Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 771
Filter
1.
J Dev Orig Health Dis ; 15: e6, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38653729

ABSTRACT

We previously showed in rats that pre- and postnatal deficiencies in iron and omega-3 (n-3) fatty acids can impair bone development, with additive and potentially irreversible effects when combined. This study aimed to investigate, in female rats consuming a combined iron and n-3 fatty acid deficient (ID + n-3 FAD) diet preconception, whether supplementation with iron and docosahexaenoic/eicosapentaenoic acid (DHA/EPA), alone and in combination, can prevent bone impairments in offspring. Using a 2 × 2 factorial design, female Wistar rats consuming an ID + n-3 FAD diet preconception were randomised to receive an: 1) iron supplemented (Fe + n-3 FAD), 2) DHA/EPA supplemented (ID + DHA/EPA), 3) Fe + DHA/EPA, or 4) ID + n-3 FAD diet from gestational day 10 throughout pregnancy and lactation. Post-weaning, offspring (n = 24/group; male:female = 1:1) remained on the respective experimental diets for three weeks until postnatal day 42-45. Offspring born to female rats consuming a control diet preconception and an Fe+DHA/EPA diet throughout pregnancy and lactation served as non-deficient reference group (Control+Fe+DHA/EPA). Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry and bone strength using three-point bending tests. Only offspring in the Fe+DHA/EPA group had significantly higher spine and femur BMD, and higher femur stiffness than offspring in the ID + n-3 FAD group, and had similar spine BMD and femur stiffness as the Control + Fe + DHA/EPA group. Offspring in the Fe + DHA/EPA group further had significantly higher femur strength (ultimate load) than the other experimental groups, and a similar femur strength as the Control + Fe + DHA/EPA group. This study shows that only combined iron and DHA/EPA supplementation can prevent bone impairments in offspring of female rats consuming an iron and n-3 FA deficient diet preconception.


Subject(s)
Dietary Supplements , Fatty Acids, Omega-3 , Rats, Wistar , Animals , Female , Fatty Acids, Omega-3/administration & dosage , Rats , Pregnancy , Male , Iron/metabolism , Iron/administration & dosage , Bone Density/drug effects , Prenatal Exposure Delayed Effects/prevention & control
3.
Neurosci Lett ; 832: 137787, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38641312

ABSTRACT

BACKGROUND: Salidroside (Sal) has been found to protect against multiple impairments caused by diabetes, and we designed this study to investigate the effect of Sal on gestational hypertension (GHP)-induced impairment of offspring learning and memory. METHODS: We established a GHP rat model by intraperitoneal injection of NG-nitro-L-arginine methyl ester (L-NAME), and treated with Sal by daily gavage. We used Morris Water Maze test to evaluate the learning and memory ability of offspring rats. HE staining was used to measured the pathological changes in hippocampus of offspring. Immunohistochemistry, cellular immunofluorescence and western blot were used to detect the protein expression. RESULTS: The learning and memory abilities of GHP offspring rats were significantly lower than those of normal rat offspring, while Sal treatment could significantly improve the learning and memory abilities of GHP offspring rats. HE staining did not reveal pathological differences in the hippocampus of normal rats, GHP rats and Sal-treated GHP offspring rats. However, Sal treatment can significantly increase the expression of Wnt1 and Skp2 protein, and decrease the expression of P27kiwf and P21waf1 protein in the hippocampus of GHP offspring rats. In vitro, Sal significantly promoted the proliferation and differentiation on neural stem cell, while Wnt1 knockdown could reverse these promotions by Sal. In the hippocampus of GHP offspring rats, Sal treatment significantly increased the expression of Tuj1, SOX2, Ki67 and DCX protein. CONCLUSION: Salidroside significantly improves the learning and memory impairment of offspring caused by GHP, and its mechanism may be related to the fact that Salidroside promotes the proliferation and differentiation of neural stem cells by activating the Wnt1/Skp2 signaling pathway.


