Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Cells ; 10(5)2021 05 05.
Article in English | MEDLINE | ID: mdl-34063138

ABSTRACT

In plastic surgery, lipofilling is a frequent procedure. Unsatisfactory vascularization and impaired cell vitality can lead to unpredictable take rates in the fat graft. The proliferation and neovascularization inducing properties of adipose tissue-derived stem cells may contribute to solve this problem. Therefore, the enrichment of fat grafts with stem cells is studied intensively. However, it is difficult to compare these studies because many factors-often not precisely described-are influencing the results. Our study summarizes some factors which influence the cell yield like harvesting, isolation procedure and quantification. Stem cells were isolated after liposuction. Quantification was done using a cell chamber, colony counting, or flow cytometry with changes to one parameter, only, for each comparison. Quantification of cells isolated after liposuction at the same harvesting site from the same patient can vary greatly depending on the details of the isolation protocol and the method of quantification. Cell yield can be influenced strongly by many factors. Therefore, a comparison of different studies should be handled with care.


Subject(s)
Adipose Tissue/cytology , Mesenchymal Stem Cells/cytology , Primary Cell Culture/methods , Tissue and Organ Harvesting/methods , Cells, Cultured , Flow Cytometry/methods , Flow Cytometry/standards , Humans , Lipectomy/methods , Lipectomy/standards , Primary Cell Culture/standards , Tissue and Organ Harvesting/standards
2.
Methods Mol Biol ; 2286: 95-105, 2021.
Article in English | MEDLINE | ID: mdl-33534112

ABSTRACT

Bone marrow stromal cells (BMSCs, also known as bone marrow mesenchymal stem cells) are a plastic-adherent heterogeneous cell population that contain inherent skeletal progenitors and a subset of multipotential skeletal stem cells (SSCs). Application of BMSCs in therapeutic protocols implies its isolation and expansion under good manufacturing practices (GMP). Here we describe the procedures we have found to successfully generate practical BMSCs numbers, with preserved biological potency.


Subject(s)
Biomedical Technology/standards , Bone Marrow Cells/cytology , Bone and Bones/cytology , Primary Cell Culture/methods , Antigens, CD34/genetics , Antigens, CD34/metabolism , Biomedical Technology/methods , Cells, Cultured , Coculture Techniques/economics , Coculture Techniques/methods , Coculture Techniques/standards , Costs and Cost Analysis , Culture Media, Serum-Free/chemistry , Humans , Practice Guidelines as Topic , Primary Cell Culture/economics , Primary Cell Culture/standards , Stromal Cells/cytology , Stromal Cells/metabolism
3.
Methods Mol Biol ; 2286: 49-65, 2021.
Article in English | MEDLINE | ID: mdl-32572700

ABSTRACT

Clinical experience gathered over two decades around therapeutic use of primary human dermal progenitor fibroblasts in burn patient populations has been at the forefront of regenerative medicine in Switzerland. Relative technical simplicity, ease of extensive serial multitiered banking, and high stability are major advantages of such cell types, assorted to ease of safety and traceability demonstration. Stringent optimization of cell source selection and standardization of biobanking protocols enables the safe and efficient harnessing of the considerable allogenic therapeutic potential yielded by primary progenitor cells. Swiss legal and regulatory requirements have led to the procurement of fetal tissues within a devised Fetal Progenitor Cell Transplantation Program in the Lausanne University Hospital. Proprietary nonenzymatic isolation of primary musculoskeletal cell types and subsequent establishment of progeny tiered cell banks under cGMP standards have enabled safe and effective management of acute and chronic cutaneous affections in various patient populations. Direct off-the-freezer seeding of viable dermal progenitor fibroblasts on a CE marked equine collagen scaffold is the current standard for delivery of the therapeutic biological materials to patients suffering from extensive and deep burns. Diversification in the clinical indications and delivery methods for these progenitor cells has produced excellent results for treatment of persistent ulcers, autograft donor site wounds, or chronic cutaneous affections such as eczema. Herein we describe the standard operating procedures for preparation and therapeutic deployment of the progenitor biological bandages within our translational musculoskeletal regenerative medicine program, as they are routinely used as adjuvants in our Burn Center to treat critically ailing patients.


