Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2385-2392, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812139

ABSTRACT

This study aims to investigate the mechanism of total saponins of Paridis Rhizoma in inducing the ferroptosis of MCF-7 cells and provide a theoretical basis for the clinical treatment of breast cancer with total saponins of Paridis Rhizoma. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the effects of different concentrations of total saponins of Paridis Rhizoma on the proliferation of MCF-7 cells. A phase contrast inverted microscope was used to observe the morphological changes of MCF-7 cells. The colony formation assay was employed to test the colony formation of MCF-7 cells. The lactate dehydrogenase(LDH) release test was conducted to determine the cell membrane integrity of MCF-7 cells. The cell scratch assay was employed to examine the migration of MCF-7 cells. After that, the level of reactive oxygen species(ROS) in MCF-7 cells was observed by an inverted fluorescence microscope, and the content of Fe~(2+) in MCF-7 cells was detected by the corresponding kit. Transmission electron microscopy was employed to observe the mitochondrial ultrastructure of MCF-7 cells. Western blot was employed to determine the expression of ferroptosis-related proteins, such as p53, solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), acyl-CoA synthetase long-chain family member 4(ACSL4), and transferrin receptor protein 1(TFR1) in MCF-7 cells. The results showed that 1.5, 3, 4.5, 6, 7.5, and 9 µg·mL~(-1) total saponins of Paridis Rhizoma significantly inhibited the proliferation of MCF-7 cells, with the IC_(50) of 4.12 µg·mL~(-1). Total saponins of Paridis Rhizoma significantly damaged the morphology of MCF-7 cells, leading to the formation of vacuoles and the gradual shrinkage and detachment of cells. Meanwhile, total saponins of Paridis Rhizoma inhibited the colony formation of MCF-7 cells, destroyed the cell membrane(leading to the release of LDH), and shortened the migration distance of MCF-7 cells. Total saponins of Paridis Rhizoma treatment significantly increased the content of ROS, induced oxidative damage, and led to the accumulation of Fe~(2+) in MCF-7 cells. Furthermore, total saponins of Paridis Rhizoma changed the mitochondrial structure, increased the mitochondrial membrane density, led to the decrease or even disappear of ridges, promoted the expression of p53 protein, down-regulated the expression of SLC7A11 and GPX4, and up-regulated the expression of ACSL4 and TFR1. In summary, total saponins of Paridis Rhizoma can significantly inhibit the proliferation and migration of MCF-7 cells and destroy the cell structure by inducing ferroptosis.


Subject(s)
Breast Neoplasms , Ferroptosis , Reactive Oxygen Species , Rhizome , Saponins , Humans , Saponins/pharmacology , Saponins/chemistry , Ferroptosis/drug effects , MCF-7 Cells , Rhizome/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Reactive Oxygen Species/metabolism , Female , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Cell Proliferation/drug effects , Primulaceae/chemistry
2.
Fitoterapia ; 175: 105959, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615754

ABSTRACT

Lysimachia capillipes Hemsl., a traditional Chinese medicine (TCM), is commonly prescribed for its anti-inflammatory and anti-tumor properties. Pharmacological studies have demonstrated that Lysimachia capillipes Hemsl. saponins (LCS) are the primary bioactive component. However, its mechanism for treating colorectal cancer (CRC) is still unknown. Increasing evidence suggests a close relationship between CRC, intestinal flora, and host metabolism. Thus, this study aims to investigate the mechanism of LCS amelioration of CRC from the perspective of the gut microbiome and metabolome. As a result, seven gut microbiotas and fourteen plasma metabolites were significantly altered between the control and model groups. Among them, one gut microbiota genera (Monoglobus) and six metabolites (Ureidopropionic acid, Cytosine, L-Proline, 3-hydroxyanthranilic acid, Cyclic AMP and Suberic acid) showed the most pronounced callback trend after LCS administration. Subsequently, the correlation analysis revealed significant associations between 68 pairs of associated metabolites and gut microbes, with 13 pairs of strongly associated metabolites regulated by the LCS. Taken together, these findings indicate that the amelioration of CRC by LCS is connected to the regulation of intestinal flora and the recasting of metabolic abnormalities. These insights highlight the potential of LCS as a candidate drug for the treatment of CRC.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Primulaceae , Saponins , Saponins/pharmacology , Saponins/isolation & purification , Gastrointestinal Microbiome/drug effects , Animals , Mice , Primulaceae/chemistry , Colorectal Neoplasms/drug therapy , Male , Metabolome/drug effects , Mice, Inbred BALB C , Lysimachia
3.
Nat Prod Res ; 37(7): 1138-1145, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34694186

ABSTRACT

The chemical composition and anti-inflammatory activity of the endemic Lysimachia baviensis were investigated for the first time in this study. A phytochemical fractionation of the methanol extract of L. baviensis resulted in the isolation of a new stilbene (bavienside A, 1) and two new chalcone glycosides (baviensides B and C, 2 and 3). Their structures were elucidated via the interpretation of NMR and HRESIMS spectroscopic data. Compounds 1-3 strongly inhibited the production of nitric oxide in LPS-induced RAW264.7 cells with the IC50 values of 6.23, 2.86 and 3.51 µM, respectively. The C-acetylstilbene and carbomethyl chalcone structures in compound 1 and 3 were found for the first time from natural source and could be important markers for chemotaxonomy of Lysimachia baviensis.