Subject(s)
Glucosides , Hippocampus , Hypertension, Pregnancy-Induced , Phenols , Rats, Sprague-Dawley , Wnt Signaling Pathway , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Phenols/pharmacology , Pregnancy , Female , Rats , Wnt Signaling Pathway/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Hypertension, Pregnancy-Induced/metabolism , Hypertension, Pregnancy-Induced/prevention & control , Memory/drug effects , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/prevention & control , Doublecortin Protein , Memory Disorders/prevention & control , Memory Disorders/metabolism , Memory Disorders/drug therapy , Male
4.
Clin Pharmacol Ther ; 115(6): 1251-1257, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38506485

ABSTRACT

Recent reports related to in utero exposure of marketed immunosuppressive biologics led to clinical recommendations to delay live vaccinations for infants due to the concern of reduced vaccine effectiveness and/or increased risk of vaccine-related disease. These delays can increase the risk of children contracting vaccine preventable diseases, yet the alternative cessation of biologics during pregnancy may result in increased autoimmune disease activity for the pregnant person, raising complex benefit-risk (B-R) considerations and trade-offs. Our goal is to develop a conceptual framework for B-R assessment based on the key benefits and risks pregnant people would consider for themselves and their children when continuing (vs. discontinuing) a biologic during pregnancy. The proposed framework defines the decision contexts, key domains and attributes for potential benefits, and risks of biologic use during pregnancy, informed by a literature review of indications for biologics and refined with key clinical stakeholders. The framework includes both the pregnant person taking the biologic and the infant potentially exposed to the biologic in utero, with potential benefit and risk domains and attributes for each participant. To advance this conceptual framework, there are considerations of potential biases and uncertainty of available data that will be imperative to address when quantifying the B-R framework. For these reasons, we recommend the formation of a consortium to ensure development of a robust, validated framework that can be adopted in the healthcare setting.


Subject(s)
Biological Products , Humans , Pregnancy , Female , Biological Products/adverse effects , Biological Products/therapeutic use , Risk Assessment , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Vaccination/adverse effects , Prenatal Exposure Delayed Effects/prevention & control
5.
J Nutr Biochem ; 127: 109604, 2024 May.
Article in English | MEDLINE | ID: mdl-38373508

ABSTRACT

Recent human and animal studies have delineated hypertension can develop in the earliest stage of life. A lack or excess of particular nutrients in the maternal diet may impact the expression of genes associated with BP, leading to an increased risk of hypertension in adulthood. Modulations in gene expression could be caused by epigenetic mechanisms through aberrant DNA methylation, histone modification, and microRNAs (miRNAs). Several molecular mechanisms for the developmental programming of hypertension, including oxidative stress, dysregulated nutrient-sensing signal, aberrant renin-angiotensin system, and dysbiotic gut microbiota have been associated with epigenetic programming. Conversely, maternal nutritional interventions such as amino acids, melatonin, polyphenols, resveratrol or short chain fatty acids may work as epigenetic modifiers to trigger protective epigenetic modifications and prevent offspring hypertension. We present a current perspective of maternal malnutrition that can cause fetal programming and the potential of epigenetic mechanisms lead to offspring hypertension. We also discuss the opportunities of dietary nutrients or nutraceuticals as epigenetic modifiers to counteract those adverse programming actions for hypertension prevention. The extent to which aberrant epigenetic changes can be reprogrammed or reversed by maternal dietary interventions in order to prevent human hypertension remains to be established. Continued research is necessary to evaluate the interaction between maternal malnutrition and epigenetic programming, as well as a greater focus on nutritional interventions for hypertension prevention towards their use in clinical translation.


Subject(s)
Hypertension , Malnutrition , Prenatal Exposure Delayed Effects , Animals , Female , Humans , Hypertension/genetics , Hypertension/metabolism , Maternal Nutritional Physiological Phenomena , Fetal Development , Malnutrition/complications , Malnutrition/genetics , Epigenesis, Genetic , Prenatal Exposure Delayed Effects/prevention & control
6.
Obes Rev ; 25(3): e13672, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38069529

ABSTRACT

There is increasing evidence that hypercholesterolemia has an intrauterine developmental origin. However, the pathogenesis of fetal-originated is still lacking in a theoretical system, which makes its clinical early prevention and treatment difficult. It has been found that an adverse environment during pregnancy (e.g., xenobiotic exposure) may lead to changes in fetal blood cholesterol levels through changing maternal cholesterol metabolic function and/or placental cholesterol transport function and may also directly affect the liver cholesterol metabolic function of the offspring in utero and continue after birth. Adverse environmental conditions during pregnancy may also raise maternal glucocorticoid levels and promote the placental glucocorticoid barrier opening, leading to fetal overexposure to maternal glucocorticoids. Intrauterine high-glucocorticoid exposure can alter the liver cholesterol metabolism of offspring, resulting in an increased susceptibility to hypercholesterolemia after birth. Abnormal epigenetic modifications are involved in the intrauterine programming mechanism of fetal-originated hypercholesterolemia. Some interventions targeted at pregnant mothers or offspring in early life have been proposed to effectively prevent and treat the development of fetal-originated hypercholesterolemia. In this paper, the recent research progress on fetal-originated hypercholesterolemia was reviewed, with emphasis on intrauterine maternal glucocorticoid programming mechanisms, in order to provide a theoretical basis for its early clinical warning, prevention, and treatment.