Subject(s)
Biological Dressings/standards , Human Embryonic Stem Cells/cytology , Practice Guidelines as Topic , Primary Cell Culture/methods , Re-Epithelialization , Regenerative Medicine/methods , Tissue Preservation/methods , Biological Dressings/adverse effects , Burns/therapy , Cells, Cultured , Humans , Pressure Ulcer/therapy , Primary Cell Culture/standards , Regenerative Medicine/standards , Surgical Wound/therapy , Tissue Preservation/standards
4.
Methods Mol Biol ; 2286: 1-24, 2021.
Article in English | MEDLINE | ID: mdl-32430595

ABSTRACT

Primary progenitor cell types adequately isolated from fetal tissue samples present considerable therapeutic potential for a wide range of applications within allogeneic musculoskeletal regenerative medicine. Progenitor cells are inherently differentiated and extremely stable in standard bioprocessing conditions and can be culture-expanded to establish extensive and robust cryopreserved cell banks. Stringent processing conditions and exhaustive traceability are prerequisites for establishing a cell source admissible for further cGMP biobanking and clinical-grade production lot manufacture. Transplantation programs are ideal platforms for the establishment of primary progenitor cell sources to be used for manufacture of cell therapies or cell-based products. Well-defined and regulated procurement and processing of fetal biopsies after voluntary pregnancy interruptions ensure traceability and safety of progeny materials and therapeutic products derived therefrom. We describe herein the workflows and specifications devised under the Swiss Fetal Progenitor Cell Transplantation Program in order to traceably isolate primary progenitor cell types in vitro and to constitute Parental Cell Banks fit for subsequent industrial-scale cGMP processing. When properly devised, derived, and maintained, such cell sources established after a single organ donation can furnish sufficient progeny materials for years of development in translational musculoskeletal regenerative medicine.


Subject(s)
Biomedical Technology/standards , Cell Transplantation/methods , Human Embryonic Stem Cells/cytology , Primary Cell Culture/methods , Regenerative Medicine/methods , Biological Specimen Banks/standards , Biomedical Technology/methods , Cell Transplantation/standards , Cells, Cultured , Humans , Practice Guidelines as Topic , Primary Cell Culture/standards , Regenerative Medicine/standards , Tissue and Organ Harvesting/methods , Tissue and Organ Harvesting/standards , Tissue and Organ Procurement/standards
5.
Methods Mol Biol ; 2286: 25-48, 2021.
Article in English | MEDLINE | ID: mdl-32468492

ABSTRACT

Non-enzymatically isolated primary dermal progenitor fibroblasts derived from fetal organ donations are ideal cell types for allogenic musculoskeletal regenerative therapeutic applications. These cell types are differentiated, highly proliferative in standard in vitro culture conditions and extremely stable throughout their defined lifespans. Technical simplicity, robustness of bioprocessing and relatively small therapeutic dose requirements enable pragmatic and efficient production of clinical progenitor fibroblast lots under cGMP standards. Herein we describe optimized and standardized monolayer culture expansion protocols using dermal progenitor fibroblasts isolated under a Fetal Transplantation Program for the establishment of GMP tiered Master, Working and End of Production cryopreserved Cell Banks. Safety, stability and quality parameters are assessed through stringent testing of progeny biological materials, in view of clinical application to human patients suffering from diverse cutaneous chronic and acute affections. These methods and approaches, coupled to adequate cell source optimization, enable the obtention of a virtually limitless source of highly consistent and safe biological therapeutic material to be used for innovative regenerative medicine applications.