Subject(s)
Chalcones , Stilbenes , Chalcones/chemistry , Chalcones/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Stilbenes/chemistry , Stilbenes/pharmacology , Lysimachia , Glycosides/chemistry , Primulaceae/chemistry , Nitric Oxide/chemistry
4.
J Ethnopharmacol ; 283: 114751, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34662662

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Marantodes pumilum (MP) herbs, locally known as Kacip Fatimah, are widely used traditionally to improve women's health. The herb is frequently used for gynecological issues such as menstrual problems, facilitating and quickening delivery, post-partum medication, treats flatulence and dysentery, and. MP extracts are thought to aid in the firming and toning of abdominal muscles, tighten breasts and vaginal muscles, and anti-dysmenorrhea. It also was used for the treatment of gonorrhea and hemorrhoids. As MP product has been produced commercially recently, more in-depth studies should be conducted. The presence of numerous active compounds in MP might provide a synergistic effect and potentially offer other health benefits than those already identified and known. AIM OF THE STUDY: This study aimed to use a computational target fishing approach to predict the possible therapeutic effect of Marantodes pumilum and evaluated their effectivity. MATERIALS AND METHODS: This study involves a computational approach to identify the potential targets by using target fishing. Several databases were used: PubChem database to obtain the chemical structure of interested compounds; Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) server and the SWISSADME web tool to identify and select the compounds having drug-likeness properties; PharmMapper was used to identify top ten target protein of the selected compounds and Online Mendelian Inheritance in Man (OMIM) was used to predict human genetic problems; the gene id of top-10 proteins was obtained from UniProtKB to be analyzed by using GeneMANIA server to check the genes' function and their co-expression; Gene Pathway established by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) of the selected targets were analyzed by using EnrichR server and confirmed by using DAVID (The Database for Annotation, Visualization and Integrated Discovery) version 6.8 and STRING database. All the interaction data was analyzed by Cytoscape version 3.7.2 software. The protein structure of most putative proteins was obtained from the RCSB protein data bank. Thedocking analysis was conducted using PyRx biological software v0.8 and illustrated by BIOVIA Discovery Studio Visualizer version 20.1.0. As a preliminary evaluation, a cell viability assay using Sulforhodamine B was conducted to evaluate the potential of the predicted therapeutic effect. RESULTS: It was found that four studied compounds are highly correlated with three proteins: EFGR, CDK2, and ESR1. These proteins are highly associated with cancer pathways, especially breast cancer and prostate cancer. Qualitatively, cell proliferation assay conducted shown that the extract has IC50 of 88.69 µg/ml against MCF-7 and 66.51 µg/ml against MDA-MB-231. CONCLUSIONS: Natural herbs are one of the most common forms of complementary and alternative medicine, and they play an important role in disease treatment. The results of this study show that in addition to being used traditionally to maintain women's health, the use of Marantodes pumilum indirectly has the potential to protect against the development of cancer cells, especially breast cancer. Therefore, further research is necessary to confirm the potential of this plant to be used in the development of anti-cancer drugs, especially for breast cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Drugs, Chinese Herbal/pharmacology , Plant Extracts/pharmacology , Primulaceae/chemistry , Antineoplastic Agents, Phytogenic/administration & dosage , Cell Line, Tumor , Databases, Factual , Databases, Genetic , Drugs, Chinese Herbal/administration & dosage , Female , Humans , Inhibitory Concentration 50 , Male , Medicine, Chinese Traditional , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/pathology , Network Pharmacology , Plant Extracts/administration & dosage
5.
Nat Prod Res ; 36(13): 3303-3308, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33930990