Subject(s)
Hypercholesterolemia , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Female , Hypercholesterolemia/prevention & control , Hypercholesterolemia/etiology , Hypercholesterolemia/metabolism , Glucocorticoids/metabolism , Placenta/metabolism , Cholesterol , Epigenesis, Genetic , Prenatal Exposure Delayed Effects/prevention & control , Prenatal Exposure Delayed Effects/metabolism
7.
Am J Obstet Gynecol MFM ; 6(1): 101245, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061552

ABSTRACT

BACKGROUND: Risk mitigation for most teratogenic medications relies on risk communication via drug label, and prenatal exposures remain common. Information on the types of and risk factors for prenatal exposures to medications with teratogenic risk can guide strategies to reduce exposure. OBJECTIVE: This study aimed to identify medications with known or potential teratogenic risk commonly used during pregnancy among privately insured persons. STUDY DESIGN: We used the Merative™ MarketScan® Commercial Database to identify pregnancies with live or nonlive (ectopic pregnancies, spontaneous and elective abortions, stillbirths) outcomes among persons aged 12 to 55 years from 2011 to 2018. Start/end dates of medication exposure and pregnancy outcomes were identified via an adapted algorithm based on validation studies. We required continuous health plan enrollment from 90 days before conception until 30 days after the pregnancy end date. Medications with known or potential teratogenic risk were selected from TERIS (Teratogen Information System) and drug monographs based on the level of risk and quality of evidence (138 with known and 60 with potential risk). We defined prenatal exposure on the basis of ≥1 outpatient pharmacy claim or medical encounter for medication administration during target pregnancy periods considering medication risk profiles (eg, risk only in the first trimester or at a certain dose threshold). Sex hormones and hormone analogs, and abortion and postpartum/abortion hemorrhage treatments were not considered as teratogenic medications because of challenges in separating pregnancy-related indications, nor were opioids (because of complex risk-benefit considerations) or antiobesity medications if their only teratogenic mechanism was weight loss. RESULTS: Among all pregnancies, the 10 medications with known teratogenic risk and the highest prenatal exposures were sulfamethoxazole/trimethoprim (1988 per 100,000 pregnancy-years), high-dose fluconazole (1248), topiramate (351), lisinopril (144), warfarin (57), losartan (56), carbamazepine (50), valproate (49), vedolizumab (28 since 2015), and valsartan (25). Prevalence of exposure to sulfamethoxazole/trimethoprim decreased from 2346 to 1453 per 100,000 pregnancy-years from 2011 to 2018, but prevalence of exposure to vedolizumab increased 6-fold since its approval in 2015. Prenatal exposures in the first trimester were higher among nonlive pregnancies than among live-birth pregnancies, with the largest difference observed for warfarin (nonlive 370 vs live birth 78), followed by valproate (258 vs 86) and topiramate (1728 vs 674). Prenatal exposures to medications with potential teratogenic risk were most prevalent for low-dose fluconazole (6495), metoprolol (1325), and atenolol (448). The largest first-trimester exposure differences between nonlive and live-birth pregnancies were observed for lithium (242 vs 89), gabapentin (1639 vs 653), and duloxetine (1914 vs 860). Steady increases in hydralazine and gabapentin exposures were observed during the study years, whereas atenolol exposure decreased (561 to 280). CONCLUSION: Several medications with teratogenic risk for which there are potentially safer alternatives continue to be used during pregnancy. The fluctuating rates of prenatal exposure observed for select teratogenic medications suggest that regular reevaluation of risk mitigation strategies is needed. Future research focusing on understanding the clinical context of medication use is necessary to develop effective strategies for reducing exposures to medications with teratogenic risk during pregnancy.


Subject(s)
Prenatal Exposure Delayed Effects , Teratogens , Pregnancy , Female , Humans , United States/epidemiology , Teratogens/toxicity , Valproic Acid , Topiramate , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/prevention & control , Gabapentin , Warfarin , Atenolol , Fluconazole , Sulfamethoxazole , Trimethoprim
8.
Rev Endocr Metab Disord ; 25(2): 309-324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38040983

ABSTRACT

Several epidemiological, clinical and experimental studies in recent decades have shown the relationship between exposure to stressors during development and health outcomes later in life. The characterization of these susceptible phases, such as preconception, gestation, lactation and adolescence, and the understanding of factors that influence the risk of an adult individual for developing obesity, metabolic and cardiovascular diseases, is the focus of the DOHaD (Developmental Origins of Health and Disease) research line. In this sense, advancements in molecular biology techniques have contributed significantly to the understanding of the mechanisms underlying the observed phenotypes, their morphological and physiological alterations, having as a main driving factor the epigenetic modifications and their consequent modulation of gene expression. The present narrative review aimed to characterize the different susceptible phases of development and associated epigenetic modifications, and their implication in the development of non-communicable diseases. Additionally, we provide useful insights into interventions during development to counteract or prevent long-term programming for disease susceptibility.