Subject(s)
Biological Specimen Banks/standards , Fibroblasts/cytology , Practice Guidelines as Topic , Primary Cell Culture/standards , Regenerative Medicine/standards , Stem Cell Transplantation/standards , Cells, Cultured , Dermis/cytology , Humans , Primary Cell Culture/methods , Regenerative Medicine/methods , Stem Cell Transplantation/methods , Tissue Preservation/methods , Tissue Preservation/standards , Transplantation, Homologous/methods , Transplantation, Homologous/standards
6.
Methods Mol Biol ; 2286: 107-120, 2021.
Article in English | MEDLINE | ID: mdl-32488668

ABSTRACT

In the context of hematopoietic cell transplantation, hematopoietic stem/progenitor cells (HSPC) from the umbilical cord blood (UCB) present several advantages compared to adult sources including higher proliferative capacity, abundant availability and ease of collection, non-risk and painless harvesting procedure, and lower risk of graft-versus-host disease. However, the therapeutic utility of UCB HSPC has been limited to pediatric patients due to the low cell frequency per unit of UCB. The development of efficient and cost-effective strategies to generate large numbers of functional UCB HSPC ex vivo would boost all current and future medical uses of these cells. Herein, we describe a scalable serum-free co-culture system for the expansion of UCB-derived CD34+-enriched cells using microcarrier-immobilized human bone marrow-derived mesenchymal stromal cells as feeder cells.


Subject(s)
Biomedical Technology/standards , Hematopoietic Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Primary Cell Culture/methods , Regenerative Medicine/standards , Biomedical Technology/methods , Cells, Cultured , Coculture Techniques/methods , Coculture Techniques/standards , Humans , Practice Guidelines as Topic , Primary Cell Culture/standards , Regenerative Medicine/methods
7.
Methods Mol Biol ; 2286: 213-225, 2021.
Article in English | MEDLINE | ID: mdl-32504292

ABSTRACT

Mesenchymal stem cells are one of the most attractive sources for stem cell research and therapy. Their safety and efficacy have been demonstrated in many clinical trials. Because of their low immunogenicity and immunomodulatory properties, allogenic MSCs have been transplanted in different clinical studies. MSCs could be in different adult- and fetal-derived tissues including pregnancy products. Placenta-derived mesenchymal stem cells (PLMSCs) that can be harvested without using any invasive procedures from a discarding tissue are one of the important types of mesenchymal stem cells for therapeutic applications. Stem cell manufacturing for therapeutic applications should be in compliance with the basic principles of good manufacturing practice (GMP). Herein, the current chapter is to describe GMP-compliant production of human PLMSCs, which are suitable for clinical applications.


Subject(s)
Cryopreservation/methods , Mesenchymal Stem Cell Transplantation/standards , Mesenchymal Stem Cells/cytology , Placenta/cytology , Practice Guidelines as Topic , Primary Cell Culture/methods , Tissue and Organ Harvesting/methods , Cells, Cultured , Cryopreservation/standards , Female , Humans , Mesenchymal Stem Cell Transplantation/methods , Pregnancy , Primary Cell Culture/standards , Tissue and Organ Harvesting/standards
8.
Methods Mol Biol ; 2286: 199-212, 2021.
Article in English | MEDLINE | ID: mdl-32504294

ABSTRACT

Multiple sclerosis (MS) is the most common cause of neurological diseases. Although, there are some effective medications with regulatory approval for treating MS, they are only partially effective and cannot promote repairing of tissue damage directly which occurs in the central nervous system. Therefore, there is an essential need to develop novel therapeutic approaches for neuroprotection or repairing damaged tissue in MS. Accordingly, cell-based therapies as a novel therapeutic strategy have opened a new horizon in treatment of MS. Each setting in cell therapy has potential benefits. Human endometrial stem cells as an invaluable source for cell therapy have introduced treatment for MS. In this respect, good manufacturing practice (GMP) has a pivotal role in clinical production of stem cells. This chapter tries to describe the protocol of GMP-grade endometrial stem cells for treatment of MS.