ABSTRACT

Chemical investigation of the Vietnamese plant Aegiceras floridum Roem. & Schult. (Primulaceae) led to the isolation of the new compound 3-methoxy-5-nonylphenol (1) along with five known ones 2,8,10-trihydroxy-6H-benzo[c]chromen-6-one (2), 2-hydroxy-5-methoxy-3-nonylbenzo-1,4-quinone (3), 5-(3-hydroxypropyl)-7-methoxy-3-(methylbenzofuran-2-yl)-3-methoxyphenol (4), 2,8-dihydroxy-7-methoxy-3,9-diundecyldibenzofuran-1,4-dione (5) and 10-hydroxy-4-methoxy-2,11-diundecylgomphilactone (6). The structures were elucidated by analysis of their HRESIMS and NMR data as well as the comparison of their NMR data with those reported in the literature. The cytotoxic activity of selected isolated compounds against some cancer cell lines such as human epithelial carcinoma (HeLa), human lung cancer (NCI-H460), liver hepatocellular carcinoma (HepG2), human breast cancer (MCF-7), and acute T cell leukemia (Jurkat) was evaluated. Among them, 3 showed moderate activities against MCF-7 with an IC50 of 17.77 µM and NCI-H460 with an IC50 of 25.02 µM. The result of DPPH radical scavenging activity assay indicated that compounds 2-4 and 6 revealed weak antioxidant activity.


Subject(s)
Primulaceae , Antioxidants/analysis , Antioxidants/pharmacology , HeLa Cells , Humans , Plant Bark/chemistry , Primulaceae/chemistry , Resorcinols/analysis , Resorcinols/pharmacology
6.
Phytother Res ; 35(12): 6990-7003, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34734439

ABSTRACT

Metabolic disturbances in different tissue cells and obesity are caused by excessive calorie intake, and medicinal plants are potential sources of phytochemicals for combating these health problems. This study investigated the role of methanolic extract of the folklore medicinal plant Lysimachia candida (LCM) and its phytochemical, astragalin, in managing obesity in vivo and in vitro. Administration of LCM (200 mg/kg/body weight) daily for 140 days significantly decreased both the body weight gain (15.66%) and blood triglyceride and free fatty acid levels in high-fat-diet-fed male Wistar rats but caused no substantial change in leptin and adiponectin levels. The protein expression of adipogenic transcription factors in visceral adipose tissue was significantly reduced. Further, the 3T3-L1 cell-based assay revealed that the butanol fraction of LCM and its isolated compound, astragalin, exhibited antiadipogenic activity through downregulating adipogenic transcription factors and regulatory proteins. Molecular docking studies were performed to depict the possible binding patterns of astragalin to adipogenesis proteins. Overall, we show the potential antiobesity effects of L. candida and its bioactive compound, astragalin, and suggest clinical studies with LCM and astragalin.


Subject(s)
Adipogenesis/drug effects , Anti-Obesity Agents , Kaempferols/pharmacology , Plant Extracts/pharmacology , Primulaceae , Signal Transduction/drug effects , 3T3-L1 Cells , Adipocytes , Animals , Anti-Obesity Agents/pharmacology , Cell Differentiation , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , PPAR gamma/metabolism , Primulaceae/chemistry , Rats , Rats, Wistar , Tacrolimus Binding Proteins/metabolism
7.
Biomed Res Int ; 2021: 9928199, 2021.
Article in English | MEDLINE | ID: mdl-34568497

ABSTRACT

The Labisia pumila (LP) is a traditional plant that is locally known as Kacip Fatimah, Selusuh Fatimah, or Pokok Ringgang by the Malaysian indigenous people. It is believed to facilitate their childbirth, treating their postchild birth and menstrual irregularities. The water extract of LP has shown to contain bioactive compounds such as flavonoids, ascorbic acid, ß-carotene, anthocyanin, and phenolic acid, which contribute extensive antioxidant, anti-inflammatory, antimicrobial, and antifungal. The LP ethanolic extract exhibits significant estrogenic effects on human endomentrial adenocarcinoma cell in estrogen-free basal medium and promoting an increase in secretion of alkaline phosphate. Water based has been used for many generations, and studies had reported that it could displace in binding the antibodies and increase the estradiol production making it similar to esterone and estradiol hormone. LP extract poses a potential and beneficial aspect in medical and cosmeceutical applications. This is mainly due to its phytoestrogen properties of the LP. However, there is a specific functionality in the application of LP extract, due to specific functional group in phytoconstituent of LP. Apart from that, the extraction solvent is important in preparing the LP extract as it poses some significant and mild side effects towards consuming the LP extracts. The current situation of women reproductive disease such as postmenopausal syndrome and polycystic ovary syndrome is increasing. Thus, it is important to find ways in alternative treatment for women reproductive disease that is less costly and low side effects. In conclusion, these studies proven that LP has the potential to be an alternative way in treating female reproductive related diseases such as in postmenopausal and polysystic ovarian syndrome women.


