using the GeneChip miRNA 4.0 Array and candidate miRNA measured in epididymal sperm by quantitative real-time PCR. Maternal Beta exposure did not alter miRNA levels in germ cells derived from the testes of adult male offspring. However, there were significant differences in the levels of four candidate miRNAs in the sperm of F1 and F2 adult males. There were no changes in miRNA levels in the PFC of juvenile F2 female offspring. The present study has identified that maternal Beta exposure leads to altered miRNA levels in sperm that are apparent for at least two generations. The fact that differences were confined to epididymal sperm suggests that the intergenerational effects of Beta may target the epididymis. KEY POINTS: Paternal glucocorticoid exposure prior to conception leads to profound epigenetic changes in the brain and somatic tissues in offspring, and microRNAs (miRNAs) in sperm may mediate these changes. We show that there were significant differences in the miRNA profile of epididymal sperm in two generations following prenatal glucocorticoid exposure that were not observed in germ cells derived from the testes. The epididymis is a probable target for intergenerational programming. The effects of prenatal glucocorticoid treatment may span multiple generations.


Subject(s)
Glucocorticoids , MicroRNAs , Prenatal Exposure Delayed Effects , Spermatozoa , Animals , Female , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Spermatozoa/drug effects , Spermatozoa/metabolism , Guinea Pigs , Glucocorticoids/pharmacology , Testis/drug effects , Testis/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Betamethasone/pharmacology , Maternal Exposure/adverse effects
13.
Am J Clin Nutr ; 119(1): 117-126, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38176775

ABSTRACT

BACKGROUND: Choline is essential for healthy cognitive development. Single nucleotide polymorphisms (SNPs; rs3199966(G), rs2771040(G)) within the choline transporter SLC44A1 increase risk for choline deficiency. In a choline intervention trial of children who experienced prenatal alcohol exposure (PAE), these alleles are associated with improved cognition. OBJECTIVE: This study aimed to determine if SNPs within SLC44A1 are differentially associated with cognition in children with PAE compared with normotypic controls (genotype × exposure). A secondary objective tested for an association of these SNPs and cognition in controls (genotype-only). DESIGN: This is a secondary analysis of data from the Collaborative Initiative on Fetal Alcohol Spectrum Disorders. Participants (163 normotypic controls, 162 PAE) underwent psychological assessments and were genotyped within SLC44A1. Choline status was not assessed. Association analysis between genotype × exposure was performed using an additive genetic model and linear regression to identify the allelic effect. The primary outcome was the interaction between SLC44A1 genotype × exposure status with respect to cognition. The secondary outcome was the cognitive-genotype association in normotypic controls. RESULTS: Genotype × exposure analysis identified 7 SNPs in SLC44A1, including rs3199966(G) and rs2771040(G), and in strong linkage (D' ≥ 0.87), that were associated (adjusted P ≤ 0.05) with reduced performance in measures of general cognition, nonverbal and quantitative reasoning, memory, and executive function (ß, 1.92-3.91). In controls, carriers of rs3199966(GT or GG) had worsened cognitive performance than rs3199966(TT) carriers (ß, 0.46-0.83; P < 0.0001), whereas cognitive performance did not differ by rs3199966 genotype in those with PAE. CONCLUSIONS: Two functional alleles that increase vulnerability to choline deficiency, rs3199966(G) (Ser644Ala) and rs2771040(G) (3' untranslated region), are associated with worsened cognition in otherwise normotypic children. These alleles were previously associated with greater cognitive improvement in children with PAE who received supplemental choline. The findings endorse that choline benefits cognitive development in normotypic children and those with PAE.


Subject(s)
Choline Deficiency , Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Child , Humans , Pregnancy , Female , Prenatal Exposure Delayed Effects/genetics , Choline , Cognition , Antigens, CD , Organic Cation Transport Proteins
14.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38262736