Subject(s)
Endometrium/cytology , Mesenchymal Stem Cells/cytology , Multiple Sclerosis/therapy , Practice Guidelines as Topic , Primary Cell Culture/methods , Stem Cell Transplantation/standards , Tissue and Organ Harvesting/methods , Cells, Cultured , Cryopreservation/methods , Cryopreservation/standards , Female , Humans , Primary Cell Culture/standards , Regenerative Medicine/methods , Regenerative Medicine/standards , Stem Cell Transplantation/methods , Tissue and Organ Harvesting/standards
9.
Methods Mol Biol ; 2286: 227-235, 2021.
Article in English | MEDLINE | ID: mdl-32504295

ABSTRACT

Schwann cells as glial cells in the peripheral nervous system can participate in neurons protection and forming myelin. Additionally, they are important for nerve pulse conduction supporting along axons. On the other hand, it was demonstrated that they are promising cells for the treatment of demyelinating disorders and also central nervous system damages. Herein, for therapeutic application, Schwann cells should be manufactured based on good manufacturing practice standards to achieve safe and effective clinical products. In this respect, the current chapter tries to introduce a standard protocol for manufacturing of human GMP-compliant Schwann cells for clinical application.


Subject(s)
Cell Transplantation/standards , Practice Guidelines as Topic , Primary Cell Culture/methods , Schwann Cells/cytology , Tissue and Organ Harvesting/methods , Cell Transplantation/methods , Cells, Cultured , Humans , Primary Cell Culture/standards , Tissue and Organ Harvesting/standards
10.
Methods Mol Biol ; 2286: 67-71, 2021.
Article in English | MEDLINE | ID: mdl-33349901

ABSTRACT

Over the past few years, a large number of clinical studies for advanced therapy medicinal products have been registered and/or conducted for treating various diseases around the world and many have generated very exciting outcomes. Media fill, the validation of the aseptic manufacturing process, is the simulation of medicinal product manufacturing using nutrient media. The purpose of this study is to explain the media fill procedure stepwise in the context of cellular therapy medicinal products. The aseptic preparation of patient individual cellular product is simulated by using tryptic soy broth as the growth medium, and sterile vials as primary packaging materials.


Subject(s)
Biomedical Technology/standards , Culture Media/standards , Primary Cell Culture/methods , Sterilization/standards , Tissue Culture Techniques/methods , Biomedical Technology/instrumentation , Cells, Cultured , Human Embryonic Stem Cells/cytology , Humans , Practice Guidelines as Topic , Primary Cell Culture/standards , Sterilization/methods , Tissue Culture Techniques/standards
11.
Methods Mol Biol ; 2286: 73-84, 2021.
Article in English | MEDLINE | ID: mdl-33349902

ABSTRACT

Mesenchymal stem cells have gained popularity in cell-based therapies due to their regenerative capabilities, immunomodulation properties, and paracrine activity through trophic factors. It is of utmost importance to establish clinical-grade procedures for the preparation of the mesenchymal stem cells for clinical applications. Here, we describe detailed procedures for isolation, culture, cryopreservation, and preparation of mesenchymal stem cells derived from umbilical cord as a final product under good manufacturing practices-compliant conditions.


Subject(s)
Biomedical Technology/standards , Cryopreservation/standards , Mesenchymal Stem Cells/cytology , Primary Cell Culture/standards , Tissue and Organ Harvesting/standards , Umbilical Cord/cytology , Biomedical Technology/methods , Cells, Cultured , Humans , Practice Guidelines as Topic , Tissue and Organ Harvesting/methods
12.
Methods Mol Biol ; 2286: 85-94, 2021.
Article in English | MEDLINE | ID: mdl-33349903

ABSTRACT

Cell-based therapies have become a popular approach in the field of regenerative medicine. Human fibroblast cells, one of the cell types widely used in clinical applications, have been used for skin regeneration and wound healing procedures. Furthermore, they are utilized for aesthetic purposes since fibroblasts lose their abilities such as collagen synthesis with age. Here, we describe detailed procedures for isolation, culture, cryopreservation, and preparation of fibroblasts derived from adult human skin as a final product under good manufacturing practice-compliant conditions.


Subject(s)
Biomedical Technology/standards , Cryopreservation/methods , Fibroblasts/cytology , Primary Cell Culture/methods , Skin/cytology , Biomedical Technology/methods , Cells, Cultured , Cryopreservation/standards , Humans , Practice Guidelines as Topic , Primary Cell Culture/standards , Tissue and Organ Harvesting/methods , Tissue and Organ Harvesting/standards
13.
Methods Mol Biol ; 2286: 121-129, 2021.
Article in English | MEDLINE | ID: mdl-33381853

ABSTRACT

Mesenchymal stem cells (MSCs) have been used in therapies owing to their regenerative potential, paracrine regulatory effects, and immunomodulatory activity. To foster commercialization and implementation of stem cells treatments, researchers have recently derived MSCs from human induced pluripotent stem cells (iMSCs). For therapeutic applications, human iMSCs must be produced in xeno-free culture conditions and following procedures that are compatible with the principles of Good Manufacturing Practice.