Subject(s)
Female Urogenital Diseases/drug therapy , Plant Extracts/therapeutic use , Primulaceae/chemistry , Animals , Bone Density/drug effects , Estrogens/metabolism , Female , Female Urogenital Diseases/physiopathology , Humans , Phytoestrogens/pharmacology , Phytoestrogens/therapeutic use , Plant Extracts/pharmacology
8.
Phytomedicine ; 91: 153677, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34333329

ABSTRACT

BACKGROUND: M. pumilum has been claimed to protect the bone against the adverse effect of estrogen deficiency. Additionally, it also exhibits anti-diabetic activity. In view of these, this study aims to identify the mechanisms underlying the bone protective effect of M. pumilum in the presence of both estrogen deficiency and diabetes mellitus (DM). METHODS: Ovariectomized, diabetic female rats were given M. pumilum leave aqueous extract (MPLA) (50 and 100 mg/kg/day), estrogen, glibenclamide and estrogen plus glibenclamide for 28 consecutive days. At the end of the treatment, fasting blood glucose (FBG), serum insulin, Ca2+, PO43- and bone alkaline phosphatase (BALP) levels were measured. Rats were sacrificed and femur bones were harvested for determination of expression level and distribution of RANK, RANKL, OPG and oxidative stress and inflammatory proteins by molecular biological techniques. RESULTS: 100 mg/kg/day MPLA treatment decreased the FBG and BALP levels but increased the serum insulin, Ca2+ and PO43- levels in estrogen deficient, diabetic rats. Expression and distribution of RANKL, NF-κB p65, IKKß, IL-6, IL-1ß and Keap-1 decreased however expression and distribution of RANK, OPG, BMP-2, Type-1 collagen, Runx2, TRAF6, Nrf2, NQO-1, HO-1, SOD and CAT increased in the bone of estrogen deficient, diabetic rats which received 100 mg/kg/day MPLA with greater effects than estrogen-only, glibenclamide-only and estrogen plus glibenclamide treatments. CONCLUSION: MPLA helps to overcome the adverse effect of estrogen deficiency and DM on the bone and thus this herb could potentially be used for the treatment and prevention of osteoporosis in postmenopausal women with diabetes.


Subject(s)
Bone and Bones/drug effects , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Plant Extracts/pharmacology , Primulaceae/chemistry , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Estrogens , Female , Inflammation , Osteoprotegerin/metabolism , Ovariectomy , Oxidative Stress , Plant Leaves/chemistry , RANK Ligand/metabolism , Rats , Rats, Sprague-Dawley , Receptor Activator of Nuclear Factor-kappa B/metabolism , Signal Transduction
9.
J Sep Sci ; 44(20): 3799-3809, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34409742

ABSTRACT

Herba Lysimachiae inhibits synovial damage in osteoarthritis via regulating two bio labels (integrin alpha 2b/beta 3). However, the relevant active ingredients are still unknown. Here, the active ingredients of herbal medicines were analyzed based on the liquid chromatography-tandem mass spectrometry technology and public bioinformatics platforms. The liquid chromatography-tandem mass spectrometry technology was used for compound analysis, and public databases (PubChem BioAssay and STRING) were applied to establish the links between herbal compounds and both bio labels, and identify which herbal compounds may regulate these bio labels. Subsequently, the osteoarthritis model was used to confirm the results. Totally, ninety compounds in Herba Lysimachiae were identified based on the liquid chromatography-tandem mass spectrometry technology. Bioinformatics analysis showed that five compounds (myricetin, fisetin, esculetin, 7-hydroxycoumarin-4-acetic acid, and caffeic acid) may synergistically regulate bio labels through 11 targets, which may be the active ingredients of Herba Lysimachiae for osteoarthritis treatment. In the verification experiments, five compounds markedly suppressed the overexpression of bio labels in the synovium of the osteoarthritis model. In conclusion, the present study effectively and rapidly analyzed the active ingredients of Herba Lysimachiae for osteoarthritis treatment.


Subject(s)
Computational Biology , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/therapeutic use , Osteoarthritis/drug therapy , Primulaceae/chemistry , Animals , Chromatography, Liquid , Iodoacetic Acid , Male , Osteoarthritis/chemically induced , Plants, Medicinal/chemistry , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
10.
J Microbiol Biotechnol ; 31(9): 1272-1280, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34261853

ABSTRACT

With changes in human dietary patterns, the proportion of high-fat and high-cholesterol foods in the daily diet has increased. As a result, the incidence rate of cholelithiasis is increasing rapidly. Many studies have reported on the crucial role that the intestinal microflora plays in the progression of gallstones. Although the whole herb of Lysimachia christinae, a traditional Chinese medicine, has long been extensively used as a remedy for cholelithiasis in China, its effects on the intestinal microflora remain unknown. Hence, in this study, we investigated the ability of the aqueous extract of L. christinae (LAE) to prevent cholesterol gallstones (CGSs) in model animals by affecting the intestinal microflora. The effects of LAE on body weight, serum lipid profile, visceral organ indexes, and histomorphology were studied in male C57BL/6J mice, which were induced by a lithogenic diet. After the 8-week study, CGSs formation was greatly reduced after LAE treatment. LAE also reduced body weight gain and hyperlipidemia and restored the histomorphological changes. Moreover, the intestinal microflora exhibited significant variation. In the model group fed the lithogenic diet, the abundances of the genera unclassified Porphyromonadaceae, Lactobacillus and Alloprevotella decreased, but in contrast, Akkermansia dramatically increased compared with the control check group, which was fed a normal diet; the administration of LAE reversed these changes. These results imply that L. christinae can be considered an efficient therapy for eliminating CGSs induced by a high-fat and high-cholesterol diet, which may be achieved by influencing the intestinal microflora.