Subject(s)
Noncommunicable Diseases , Prenatal Exposure Delayed Effects , Female , Adult , Humans , Noncommunicable Diseases/epidemiology , Noncommunicable Diseases/prevention & control , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/prevention & control , Obesity/genetics , Disease Susceptibility , Uterus , Epigenesis, Genetic
9.
Endocr J ; 71(3): 209-222, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-37989295

ABSTRACT

The observational findings of Barker's original epidemiological studies were generalized as the Barker hypothesis and extended as the Developmental Origins of Health and Disease (DOHaD) theory. Barker et al. proposed that low birthweight (LBW) was associated with the occurrence of various noncommunicable diseases (NCDs) later in life. In other words, LBW itself is associated with the development of NCDs. This led to the DOHaD theory which proposed that an organism may have a specific period of developmental plasticity that is highly sensitive to the factors in its environment, and that combinations of acquired constitution and environmental factors may adversely affect health and risk the formation of NCDs. Due to undernutrition during the fetal period, the fetus acquires an energy-saving constitution called a thrifty phenotype due to adaptations of the metabolic and endocrine systems. It has been suggested that stimuli experienced early in development can persist throughout life and induce permanent physiological changes that predispose to NCDs. It has since become clear that the adverse environmental effects during the prenatal period are also intergenerationally and transgenerationally inherited, affecting the next generation. It has been shown that nutritional interventions such as methyl-donner and epigenome editing can restore some of the impaired functions and reduce the risk of developing some diseases in the next generation. This review thus outlines the mechanisms underlying various disease risk formations and their genetic programs for the next generation, which are being elucidated through studies based on our fetal undernutrition rat models.


Subject(s)
Malnutrition , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Female , Rats , Animals , Disease Susceptibility , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/prevention & control , Malnutrition/complications , Malnutrition/prevention & control , Phenotype
10.
Nutrients ; 15(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37960276

ABSTRACT

Chronic diseases represent one of the major causes of death worldwide. It has been suggested that pregnancy-related conditions, such as gestational diabetes mellitus (GDM), maternal obesity (MO), and intra-uterine growth restriction (IUGR) induce an adverse intrauterine environment, increasing the offspring's predisposition to chronic diseases later in life. Research has suggested that mitochondrial function and oxidative stress may play a role in the developmental programming of chronic diseases. Having this in mind, in this review, we include evidence that mitochondrial dysfunction and oxidative stress are mechanisms by which GDM, MO, and IUGR program the offspring to chronic diseases. In this specific context, we explore the promising advantages of maternal antioxidant supplementation using compounds such as resveratrol, curcumin, N-acetylcysteine (NAC), and Mitoquinone (MitoQ) in addressing the metabolic dysfunction and oxidative stress associated with GDM, MO, and IUGR in fetoplacental and offspring metabolic health. This approach holds potential to mitigate developmental programming-related risk of chronic diseases, serving as a probable intervention for disease prevention.


Subject(s)
Diabetes, Gestational , Obesity, Maternal , Pregnancy Complications , Prenatal Exposure Delayed Effects , Pregnancy , Female , Humans , Antioxidants/pharmacology , Prenatal Exposure Delayed Effects/prevention & control , Prenatal Exposure Delayed Effects/etiology , Resveratrol/pharmacology , Diabetes, Gestational/prevention & control , Pregnancy Complications/prevention & control , Diet , Obesity, Maternal/complications , Fetal Growth Retardation/prevention & control , Chronic Disease
11.
Life Sci ; 326: 121799, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37245838

ABSTRACT

Prenatal overexposure to glucocorticoids (GC) can lead to behavioral changes in adulthood. We aimed to explore the effects of gestational administration of vitamin D on the behavioral responses of dams and their offspring prenatally exposed to dexamethasone (DEX). Vitamin D (500UI) was given daily during the whole pregnancy (VD group). Half of the groups that received vitamin D were treated with DEX (0.1 mg/kg, VD + DEX group) daily between the 14th and 19th days of pregnancy. The corresponding control groups of progenitors were assigned (CTL and DEX groups, respectively). Maternal care and the dam's behaviors were evaluated during lactation. The offspring had developmental and behavioral parameters evaluated during lactation and at 3, 6, and 12 months of age. Gestational administration of vitamin D increased maternal care and had an anxiolytic-like effect on the dams, but the latter was blocked in DEX-treated dams. Prenatal DEX partially impaired neural development and caused an anxiety-like phenotype in the male and female offspring at 6 months, which was prevented by gestational administration of vitamin D. As well, gestational vitamin D improved memory just in the male offspring, but this response was suppressed by prenatal DEX. We concluded that gestational vitamin D could prevent anxiety-like behavior in adult male and female rats prenatally exposed to DEX, which might be, in part, a result of the maternal care improvement.