ABSTRACT

Stress-inducing events during pregnancy are associated with aberrant neurodevelopment resulting in adverse psychiatric outcomes, including autism spectrum disorder (ASD). While numerous preclinical models for the study of ASD are frequently generated using C57BL/6J mice, few studies have investigated the effects of prenatal stress on this genetic background. In the current manuscript, we stressed C57BL/6 dams during gestation and examined numerous behavioral and molecular endophenotypes in the adult male and female offspring to characterize the resultant phenotype as compared with offspring born from nonstressed (NS) dams. Adult mice born from prenatal restraint stressed (PRS) dams demonstrated reduced sociability and reciprocal social interaction along with increased marble burying behaviors relative to mice born from nonstressed control dams. Differential expression of genes related to excitatory and inhibitory neurotransmission was evaluated in the medial prefrontal cortex, amygdala, hippocampus, nucleus accumbens and caudate putamen via qRT-PCR. The male PRS mouse behavioral phenotype coincided with aberrant expression of glutamate and GABA marker genes (e.g., Grin1, Grin2b, Gls, Gat1, Reln) in neural substrates of social behavior. Rescue of the male PRS sociability deficit by a known antipsychotic with epigenetic properties (i.e., clozapine (5 mg/kg) + 18 hr washout) indicated possible epigenetic regulation of genes that govern sociability. Clozapine treatment increased the expression levels of genes involved in DNA methylation, histone methylation, and histone acetylation in the nucleus accumbens. Identification of etiology-specific mechanisms underlying clinically relevant behavioral phenotypes may ultimately provide novel therapeutic interventions for the treatment of psychiatric disorders including ASD.


Subject(s)
Autism Spectrum Disorder , Clozapine , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Male , Female , Animals , Mice , Clozapine/pharmacology , Histones/metabolism , Autism Spectrum Disorder/genetics , Epigenesis, Genetic , Prenatal Exposure Delayed Effects/genetics , Mice, Inbred C57BL , Behavior, Animal/physiology , Disease Models, Animal
15.
PLoS One ; 19(1): e0293425, 2024.
Article in English | MEDLINE | ID: mdl-38271377

ABSTRACT

Prenatal alcohol exposure (PAE) can result in mild to severe consequences for children throughout their lives, with this range of symptoms referred to as Fetal Alcohol Spectrum Disorders (FASD). These consequences are thought to be linked to changes in gene expression and transcriptional programming in the brain, but the identity of those changes, and how they persist into adolescence are unclear. In this study, we isolated RNA from the hippocampus of adolescent rats exposed to ethanol during prenatal development and compared gene expression to controls. Briefly, dams were either given free access to standard chow ad libitum (AD), pair-fed a liquid diet (PF) or were given a liquid diet with ethanol (6.7% ethanol, ET) throughout gestation (gestational day (GD) 0-20). All dams were given control diet ad libitum beginning on GD 20 and throughout parturition and lactation. Hippocampal tissue was collected from adolescent male and female offspring (postnatal day (PD) 35-36). Exposure to ethanol caused widespread downregulation of many genes as compared to control rats. Gene ontology analysis demonstrated that affected pathways included cell adhesion, toxin metabolism, and immune responses. Interestingly, these differences were not strongly affected by sex. Furthermore, these changes were consistent when comparing ethanol-exposed rats to pair-fed controls provided with a liquid diet and those fed ad libitum on a standard chow diet. We conclude from this study that changes in genetic architecture and the resulting neuronal connectivity after prenatal exposure to alcohol continue through adolescent development. Further research into the consequences of specific gene expression changes on neural and behavioral changes will be vital to our understanding of the FASD spectrum of diseases.


Subject(s)
Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Humans , Child , Rats , Female , Male , Pregnancy , Animals , Adolescent , Fetal Alcohol Spectrum Disorders/genetics , Fetal Alcohol Spectrum Disorders/metabolism , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Cell Adhesion , Hippocampus/metabolism , Ethanol/toxicity , Ethanol/metabolism , Parturition , Immunity
16.
Mol Cell Endocrinol ; 580: 112102, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37972683

ABSTRACT

AIMS: The developmental Origins of Health and Disease (DOHaD) concept has provided the framework to assess how early life experiences can shape health and disease throughout the life course. Using a model of maternal exposure to a low protein diet (LPD; 6% protein) during the gestational and lactational periods, we demonstrated changes in the ventral prostate (VP) transcriptomic landscape in young rats exposed to maternal malnutrition. Male offspring Sprague Dawley rats were submitted to maternal malnutrition during gestation and lactation, and they were weighed, and distance anogenital was measured, followed were euthanized by an overdose of anesthesia at 21 postnatal days. Next, the blood and the ventral prostate (VP) were collected and processed by morphological analysis, biochemical and molecular analyses. RNA-seq analysis identified 411 differentially expressed genes (DEGs) in the VP of maternally malnourished offspring compared to the control group. The molecular pathways enriched by these DEGs are related to cellular development, differentiation, and tissue morphogenesis, all of them involved in both normal prostate development and carcinogenesis. Abcg1 was commonly deregulated in young and old maternally malnourished offspring rats, as well in rodent models of prostate cancer (PCa) and in PCa patients. Our results described ABCG1 as a potential DOHaD gene associated with perturbation of prostate developmental biology with long-lasting effects on carcinogenesis in old offspring rats. A better understanding of these mechanisms may help with the discussion of preventive strategies against early life origins of non-communicable chronic diseases.


Subject(s)
Malnutrition , Prenatal Exposure Delayed Effects , Animals , Female , Humans , Male , Rats , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Lactation , Malnutrition/complications , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Prostate/metabolism , Rats, Sprague-Dawley
17.
Prostate ; 84(3): 303-314, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38032025

ABSTRACT

BACKGROUND: Numerous studies have investigated the associations between maternal nutritional status and various diseases, with the underlying mechanism often attributed to epigenetic changes. However, limited research has been conducted on the relationship between maternal nutrition and benign prostatic hyperplasia (BPH). In this study, we aimed to explore the potential association between maternal nutrition and BPH using an animal experiment and evaluating the findings through fluorescent immunostaining and genetic analysis. METHODS: Female spontaneously hypertensive rats (SHR/Izm) were randomly assigned to three groups at the start of pregnancy: a standard diet group (SD; 17% protein, 7% fat), a low-protein diet group (LPD; 6% protein, 7% fat), and a high-fat diet group (HFD; 22% protein, 35% fat). The diets were maintained throughout gestation. After giving birth, both the mothers and their pups were exclusively fed a standard diet. Male pups were euthanized at 48 weeks, and their prostates were removed. The composition of the ventral prostate (VP) was evaluated using fluorescent immunostaining with antibodies for cytokeratin, vimentin, and Ki-67. Microarray analysis, real-time RT-PCR, and DNA methylation analysis using pyrosequencing were performed. Statistical analysis was conducted using one-way ANOVA and Tukey's multiple comparison test, with a significance level set at p < 0.05. RESULTS: Pups in the LPD group exhibited significant underweight from birth (1 day; SD vs. LPD vs. HFD: 4.46 vs. 4.08 vs. 4.35, p = 0.04) until weaning (21 days; SD vs. LPD vs. HFD: 30.8 vs. 27.4 vs. 29.2, p = 0.03). However, they exhibited catch-up growth, and there was no significant difference at 48 weeks (p = 0.84). The epithelial area in the ventral prostate was significantly increased in the LPD group (SD vs. LPD vs. HFD: 39% vs. 48% vs. 37%, p = 0.01), while the stromal area was significantly increased in the HFD group (SD vs. LPD vs. HFD: 11% vs. 11% vs. 15%, p < 0.01). Gene ontology analysis of the gene expression microarray showed increased activity in developmental processes (SD vs. LPD: p = 6.3E-03, SD vs. HFD: p = 7.2E-03), anatomical structure development (SD vs. LPD: p = 6.3E-03, SD vs. HFD: p = 5.3E-03), and cell differentiation (SD vs. LPD: p = 0.018, SD vs. HFD: p = 0.041) in both the LPD and HFD groups. Real-time RT-PCR revealed high expression levels of the transcription factors NFκB (p < 0.01) and Smad3 (p < 0.01) in both the LPD and HFD groups. XIAP, an apoptosis inhibitor, was increased in the LPD group (p = 0.02). The TGF beta pathway, associated with epithelial mesenchymal transition (EMT), and vimentin (p < 0.01) were upregulated in the HFD group. Pyrosequencing DNA methylation analysis of the TGF beta pathway indicated hypomethylation of TGFb1, TGFbR1, and Smad3 in all groups, although there were no significant differences. CONCLUSIONS: Our findings suggest that both maternal undernutrition and obesity influence the prostatic development of offspring. Maternal consumption of a low protein diet promotes epithelial hyperplasia through the upregulation of apoptosis inhibitors, while a high fat diet leads to increased stromal growth through the induction of EMT.


Subject(s)
Prenatal Exposure Delayed Effects , Prostatic Hyperplasia , Rats , Animals , Humans , Pregnancy , Female , Male , Vimentin , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Rats, Inbred SHR , Diet, High-Fat/adverse effects , Transforming Growth Factor beta
18.
Food Funct ; 15(1): 110-124, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38044717

ABSTRACT

Increasing evidence supports the existence of fetal-originated adult diseases. Recent research indicates that the intrauterine environment affects the fetal hypothalamic energy intake center. Inulin is a probiotic that can moderate metabolic disorders, but whether maternal inulin intervention confers long-term metabolic benefits to lipid metabolism in offspring in their adult lives and the mechanism involved are unknown. Here, we used a maternal overnutrition model that was induced by excess energy intake before and during pregnancy and lactation and maternal inulin intervention was performed during pregnancy and lactation. The hypothalamic genome methylation in offspring was analyzed using a methylation array. The results showed that maternal inulin treatment modified the maternal high-fat diet (HFD)-induced increases in body weight, adipose tissue weight, and serum insulin and leptin levels and decreases in serum adiponectin levels. Maternal inulin intervention regulated the impairments in hypothalamic leptin resistance, induced the methylation of Socs3, Npy, and Il6, and inhibited the methylation of Lepr in the hypothalamus of offspring. In conclusion, maternal inulin intervention modifies offspring lipid metabolism, and the underlying mechanism involves the methylation of genes in the hypothalamus feeding circuit.


Subject(s)
Lipid Metabolism Disorders , Prenatal Exposure Delayed Effects , Pregnancy , Female , Humans , Leptin , Diet, High-Fat/adverse effects , Obesity/genetics , Obesity/metabolism , Inulin/pharmacology , Inulin/metabolism , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Lipid Metabolism Disorders/metabolism , Hypothalamus/metabolism , Lipids , Maternal Nutritional Physiological Phenomena
19.
Rev Endocr Metab Disord ; 25(2): 309-324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38040983

ABSTRACT

Several epidemiological, clinical and experimental studies in recent decades have shown the relationship between exposure to stressors during development and health outcomes later in life. The characterization of these susceptible phases, such as preconception, gestation, lactation and adolescence, and the understanding of factors that influence the risk of an adult individual for developing obesity, metabolic and cardiovascular diseases, is the focus of the DOHaD (Developmental Origins of Health and Disease) research line. In this sense, advancements in molecular biology techniques have contributed significantly to the understanding of the mechanisms underlying the observed phenotypes, their morphological and physiological alterations, having as a main driving factor the epigenetic modifications and their consequent modulation of gene expression. The present narrative review aimed to characterize the different susceptible phases of development and associated epigenetic modifications, and their implication in the development of non-communicable diseases. Additionally, we provide useful insights into interventions during development to counteract or prevent long-term programming for disease susceptibility.


Subject(s)
Noncommunicable Diseases , Prenatal Exposure Delayed Effects , Female , Adult , Humans , Noncommunicable Diseases/epidemiology , Noncommunicable Diseases/prevention & control , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/prevention & control , Obesity/genetics , Disease Susceptibility , Uterus , Epigenesis, Genetic
20.
Endocr J ; 71(3): 209-222, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-37989295

ABSTRACT

The observational findings of Barker's original epidemiological studies were generalized as the Barker hypothesis and extended as the Developmental Origins of Health and Disease (DOHaD) theory. Barker et al. proposed that low birthweight (LBW) was associated with the occurrence of various noncommunicable diseases (NCDs) later in life. In other words, LBW itself is associated with the development of NCDs. This led to the DOHaD theory which proposed that an organism may have a specific period of developmental plasticity that is highly sensitive to the factors in its environment, and that combinations of acquired constitution and environmental factors may adversely affect health and risk the formation of NCDs. Due to undernutrition during the fetal period, the fetus acquires an energy-saving constitution called a thrifty phenotype due to adaptations of the metabolic and endocrine systems. It has been suggested that stimuli experienced early in development can persist throughout life and induce permanent physiological changes that predispose to NCDs. It has since become clear that the adverse environmental effects during the prenatal period are also intergenerationally and transgenerationally inherited, affecting the next generation. It has been shown that nutritional interventions such as methyl-donner and epigenome editing can restore some of the impaired functions and reduce the risk of developing some diseases in the next generation. This review thus outlines the mechanisms underlying various disease risk formations and their genetic programs for the next generation, which are being elucidated through studies based on our fetal undernutrition rat models.


Subject(s)
Malnutrition , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Female , Rats , Animals , Disease Susceptibility , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/prevention & control , Malnutrition/complications , Malnutrition/prevention & control , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...