Subject(s)
Cholesterol/metabolism , Gallstones/prevention & control , Gastrointestinal Microbiome/drug effects , Plant Extracts/pharmacology , Primulaceae/chemistry , Animals , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Diet/adverse effects , Disease Models, Animal , Gallstones/etiology , Gallstones/metabolism , Lipids/blood , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Plant Extracts/administration & dosage , Weight Gain/drug effects
11.
Vet Parasitol ; 296: 109461, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34214945

ABSTRACT

Lysimachia ramosa has been used as a traditional medicine among the tribal population of Meghalaya, northeast India, for the control of helminthosis. The anthelmintic efficacy of L. ramosa has been documented earlier. In the present study, the active compound from L. ramosa has been isolated and identified using mass and NMR spectra. It's in vitro anthelmintic activity was evaluated against Raillietina echinobothrida, one of the most pathogenic cestode of domestic fowl. The isolated active compound was characterized to be a kaempferol derivative which showed potent anthelmintic activity against R. echinobothrida by changing surface ultrastructure and also inhibiting the activity of two neurotransmitter enzymes: acetyl cholinesterase (AChE) and nitric oxide synthase (NOS), both of which are known to perform dynamic roles in the intracellular communication mediated through neuromuscular system. Motility reduction, deformation in the surface architecture, extensive ultrastructural alterations and reduced histochemical stain intensity in both AChE and NOS was observed in the treated parasites. Biochemical result also revealed alteration in the enzyme activities in the treated parasites. Further, depletion in the nitric oxide (NO) production in the bioactive component exposed tissues of R. echinobothrida was also detected. The results provided evidence that the bioactive compound could be further explored to control helminthosis at a large scale.


Subject(s)
Acetylcholinesterase , Cestoda , Kaempferols , Nitric Oxide Synthase , Primulaceae , Acetylcholinesterase/metabolism , Animals , Anthelmintics/pharmacology , Cestoda/drug effects , Cestoda/enzymology , Enzyme Activation/drug effects , Kaempferols/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Primulaceae/chemistry
12.
BMC Plant Biol ; 21(1): 258, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34134628

ABSTRACT

BACKGROUND: Dionysia tapetodes, a small cushion-forming mountainous evergreen in the Primulaceae, possesses a vast surface-covering of long silky fibres forming the characteristic "woolly" farina. This contrasts with some related Primula which instead form a fine powder. Farina is formed by specialized cellular factories, a type of glandular trichome, but the precise composition of the fibres and how it exits the cell is poorly understood. Here, using a combination of cell biology (electron and light microscopy) and analytical chemical techniques, we present the principal chemical components of the wool and its mechanism of exit from the glandular trichome. RESULTS: We show the woolly farina consists of micron-diameter fibres formed from a mixture of flavone and substituted flavone derivatives. This contrasts with the powdery farina, consisting almost entirely of flavone. The woolly farina in D. tapetodes is extruded through specific sites at the surface of the trichome's glandular head cell, characterised by a small complete gap in the plasma membrane, cell wall and cuticle and forming a tight seal between the fibre and hole. The data is consistent with formation and thread elongation occurring from within the cell. CONCLUSIONS: Our results suggest the composition of the D. tapetodes farina dictates its formation as wool rather than powder, consistent with a model of thread integrity relying on intermolecular H-bonding. Glandular trichomes produce multiple wool fibres by concentrating and maintaining their extrusion at specific sites at the cell cortex of the head cell. As the wool is extensive across the plant, there may be associated selection pressures attributed to living at high altitudes.