Subject(s)
Dexamethasone , Prenatal Exposure Delayed Effects , Pregnancy , Rats , Female , Male , Animals , Humans , Rats, Wistar , Dexamethasone/pharmacology , Vitamin D/pharmacology , Glucocorticoids/toxicity , Anxiety/drug therapy , Anxiety/prevention & control , Vitamins , Prenatal Exposure Delayed Effects/prevention & control
12.
J Nutr Biochem ; 119: 109373, 2023 09.
Article in English | MEDLINE | ID: mdl-37178812

ABSTRACT

Maternal fructose exposure during pregnancy and lactation has been shown to contribute to hypertension in offspring, with long-term effects on hypothalamus development. However, the underlying mechanisms remain unclear. In this study, we used the tail-cuff method to evaluate the effects of maternal fructose drinking exposure on offspring blood pressure levels at postpartum day 21 (PND21) and postpartum day 60 (PND60). We employed Oxford Nanopore Technologies (ONT) full-length RNA sequencing to investigate the developmental programming of the PND60 offspring's hypothalamus and confirmed the presence of the AT1R/TLR4 pathway using western blot and immunofluorescence. Our findings demonstrated that maternal fructose exposure significantly increased blood pressure in PND60 offspring but not in PND21 offspring. Additionally, we observed transcriptome-wide alterations in the hypothalamus of PND60 offspring following maternal fructose exposure. Overall, our study provides evidence that maternal fructose exposure during pregnancy and lactation may alter the transcriptome-wide of offspring hypothalamus and activate the AT1R/TLR4 pathway, leading to hypertension. These findings may have important implications for the prevention and treatment of hypertension-related diseases in offspring exposed to excessive fructose during pregnancy and lactation.


Subject(s)
Hypertension , Prenatal Exposure Delayed Effects , Rats , Pregnancy , Animals , Female , Humans , Transcriptome , Toll-Like Receptor 4/genetics , Rats, Sprague-Dawley , Fructose/adverse effects , Prenatal Exposure Delayed Effects/prevention & control , Hypertension/etiology , Hypertension/prevention & control , Maternal Exposure/adverse effects , Lactation
13.
Nutrients ; 15(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37049522

ABSTRACT

Maternal nutrition has a key role in the developmental programming of adult disease. Excessive maternal fructose intake contributes to offspring hypertension. Newly discovered evidence supports the idea that early-life gut microbiota are connected to hypertension later in life. Short-chain fatty acids (SCFAs), butyrate, and propionate are microbiota-derived metabolites, also known as postbiotics. The present study aimed to determine whether maternal butyrate or propionate supplementation can protect offspring from hypertension using a maternal high-fructose (HF) diet rat model. Female Sprague Dawley rats were allocated during pregnancy and lactation to (1) regular chow (ND); (2) 60% high-fructose diet (HF); (3) HF diet plus butyrate (HFB, 400 mg/kg/day); and (4) HF diet plus propionate (HFP, 200 mmol/L). Male offspring were sacrificed at 12 weeks of age. The maternal HF diet impaired the offspring's BP, which was prevented by perinatal butyrate or propionate supplementation. Both butyrate and propionate treatments similarly increased plasma concentrations of propionic acid, isobutyric acid, and valeric acid in adult offspring. Butyrate supplementation had a more profound impact on trimethylamine N-oxide metabolism and nitric oxide parameters. Whilst propionate treatment mainly influenced gut microbiota composition, it directly altered the abundance of genera Anaerovorax, Lactobacillus, Macellibacteroides, and Rothia. Our results shed new light on targeting gut microbiota through the use of postbiotics to prevent maternal HF intake-primed hypertension, a finding worthy of clinical translation.