Subject(s)
Biomedical Technology/standards , Induced Pluripotent Stem Cells/cytology , Primary Cell Culture/methods , Biomedical Technology/methods , Humans , Practice Guidelines as Topic , Primary Cell Culture/standards
14.
Methods Mol Biol ; 2286: 131-166, 2021.
Article in English | MEDLINE | ID: mdl-33381854

ABSTRACT

Cardiac explant-derived cells (cEDC), also referred as cardiac progenitors cells (CPC) (Barile et al., Cardiovasc Res 103(4):530-541, 2014; Barile et al., Cardiovasc Res 114(7):992-1005, 2018), represent promising candidates for the development of cell-based therapies, a novel and interesting treatment for cardioprotective strategy in heart failure (Kreke et al., Expert Rev Cardiovasc Ther 10(9):1185-1194, 2012). CPC have been tested in a preclinical setting for direct cell transplantation and tissue engineering or as a source for production of extracellular vesicles (EV) (Oh et al., J Cardiol 68(5):361-367, 2016; Barile et al., Eur Heart J 38(18):1372-1379, 2017; Rosen et al., J Am Coll Cardiol 64(9):922-937, 2014). CPC cultured as cardiospheres derived cells went through favorable Phase 1 and 2 studies demonstrating safety and possible efficacy (Makkar et al., Lancet 379(9819):895-904, 2012; Ishigami et al., Circ Res 120(7):1162-1173, 2017; Ishigami et al., Circ Res 116 (4):653-664, 2015; Tarui et al., J Thorac Cardiovasc Surg 150(5):1198-1207, 1208 e1191-1192, 2015). In this context and in view of clinical applications, cells have to be prepared and released according to Good Manufacturing Practices (GMP) (EudraLex-volume 4-good manufacturing practice (GMP) guidelines-Part I-basic requirements for medicinal products. http://ec.europa.eu/health/documents/eudralex/vol-4 ; EudraLex-volume 4-good manufacturing practice (GMP) guidelines-Part IV-guidelines on good manufacturing practices specific to advanced therapy medicinal products. http://ec.europa.eu/health/documents/eudralex/vol-4 ). This chapter describes GMP-grade methods for production and testing of a CPC Master Cell Bank (MCB), consisting of frozen aliquots of cells that may be used either as a therapeutic product or as source for the manufacturing of Exo for clinical trials.The MCB production method has been designed to isolate and expand CPC from human cardiac tissue in xeno-free conditions (Andriolo et al., Front Physiol 9:1169, 2018). The quality control (QC) methods have been implemented to assess the safety (sterility, endotoxin, mycoplasma, cell senescence, tumorigenicity) and identity/potency/purity (cell count and viability, RT-PCR, immunophenotype) of the cells (Andriolo et al., Front Physiol 9:1169, 2018).


Subject(s)
Biomedical Technology/standards , Myoblasts/cytology , Myocytes, Cardiac/cytology , Primary Cell Culture/methods , Biological Specimen Banks/standards , Biomedical Technology/methods , Cells, Cultured , Humans , Practice Guidelines as Topic , Primary Cell Culture/standards , Tissue Preservation/standards
15.
Methods Mol Biol ; 2286: 167-178, 2021.
Article in English | MEDLINE | ID: mdl-33381855

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) have the potential to be used in a variety of biomedical applications, including drug discovery and Regenerative Medicine. The success of these approaches is, however, limited by the difficulty of generating the large quantities of cells required in a reproducible and controlled system. Bioreactors, widely used for industrial manufacture of biological products, constitute a viable strategy for large-scale production of stem cell derivatives. In this chapter, we describe the expansion of hiPSCs using the Vertical-Wheel™ bioreactor, a novel bioreactor configuration specifically designed for the culture of shear-sensitive cells. We provide protocols for the expansion of hiPSCs in suspension, both as floating aggregates and using microcarriers for cell adhesion. These methods may be important for the establishment of a scalable culture of hiPSCs, allowing the manufacturing of industrial- or clinical-scale cell numbers.