Subject(s)
Flavones/analysis , Primulaceae/ultrastructure , Trichomes/ultrastructure , Microscopy , Microscopy, Electron , Primulaceae/chemistry
13.
J Ethnopharmacol ; 280: 114236, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34044074

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Marantodes pumilum (Blume) Kuntze has been claimed to be beneficial in protecting the bone against loss in post-menopausal women. In view of increased incidence of diabetes mellitus (DM) in post-menopausal period, M. pumilum ability to overcome the detrimental effect of estrogen-deficiency and DM on the bones were identified. AIM OF THE STUDY: To identify the mechanisms underlying protective effect of MPLA on the bone in estrogen-deficient, diabetic condition. METHODS: Adult female, estrogen-deficient, diabetic rats (225 ± 10 g) were divided into untreated group and treated with M. pumilum leaf aqueous extract (MPLA) (50 mg/kg/day and 100 mg/kg/day) and estrogen for 28 days (n = 6 per group). Fasting blood glucose (FBG) levels were weekly monitored and at the end of treatment, rats were sacrificed and femur bones were harvested. Bone collagen distribution was observed by Masson's trichome staining. Levels of bone osteoblastogenesis, apoptosis and proliferative markers were evaluated by Realtime PCR, Western blotting, immunofluorescence and immunohistochemistry. RESULTS: MPLA treatment was able to ameliorate the increased in FBG levels in estrogen deficient, diabetic rats. In these rats, decreased bone collagen content, expression level of osteoblastogenesis markers (Wnt3a, ß-catenin, Frizzled, Dvl and LRP-5) and proliferative markers (PCNA and c-Myc) and increased expression of anti-osteoblastogenesis marker (Gsk-3ß) and apoptosis markers (Caspase-3, Caspase-9 and Bax) but not Bcl-2 were ameliorated. Effects of 100 mg/kg/day MPLA were greater than estrogen. CONCLUSION: MPLA was able to protect against bone loss, thus making it a promising agent for the treatment of osteoporosis in women with estrogen deficient, diabetic condition.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Osteoblasts/drug effects , Plant Extracts/pharmacology , Primulaceae/chemistry , Animals , Apoptosis/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , Diabetes Mellitus, Experimental/physiopathology , Down-Regulation/drug effects , Estrogens/metabolism , Female , Osteoblasts/cytology , Plant Leaves , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects , Wnt Signaling Pathway/drug effects
14.
J Chromatogr Sci ; 59(10): 941-948, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-33728454

ABSTRACT

Capilliposide B (CPS-B) and Capilliposide C (CPS-C), as the key components in Lysimachia capillipes Hemsl., increasingly aroused the interest and research concern of many researchers due to the good bioactivities. Nowadays, the reference standards of CPS-B and CPS-C yield were very limited. Due to the deficit of reference standards, the determination could be difficult to carry out, and the quality control and evaluation would be restrained afterwards. To solve this urgent problem, a quantitative analysis of multi-components by single-marker (QAMS) method was proposed and established based on high-performance liquid-chromatography tandem evaporative light-scattering detector. In this QAMS method, the content of the two bioactive components could be calculated by buddlejasaponin IV, which is applied as an external standard and readily obtained. And the methodological experiments were evaluated and indicated accuracy, stability and feasibility of this QAMS method. Therefore, in this study, this built method would properly meet the requirement of determination of CPS-B, CPS-C and quality control of the L. capillipes Hemsl. plant.


Subject(s)
Drugs, Chinese Herbal , Primulaceae , Saponins , Chromatography, High Pressure Liquid , Phytochemicals/chemistry , Primulaceae/chemistry , Saponins/chemistry
15.
Bioorg Med Chem ; 32: 116001, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33444847

ABSTRACT

Flavonoids are abundant in nature, structurally very diversified and largely investigated. However, the subgroup of 2'-hydroxyflavonoids is much less known and not frequently studied. The present review identifies the major naturally-occurring and synthetic 2'-hydroxyflavonoid derivatives and discusses their structural characteristics and biological properties, with a focus on anticancer activities. The pharmacological properties of 2'-hydroxyflavone (2'-HF) and 2'-hydroxyflavanone (2'-HFa) are detailed. Upon binding to the Ral-interacting protein Rlip implicated in the transport of glutathione conjugates, 2'-HFa inhibits tumor cell proliferation and restrict tumor growth, in particular in breast cancer models. Among the synthetic derivatives, the characteristics of the anticancer product 2D08 (2',3',4'-trihydroxy flavone) are detailed to shed light on the molecular mechanism of action of this compound, as a regulator of protein SUMOylation. Inhibition of protein SUMOylation by 2D08 blocks cancer cell migration and invasion, and the compound greatly enhances the anticancer effects of conventional cytotoxic drugs like etoposide. The structural role of the 2'-hydroxyl group on the phenyl C-ring of the flavonoid is discussed, notably the capacity to engage intramolecular H-bonding interactions with the O1 atom on the B-ring of the chromone unit (or the oxygen of a 3-OH group when it is presents). The 2'-hydroxyl group of flavonoid appears as a regulator of the conformational freedom between the bicyclic A-B unit and the appended phenyl C-ring, favoring the planarity of the molecule. It is an essential group accounting for the biological properties of 2'-HF, 2'-HFa and structurally related compounds. This review shed light on 2'-hydroxyflavonoids to encourage their use and chemical development.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Flavonoids/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Citrus/chemistry , Drug Screening Assays, Antitumor , Flavonoids/chemistry , Flavonoids/isolation & purification , Fruit/chemistry , Humans , Molecular Structure , Primulaceae/chemistry
16.
Molecules ; 26(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466302