Subject(s)
Hypertension , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Rats , Male , Female , Animals , Propionates , Rats, Sprague-Dawley , Butyrates , Fructose/adverse effects , Prenatal Exposure Delayed Effects/prevention & control , Hypertension/chemically induced , Hypertension/prevention & control , Diet , Diet, High-Fat
14.
Biochem Pharmacol ; 210: 115490, 2023 04.
Article in English | MEDLINE | ID: mdl-36893816

ABSTRACT

Maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes developmental and reproductive disorders in pups due to the attenuated luteinizing hormone (LH) production during the perinatal stage; however, the administration of α-lipoic acid (LA) to TCDD-exposed pregnant rats reversed the attenuated LH production. Therefore, reproductive disorders in pups are expected to be ameliorated with LA supplementation. To address this issue, pregnant rats orally received low dose TCDD at gestational day 15 (GD15) and proceeded to parturition. The control received a corn oil vehicle. To examine the preventive effects of LA, supplementation with LA was provided until postnatal day 21. In this study, we demonstrated that maternal administration of LA restored the sexually dimorphic behavior of male and female offspring. TCDD-induced LA insufficiency is likely a direct cause of TCDD reproductive toxicity. In the analysis to clarify the mechanism of the decrease in LA, we found evidence suggesting that TCDD inhibits the synthesis and increases the utilization of S-adenosylmethionine (SAM), a cofactor for LA synthesis, resulting in a decrease in the SAM level. Furthermore, folate metabolism, which is involved in SAM synthesis, is disrupted by TCDD, which may adversely affect infant growth. Maternal supplementation of LA restored SAM to its original level in the fetal hypothalamus; in turn, SAM ameliorated abnormal folate consumption and suppressed aryl hydrocarbon receptor activation induced by TCDD. The study demonstrates that the application of LA could prevent and recover next-generation dioxin reproductive toxicity, which provides the potential to establish effective protective measures against dioxin toxicity.


Subject(s)
Folic Acid , Maternal Exposure , Polychlorinated Dibenzodioxins , Prenatal Exposure Delayed Effects , Sex Characteristics , Sexual Development , Thioctic Acid , Animals , Female , Male , Pregnancy , Rats , Fetus/drug effects , Fetus/metabolism , Folic Acid/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Maternal Exposure/adverse effects , Polychlorinated Dibenzodioxins/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/prevention & control , S-Adenosylmethionine/metabolism , Sexual Development/drug effects , Thioctic Acid/administration & dosage , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use , Reproduction/drug effects
15.
Matern Child Health J ; 27(7): 1133-1139, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36943523

ABSTRACT

INTRODUCTION: Intrauterine exposure to maternal obesity and hyperglycemia greatly increases offspring health risks. Scalable lifestyle interventions to lower weight and glycemia prior to conception are needed, but have been understudied, especially in diverse and low-income women with disproportionately high risks of negative maternal-child outcomes. The objective of this report is to provide initial evidence of the National Diabetes Prevention Program's (NDPP) effects on maternal-child outcomes in diverse, low-income women and their offspring. METHODS: The yearlong NDPP was delivered in a safety net healthcare system to 1,569 participants from 2013 to 2019. Using medical records, we evaluated outcomes for women < 40 years who became pregnant and delivered after attending the NDPP for ≥ 1 month (n = 32), as compared to a usual care group of women < 40 years (n = 26) who were initially eligible for the NDPP but were excluded due to pregnancy at enrollment. RESULTS: Most women in either group were Latinx, had Medicaid or were uninsured, and had obesity at baseline. The mean difference in BMI change from baseline to conception was - 1.8 ± 0.6 kg/m2 (p = 0.002) for NDPP versus usual care. Fewer NDPP participants had obesity at conception (56.7% vs. 88.0%, p = 0.011) and hyperglycemia in early pregnancy (4.0% vs. 25.0%; p = 0.020) than usual care. No other differences were statistically significant, yet nearly all outcomes favored the NDPP. Covariate-adjusted results were consistent, except the difference in frequency of obesity at conception was no longer significant (p = 0.132). DISCUSSION: Results provide preliminary evidence that the NDPP may support a reduction in peri-conceptional obesity/diabetes risks among diverse and low-income women.


SIGNIFICANCE: Scalable lifestyle interventions to lower weight and glycemia prior to conception are needed, especially to support diverse and low-income women with disproportionately high risks of negative maternal-child outcomes. This report presents initial evidence of the National Diabetes Prevention Program?s effects on maternal-child outcomes in diverse, low-income women and their offspring. Results encouragingly suggest that the program can reduce peri-conceptional obesity and glycemia, and may be a resource to help break the cycle of disease across generations.


Subject(s)
Hyperglycemia , Obesity , Preconception Care , Humans , Obesity/prevention & control , Glycated Hemoglobin , Weight Loss , Obesity, Maternal , Prenatal Exposure Delayed Effects/prevention & control , Hyperglycemia/prevention & control , Female , Adult , Pregnancy
16.
J Dev Orig Health Dis ; 14(6): 711-718, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38234128

ABSTRACT

We investigated the influence of maternal yellow-pea fiber supplementation in obese pregnancies on offspring metabolic health in adulthood. Sixty newly-weaned female Sprague-Dawley rats were randomized to either a low-calorie control diet (CON) or high calorie obesogenic diet (HC) for 6-weeks. Obese animals were then fed either the HC diet alone or the HC diet supplemented with yellow-pea fiber (HC + FBR) for an additional 4-weeks prior to breeding and throughout gestation and lactation. On postnatal day (PND) 21, 1 male and 1 female offspring from each dam were weaned onto the CON diet until adulthood (PND 120) for metabolic phenotyping. Adult male, but not female, HC offspring demonstrated increased body weight and feed intake vs CON offspring, however no protection was offered by maternal FBR supplementation. HC male and female adult offspring demonstrated increased serum glucose and insulin resistance (HOMA-IR) compared with CON offspring. Maternal FBR supplementation improved glycemic control in male, but not female offspring. Compared with CON offspring, male offspring from HC dams demonstrated marked dyslipidemia (higher serum cholesterol, increased number of TG-rich lipoproteins, and smaller LDL particles) which was largely normalized in offspring from HC + FBR mothers. Male offspring born to obese mothers (HC) had higher hepatic TG, which tended to be lowered (p = 0.07) by maternal FBR supplementation.Supplementation of a maternal high calorie diet with yellow-pea fiber in prepregnancy and throughout gestation and lactation protects male offspring from metabolic dysfunction in the absence of any change in body weight status in adulthood.


Subject(s)
Pisum sativum , Prenatal Exposure Delayed Effects , Animals , Female , Male , Pregnancy , Rats , Body Weight , Diet, High-Fat , Dietary Supplements , Lactation , Obesity/complications , Obesity/prevention & control , Obesity/metabolism , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/prevention & control , Prenatal Exposure Delayed Effects/metabolism , Rats, Sprague-Dawley
17.
Nutrients ; 14(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36364887

ABSTRACT

Garlic (Allium sativum) is a functional food, having hydrogen sulfide (H2S)-releasing capacity, which exhibits considerable effects on hypertension and gut microbiota. H2S is strongly associated with hypertension and chronic kidney disease (CKD). Maternal CKD leads to hypertension in adult rat progeny, which was linked to disruption of the gut microbiota. This study validated the benefits of perinatal garlic oil supplementation against offspring hypertension induced by maternal CKD via modulation of H2S signaling, nitric oxide (NO), and the gut microbiota. Before pregnancy, female rats received a 0.5% adenine diet for 3 weeks to develop an animal model to mimic human CKD. Garlic oil (100 mg/kg/day) or vehicle was administered to pregnant rats by oral gavage during gestation and lactation. Perinatal garlic oil supplementation protected against maternal CKD-induced hypertension in offspring at 12 weeks of age. The beneficial effects of garlic oil are associated with enhanced H2S signaling, increased NO bioavailability, and shifts in gut microbiota. Perinatal garlic oil supplementation reduces abundance of genera Variovorax, Nocardia, Sphingomonas, and Rhodococcus. Our findings provide insight into the role of early H2S-targeted intervention as a preventive strategy in hypertension for further translational research.


Subject(s)
Garlic , Hypertension , Pre-Eclampsia , Prenatal Exposure Delayed Effects , Renal Insufficiency, Chronic , Pregnancy , Humans , Rats , Female , Animals , Prenatal Exposure Delayed Effects/prevention & control , Rats, Sprague-Dawley , Hypertension/prevention & control , Renal Insufficiency, Chronic/prevention & control , Nitric Oxide , Dietary Supplements
18.
Nutrients ; 14(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36297106

ABSTRACT

Childhood obesity and the numerous lifestyle diseases associated with it are undoubtedly among the key problems in modern medicine and public health. However, this problem concerns not only the present or immediate future, but also the longer term. Adult health is fundamentally shaped in the first years of life and in the fetal period. The preconceptual period, which is responsible for the proper preparation of the internal environment for the life and development of the fetus during pregnancy, is also significant. A special role in describing the phenomenon of conditioning the metabolism of the new human being is now attributed to the theory of nutritional programming. Research in this area was pioneered by David Barker, who put forward the theory of the "stunted phenotype" and described the relationship between a child's birth weight, which is largely a consequence of the mother's feeding behaviour, and diseases such as ischaemic heart disease, type 2 diabetes (T2D), dyslipidemia, or high blood pressure. This narrative review aims to provide an overview of the history, theory, and prenatal mechanisms involved in nutritional programming and its relationship to childhood obesity and other metabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Pediatric Obesity , Prenatal Exposure Delayed Effects , Pregnancy , Adult , Female , Child , Humans , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/prevention & control , Birth Weight , Life Style , Vitamins , Prenatal Exposure Delayed Effects/prevention & control
19.
Int J Mol Sci ; 23(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35887270