Subject(s)
Biomedical Technology/methods , Bioreactors/standards , Induced Pluripotent Stem Cells/cytology , Primary Cell Culture/methods , Biomedical Technology/instrumentation , Biomedical Technology/standards , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/physiology , Practice Guidelines as Topic , Primary Cell Culture/instrumentation , Primary Cell Culture/standards
16.
Drug Resist Updat ; 53: 100730, 2020 12.
Article in English | MEDLINE | ID: mdl-33096284

ABSTRACT

New treatment options of acute myeloid leukemia (AML) are rapidly emerging. Pre-clinical models such as ex vivo cultures are extensively used towards the development of novel drugs and to study synergistic drug combinations, as well as to discover biomarkers for both drug response and anti-cancer drug resistance. Although these approaches empower efficient investigation of multiple drugs in a multitude of primary AML samples, their translational value and reproducibility are hampered by the lack of standardized methodologies and by culture system-specific behavior of AML cells and chemotherapeutic drugs. Moreover, distinct research questions require specific methods which rely on specific technical knowledge and skills. To address these aspects, we herein review commonly used culture techniques in light of diverse research questions. In addition, culture-dependent effects on drug resistance towards commonly used drugs in the treatment of AML are summarized including several pitfalls that may arise because of culture technique artifacts. The primary aim of the current review is to provide practical guidelines for ex vivo primary AML culture experimental design.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Primary Cell Culture/methods , Research Design/standards , Antineoplastic Agents/therapeutic use , Bone Marrow/pathology , Cryopreservation , Culture Media/chemistry , Culture Media/standards , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor/instrumentation , Drug Screening Assays, Antitumor/methods , Drug Screening Assays, Antitumor/standards , Guidelines as Topic , Humans , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/pathology , Primary Cell Culture/instrumentation , Primary Cell Culture/standards , Reproducibility of Results , Tumor Cells, Cultured
17.
Am J Physiol Heart Circ Physiol ; 319(5): H1112-H1122, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32986966

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable cardiotoxicity testing and personalized medicine. However, their maturity is of concern, including relatively depolarized resting membrane potential and more spontaneous activity compared with adult cardiomyocytes, implicating low or lacking inward rectifier potassium current (Ik1). Here, protein quantification confirms Kir2.1 expression in hiPSC-CM syncytia, albeit several times lower than in adult heart tissue. We find that hiPSC-CM culture density influences Kir2.1 expression at the mRNA level (potassium inwardly rectifying channel subfamily J member 2) and at the protein level and its associated electrophysiology phenotype. Namely, all-optical cardiac electrophysiology and pharmacological treatments reveal reduction of spontaneous and irregular activity and increase in action potential upstroke in denser cultures. Blocking Ik1-like currents with BaCl2 increased spontaneous frequency and blunted action potential upstrokes during pacing in a dose-dependent manner only in the highest-density cultures, in line with Ik1's role in regulating the resting membrane potential. Our results emphasize the importance of syncytial growth of hiPSC-CMs for more physiologically relevant phenotype and the power of all-optical electrophysiology to study cardiomyocytes in their multicellular setting.NEW & NOTEWORTHY We identify cell culture density and cell-cell contact as an important factor in determining the expression of a key ion channel at the transcriptional and the protein levels, KCNJ2/Kir2.1, and its contribution to the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes. Our results indicate that studies on isolated cells, out of tissue context, may underestimate the cellular ion channel properties being characterized.


Subject(s)
Giant Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Action Potentials , Animals , Cells, Cultured , Cellular Reprogramming , Cellular Reprogramming Techniques/methods , Cellular Reprogramming Techniques/standards , Female , Giant Cells/cytology , Giant Cells/physiology , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Potassium Channels, Inwardly Rectifying/metabolism , Primary Cell Culture/methods , Primary Cell Culture/standards , Rats
18.
Epigenetics ; 15(11): 1167-1177, 2020 11.
Article in English | MEDLINE | ID: mdl-32396494

ABSTRACT

One caveat in cancer research is the dependence of certain experimental systems that might not really reflect the properties of the primary tumours. The recent irruption of 3D cultured cells termed organoids could render a better representation of the original tumour sample. However, every laboratory has its own protocol and tissue-provider to establish these cancer models, preventing further dissemination and validation of the obtained data. To address this problem, the Human Cancer Models Initiative (HCMI) has selected the American Type Culture Collection (ATCC) to make available organoid models to the scientific community. In this regard, no epigenetic information is available for these samples and, overall, the DNA methylation profiles of human cancer organoids are largely unknown. Herein, we provide the DNA methylation landscape of 25 human cancer organoids available at the ATCC using a microarray that interrogates more than 850,000 CpG sites. We observed that the studied organoids retain the epigenetic setting of their original primary cancer type; that exhibit a DNA methylation landscape characteristic of transformed tissues excluding an overgrowth of normal-matched cells; and that are closer to the DNA methylation profiles of the corresponding primary tumours than to established 2D cell lines. Most importantly, the obtained DNA methylation results are freely available to everyone for further data mining. Thus, our findings support from the epigenetic standpoint that the ATCC human cancer organoids recapitulate many of the features of the disorder in the patient and are excellent tools to be shared among investigators for further tumour biology research.


Subject(s)
Biological Specimen Banks/standards , Epigenome , Neoplasms/genetics , Organoids/metabolism , Primary Cell Culture/standards , CpG Islands , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/metabolism , Neoplasms/pathology , Organoids/pathology , Primary Cell Culture/methods , Tumor Cells, Cultured
19.
Transfusion ; 60(5): 974-985, 2020 05.
Article in English | MEDLINE | ID: mdl-32357261

ABSTRACT

BACKGROUND: The high incidence of septic transfusion reactions (STRs) led to testing being mandated by AABB from 2004. This was implemented by primary culture of single-donor apheresis platelets (APs) from 2004 and prestorage pooled platelets (PSPPs) from 2007. STUDY DESIGN/METHODS: Platelet (PLT) aliquots were cultured at issue and transfusion reactions evaluated at our hospital. Bacterial contamination and STR rates (shown as rates per million transfusions in Results) were evaluated before and after introduction of primary culture by blood centers that used a microbial detection system (BacT/ALERT, bioMerieux) or enhanced bacterial detection system (eBDS, Haemonetics). RESULTS: A total of 28,457 PLTs were cultured during pre-primary culture periods (44.7% APs; 55.3% at-issue pooled PLTs [AIPPs]) and 97,595 during post-primary culture periods (79.3% APs; 20.7% PSPPs). Forty-three contaminated units were identified in preculture and 34 in postculture periods (rates, 1511 vs. 348; p < 0.0001). Contamination rates of APs were significantly lower than AIPPs in the preculture (393 vs. 2415; p < 0.0001) but not postculture period compared to PSPPs (387 vs. 198; p = 0.9). STR rates (79 vs. 90; p = 0.98) were unchanged with APs but decreased considerably with pooled PLTs (826 vs. 50; p = 0.0006). Contamination (299 vs. 324; p = 0.84) and STR rates (25 vs. 116; p = 0.22) were similar for PLTs tested by BacT/ALERT and eBDS primary culture methods. A change in donor skin preparation method in 2012 was associated with decreased contamination and STR rates. CONCLUSION: Primary culture significantly reduced bacterial contamination and STR associated with pooled but not AP PLTs. Measures such as secondary testing near time of use or pathogen reduction are needed to further reduce STRs.


Subject(s)
Bacterial Infections/epidemiology , Drug Contamination/statistics & numerical data , Platelet Transfusion , Primary Cell Culture , Sepsis/epidemiology , Transfusion Reaction/epidemiology , Academic Medical Centers , Adult , Bacterial Infections/blood , Bacterial Infections/transmission , Blood Component Removal/adverse effects , Blood Component Removal/history , Blood Component Removal/standards , Blood Component Removal/statistics & numerical data , Blood Platelets/cytology , Blood Platelets/microbiology , Blood Safety/adverse effects , Blood Safety/history , Blood Safety/statistics & numerical data , Blood Transfusion/history , Blood Transfusion/statistics & numerical data , Cells, Cultured , Child , History, 20th Century , History, 21st Century , Humans , Incidence , Platelet Transfusion/adverse effects , Platelet Transfusion/history , Platelet Transfusion/statistics & numerical data , Primary Cell Culture/history , Primary Cell Culture/standards , Primary Cell Culture/statistics & numerical data , Retrospective Studies , Sepsis/blood , Sepsis/etiology , Transfusion Reaction/microbiology , United States/epidemiology
20.
Transfusion ; 60(5): 997-1002, 2020 05.
Article in English | MEDLINE | ID: mdl-32275069

ABSTRACT

BACKGROUND: Effective and financially viable mitigation approaches are needed to reduce bacterial contamination of platelets in the US. Expected costs of large-volume delayed sampling (LVDS), which would be performed by a blood center prior to shipment to a hospital, were compared to those of pathogen reduction (PR), point-of-release testing (PORt), and secondary bacterial culture (SBC). METHODS: Using a Markov-based decision-tree model, the financial and clinical impact of implementing all variants of LVDS, PR, PORt, and SBC described in FDA guidance were evaluated from a hospital perspective. Hospitals were assumed to acquire leukoreduced apheresis platelets, with LVDS adding $30 per unit. Monte Carlo simulations were run to estimate the direct medical costs for platelet acquisition, testing, transfusion, and possible complications associated with each approach. Input parameters, including test sensitivity and specificity, were drawn from existing literature and costs (2018US$) were based on a hospital perspective. A one-way sensitivity analysis varied the assumed additional cost of LVDS. RESULTS: Under an approach of LVDS (7-day), the total cost per transfused unit is $735.78, which falls between estimates for SBC (7-day) and PORt. Assuming 20,000 transfusions each year, LVDS would cost $14.72 million annually. Per-unit LVDS costs would need to be less than $22.32 to be cheaper per transfusion than all other strategies, less than $32.02 to be cheaper than SBC (7-day), and less than $196.19 to be cheaper than PR (5-day). CONCLUSIONS: LVDS is an effective and cost-competitive approach, assuming additional costs to blood centers and associated charges to hospitals are modest.


Subject(s)
Bacterial Infections/prevention & control , Drug Contamination/prevention & control , Infection Control , Platelet Transfusion/economics , Platelet Transfusion/statistics & numerical data , Plateletpheresis , Primary Cell Culture/economics , Bacterial Infections/economics , Bacterial Infections/epidemiology , Bacterial Infections/transmission , Blood Banks/economics , Blood Banks/standards , Blood Banks/statistics & numerical data , Blood Platelets/microbiology , Blood Safety/economics , Blood Safety/methods , Blood Safety/standards , Blood Specimen Collection/adverse effects , Blood Specimen Collection/economics , Blood Specimen Collection/standards , Blood Specimen Collection/statistics & numerical data , Costs and Cost Analysis , Diagnostic Tests, Routine/economics , Diagnostic Tests, Routine/standards , Diagnostic Tests, Routine/statistics & numerical data , Drug Contamination/economics , Drug Contamination/statistics & numerical data , Feasibility Studies , Humans , Implementation Science , Infection Control/economics , Infection Control/methods , Microbiological Techniques , Plateletpheresis/adverse effects , Plateletpheresis/economics , Plateletpheresis/methods , Plateletpheresis/standards , Primary Cell Culture/methods , Primary Cell Culture/standards , Primary Cell Culture/statistics & numerical data , Risk Reduction Behavior , Sample Size , Time Factors , Time-to-Treatment/economics , Time-to-Treatment/statistics & numerical data , Transfusion Reaction/economics , Transfusion Reaction/epidemiology , Transfusion Reaction/microbiology , Transfusion Reaction/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...