ABSTRACT

Marantodes pumilum (MP) is a great source of herbal medicine used traditionally by both men and women for various purposes. MP may have potential wound-healing effects due to its diverse biological properties. An extensive study was conducted in a normal male rat model for determining the effects of MP var. pumila (MPvp) and var. alata (MPva) on the wound healing process. Here, 126 male Sprague-Dawley rats were divided randomly into seven groups as follows: sham-operated (SH), vehicle dressing (VD), flavine dressing (FD), MPvp leaves (PL), MPvp roots (PR), MPva leaves (AL), and MPva roots (AR). The parameters studied were the percentage of wound contraction, histomorphology study by hematoxylin and eosin (H&E), Masson-Goldner trichrome (MGT), and immunohistochemistry (IHC) staining. In addition, the levels of enzymatic antioxidants and malondialdehyde were also measured in the wound tissue homogenates. Wounds treated with extracts (PL, PR, AL, and AR) showed significantly faster healing (p < 0.05) compared to untreated and control groups (SH, VD, and FD). Histological analysis among MP-treated groups revealed better re-epithelialization, higher collagen deposition, enhanced fibronectin content and fibroblast cells, and higher fiber transformation from collagen-III to collagen-I, accompanied with a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation. MP has antioxidant effects that may enhance wound healing in the rat model.


Subject(s)
Antioxidants/pharmacology , Phytotherapy , Plant Extracts/pharmacology , Plant Leaves/chemistry , Primulaceae/chemistry , Skin/drug effects , Wound Healing/drug effects , Animals , Lipid Peroxidation/drug effects , Male , Malondialdehyde/analysis , Rats , Rats, Sprague-Dawley , Skin/injuries
17.
BMC Complement Med Ther ; 21(1): 44, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33494735

ABSTRACT

BACKGROUND: Nonalcoholic steatohepatitis (NASH), a liver disease caused by a nonalcoholic fatty liver, is increasing in incidence worldwide. Owing to the complexity of its pathogenic mechanisms, there are no therapeutic agents for this disease yet. The ideal drug for NASH needs to concurrently decrease hepatic lipid accumulation and exert anti-inflammatory, antifibrotic, and antioxidative effects in the liver. Because of their multipurpose therapeutic effects, we considered that medicinal herbs are suitable for treating patients with NASH. METHODS: We determined the efficacy of the alcoholic extract of Lysimachia vulgaris var. davurica (LV), an edible medicinal herb, for NASH treatment. For inducing NASH, C57BLKS/J lar-Leprdb/Leprdb (db/db) male mice were fed with a methionine-choline deficient (MCD) diet ad libitum. After 3 weeks, the LV extract and a positive control (GFT505) were administered to mice by oral gavage for 3 weeks with a continued MCD diet as needed. RESULTS: In mice with diet-induced NASH, the LV extract could relieve the disease symptoms; that is, the extract ameliorated hepatic lipid accumulation and also showed antioxidative and anti-inflammatory effects. The LV extract also activated nuclear factor E2-related factor 2 (Nrf2) expression, leading to the upregulation of antioxidants and detoxification signaling. Moreover, the extract presented remarkable efficacy in alleviating liver fibrosis compared with GFT505. This difference was caused by significant LV extract-mediated reduction in the mRNA expression of fibrotic genes like the alpha-smooth muscle actin and collagen type 3 alpha 1. Reduction of fibrotic genes may thus relate with the downregulation of transforming growth factor beta (TGFß)/Smad signaling by LV extract administration. CONCLUSIONS: Lipid accumulation and inflammatory responses in the liver were alleviated by feeding LV extract to NASH-induced mice. Moreover, the LV extract strongly prevented liver fibrosis by blocking TGFß/Smad signaling. Hence, LV showed sufficient potency for use as a therapeutic agent against NASH.