ABSTRACT

Emerging evidence supports that hypertension can be programmed or reprogrammed by maternal nutrition. Maternal exposures during pregnancy, such as maternal nutrition or antibiotic use, could alter the offspring's gut microbiota. Short-chain fatty acids (SCFAs) are the major gut microbiota-derived metabolites. Acetate, the most dominant SCFA, has shown its antihypertensive effect. Limited information exists regarding whether maternal acetate supplementation can prevent maternal minocycline-induced hypertension in adult offspring. We exposed pregnant Sprague Dawley rats to normal diet (ND), minocycline (MI, 50 mg/kg/day), magnesium acetate (AC, 200 mmol/L in drinking water), and MI + AC from gestation to lactation period. At 12 weeks of age, four groups (n = 8/group) of male progeny were sacrificed. Maternal acetate supplementation protected adult offspring against minocycline-induced hypertension. Minocycline administration reduced plasma acetic acid level, which maternal acetate supplementation prevented. Additionally, acetate supplementation increased the protein level of SCFA receptor G protein-coupled receptor 41 in the offspring kidneys. Further, minocycline administration and acetate supplementation significantly altered gut microbiota composition. Maternal acetate supplementation protected minocycline-induced hypertension accompanying by the increases in genera Roseburia, Bifidobacterium, and Coprococcus. In sum, our results cast new light on targeting gut microbial metabolites as early interventions to prevent the development of hypertension, which could help alleviate the global burden of hypertension.


Subject(s)
Hypertension , Prenatal Exposure Delayed Effects , Acetates/pharmacology , Animals , Blood Pressure , Dietary Supplements , Female , Humans , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/metabolism , Lactation , Male , Maternal Exposure/adverse effects , Minocycline/pharmacology , Pregnancy , Prenatal Exposure Delayed Effects/prevention & control , Rats , Rats, Sprague-Dawley
20.
Hypertension ; 79(9): 2016-2027, 2022 09.
Article in English | MEDLINE | ID: mdl-35730432

ABSTRACT

BACKGROUND: Exercise has profound effects on cardiovascular function and metabolism in both physiological and pathophysiological states. The present study tested whether voluntary exercise would protect male offspring against maternal gestational hypertension-induced hypertensive response sensitization elicited by post-weaning high-fat diet (HFD). METHODS AND RESULTS: On low-lard-fat diet, offspring of both normotensive and hypertensive dams had comparable resting blood pressure, but HFD feeding elicited an enhanced increase in blood pressure (ie, hypertensive response sensitization) in sedentary offspring of hypertensive dams when compared with sedentary offspring of normotensive dams. The HFD fed sedentary offspring of hypertensive dams displayed greater sympathetic activity, enhanced pressor responses to centrally administered ANG II (angiotensin II) or leptin, and greater mRNA expression of proinflammatory cytokines, leptin, and a marker of blood-brain barrier leakage in the hypothalamic paraventricular nucleus. The enhanced blood pressure and central sympathetic activity in HFD-fed sedentary offspring of hypertensive dams were significantly reduced by exercise but fell only to levels comparable to HFD-fed exercising offspring of normotensive dams. HFD-induced increases in plasma IL-6 (interleukin-6) and sympathetic activity and greater pressor responses to central TNF (tumor necrosis factor)-α in offspring from both normotensive and hypertensive dams were also maintained after exercise. Nevertheless, exercise had remarkably beneficial effects on metabolic and autonomic function, brain reactivity to ANG II and leptin and gene expression of brain prohypertensive factors in all offspring. CONCLUSIONS: Voluntary exercise plays a beneficial role in preventing maternal hypertension-induced hypertensive response sensitization, and that this is associated with attenuation of enhanced brain reactivity and centrally driven sympathetic activity.


Subject(s)
Hypertension, Pregnancy-Induced , Prenatal Exposure Delayed Effects , Animals , Blood Pressure/physiology , Diet, High-Fat/adverse effects , Female , Humans , Leptin , Male , Pregnancy , Prenatal Exposure Delayed Effects/prevention & control , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...