Subject(s)
Drugs, Chinese Herbal/administration & dosage , Liver Cirrhosis/drug therapy , Non-alcoholic Fatty Liver Disease/complications , Primulaceae/chemistry , Actins/genetics , Actins/metabolism , Animals , Choline/analysis , Choline/metabolism , Collagen Type III/genetics , Collagen Type III/metabolism , Diet , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Liver Cirrhosis/etiology , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Male , Methionine/analysis , Methionine/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism
18.
Can J Microbiol ; 66(10): 535-548, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32407666

ABSTRACT

Jacquinia macrocarpa, a plant native to northwestern Mexico, has an inhibitory effect against phytopathogenic fungi. Previous studies have shown that the butanolic extract of J. macrocarpa causes retardation and atrophy in mycelial growth of Fusarium verticillioides. However, the action mechanism of this extract is unknown. We used a proteomics approach to understand the inhibitory effect of J. macrocarpa butanolic extract, based on differential protein accumulation in F. verticillioides. Proteins were extracted from F. verticillioides cultured in Czapek broth with and without 202.12 µg/mL (IC50) of butanolic extract of J. macrocarpa. Thirty-eight protein spots showing statistically significant changes (ANOVA, p < 0.01) and at least a 2-fold change in abundance between experimental conditions were analyzed by mass spectrometry. Identified proteins were grouped into different biological processes according to Gene Ontology, among them were amino acid metabolism, protein folding and stabilization, protein degradation, protein transport, carbohydrate metabolism, oxidative stress response, and miscellaneous. This work is the first report of changes in the proteomic profile of F. verticillioides exposed to the J. macrocarpa extract. This information provides new insights into the inhibitory mechanism of the extract and represents a starting point for dissection of the fungal response against the J. macrocarpa extract components.


Subject(s)
Antifungal Agents/pharmacology , Fusarium/drug effects , Plant Extracts/pharmacology , Primulaceae/chemistry , Proteome/drug effects , Fungal Proteins/metabolism , Fusarium/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Proteome/metabolism , Proteomics
19.
Med Sci Monit ; 26: e919360, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32241963

ABSTRACT

BACKGROUND This study aimed to undertake a network pharmacology analysis to identify the active compounds of the herbal extract Christina Loosestrife, or Lysimachia Christinae (Jin Qian Cao), in the treatment of nephrolithiasis. MATERIAL AND METHODS The active components of Christina Loosestrife were identified from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and analysis platform and the online Taiwan TCM database. The potentially active compounds were screened based on their parenteral bioavailability identified from the TCMSP database. The PharmMapper integrated pharmacophore matching platform was used for target identification of active compounds in nephrolithiasis. The identified active compounds were validated by molecular docking using the systemsDock network pharmacology website. Biological functions and pathway outcomes of effective targets were analyzed using the Metascape gene annotation resource. The results were used to construct the pharmacological networks, which were visualized and integrated using Cytoscape software. RESULTS There were 16 active compounds of Christina Loosestrife and 11 nephrolithiasis-associated targets that were obtained. Functional enrichment analysis showed that Christina Loosestrife might exert its therapeutic effects by regulating pathways that included purine salvage, interleukin-4 (IL-4) and IL-13 signaling, and neutrophil degranulation. CONCLUSIONS Network pharmacology analysis of the herbal extract, Christina Loosestrife, identified multiple active compounds, targets, and pathways involved in the effects on nephrolithiasis.


Subject(s)
Drugs, Chinese Herbal/pharmacokinetics , Kidney Calculi/drug therapy , Lythrum/chemistry , Primulaceae/chemistry , Biological Availability , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional/methods , Molecular Docking Simulation , Signal Transduction/drug effects , Treatment Outcome
20.
Asian Pac J Cancer Prev ; 21(4): 943-951, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32334454

ABSTRACT

BACKGROUND: Uterine fibroids are a common type of solid tumor presenting in women of reproductive age. There are very few alternative treatment available from conventional treatment involving surgeries. Labisia pumila var. alata or locally known as 'Kacip Fatimah' was widely used as traditional medicine in Malaysia. This plant has been used to maintain a healthy female reproductive system. The present study aimed to evaluate anti fibroid potential of L. pumila extracts through in vitro apoptosis activity against uterine leiomyoma cells (SK-UT-1) and in uterine leiomyoma xenograft model. Evaluation of bioactive markers content were also carried out. METHODS: Apoptotic induction of the extracts was determined by morphological examination of AO/PI dual staining assay by flourescent microscopy and flow cytometry analysis on Annexin V-FITC/PI stained cells. In vivo study was done in immune-compromised mouse xenograft model. HPLC analysis was employed to quantify marker compounds. RESULTS: Morphological analysis showed L. pumila induced apoptosis in a dose dependent manner against SK-UT-1 cells. In vivo study indicated that L. pumila significantly suppressed the growth of uterine fibroid tumor. All tested extracts contain bioactive marker of gallic acid and cafeic acid. CONCLUSION: This work provide significant data of the potential of L. pumila in management of uterine fibroids.
.


Subject(s)
Antineoplastic Agents/pharmacology , Leiomyoma/drug therapy , Plant Extracts/pharmacology , Primulaceae/chemistry , Uterine Neoplasms/drug therapy , Animals , Apoptosis , Cell Proliferation , Female , Humans , In Vitro Techniques , Leiomyoma/pathology , Mice , Mice, Nude , Tumor Cells, Cultured , Uterine Neoplasms/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL