Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
Eur J Pharmacol ; 974: 176608, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38663542

ABSTRACT

Prodiginines have been studied extensively for their anticancer activity, however, the majority of the research has focused on prodigiosin. In this study, cycloheptylprodigiosin (S-1) is extracted from marine bacterium Spartinivicinus ruber MCCC 1K03745T, and its anticancer property was investigated. It exhibits remarkable cytotoxicity against a panel of human lung cancer cell lines, with the IC50 values ranging from 84.89 nM to 661.2 nM. After 6 h of treatment, S-1 gradually accumulates on mitochondria and lysosomes. While lower doses of S-1 induce cell cycle arrest, treatment with higher doses results in cell death in apoptotic independent manner in both NCI-H1299 and NCI-H460 cell lines. Interestingly, treatment with S-1 leads to the accumulation of LC3B-II via pathways that vary among different cell lines. In addition to its role as an autophagy inhibitor, S-1 also promotes autophagy initiation as demonstrated by the increment of EGFP fragment in the EGFP-LC3 degradation assay, however, inhibition of autophagy does not rescue cells from death induced by S-1. Mechanistically, S-1 impairs autophagic flux through disrupting acidic lysosomal pH and blocking the maturation of cathepsin D. Moreover, treatment with S-1 enhanced secretion of both pro- and mature forms of cathepsin D, coincident with disintegration of trans-Golgi network. Interestingly, S-1 does not induce ferroptosis, pyroptosis or necroptosis in NCI-H1299 cells. However, treatment of NCI-H460 cells with S-1 induces methuosis, which can be suppressed by Rac1 inhibitor EHT 1864. Our data demonstrate that S-1 is an effective anticancer agent with potential therapeutic application.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Cathepsin D , Golgi Apparatus , Lung Neoplasms , Prodigiosin , Humans , Cell Line, Tumor , Prodigiosin/pharmacology , Prodigiosin/analogs & derivatives , Cathepsin D/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Antineoplastic Agents/pharmacology , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Autophagy/drug effects , Apoptosis/drug effects , Lysosomes/drug effects , Lysosomes/metabolism , Cell Death/drug effects , Mitochondria/drug effects , Mitochondria/metabolism
2.
J Biotechnol ; 385: 58-64, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38458539

ABSTRACT

In this study, novel biomaterial that consisted entirely of bacterial products was developed with the approach of designing cost effective material for biomedical applications. With this aim, bacterial cellulose membranes (BCMs) which synthesized by Komagataeibacter intermedius were produced. Moreover, to impart antimicrobial properties to enhance the capacity of BCMs for biomedical usage, prodigiosin (PG) pigment of Serratia marcescens which presents wide range of antimicrobial activities was loaded to BCMs. Firstly, high yield of PG production was achieved, and then crude pigment was purified with silica gel column. The purified PG was characterized with thin layer chromatography and UV-visible spectrometry. The antimicrobial effect of the produced pigment on Gram-positive and negative bacteria and a yeast was investigated. The success of modification in PG-modified BCMs has been demonstrated by FTIR and SEM. Moreover, antimicrobial and antiadhesive ability of novel PG-BCMs were examined with disc diffusion and plate counting methods. As a result, it was established that PG-BCMs were able to inhibit the growth of all tested microorganisms. Furthermore, excellent antiadhesive effect was observed for the tested microorganisms with the inhibition rates of 82.05-96.25 %. Finally, cytotoxicity test with L929 cell line demonstrated that PG-BCM is biocompatible at a level that can be applied in in vivo studies.


Subject(s)
Anti-Infective Agents , Prodigiosin , Prodigiosin/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Serratia marcescens/chemistry , Serratia marcescens/metabolism , Biocompatible Materials/pharmacology , Cellulose/metabolism
3.
Mol Pharmacol ; 105(4): 286-300, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38278554

ABSTRACT

Prodigiosin (PG) is a naturally occurring polypyrrole red pigment produced by numerous microorganisms including some Serratia and Streptomyces strains. PG has exhibited promising anticancer activity; however, the molecular mechanisms of action of PG on malignant cells remain ambiguous. Transforming growth factor-ß (TGF-ß) is a multifunctional cytokine that governs a wide array of cellular processes in development and tissue homeostasis. Malfunctions of TGF-ß signaling are associated with numerous human cancers. Emerging evidence underscores the significance of internalized TGF-ß receptors and their intracellular trafficking in initiating signaling cascades. In this study, we identified PG as a potent inhibitor of the TGF-ß pathway. PG blocked TGF-ß signaling by targeting multiple sites of this pathway, including facilitating the sequestering of TGF-ß receptors in the cytoplasm by impeding the recycling of type II TGF-ß receptors to the cell surface. Additionally, PG prompts a reduction in the abundance of receptors on the cell surface through the disruption of the receptor glycosylation. In human Caucasian lung carcinoma cells and human hepatocellular cancer cell line cells, nanomolar concentrations of PG substantially diminish TGF-ß-triggered phosphorylation of Smad2 protein. This attenuation is further reflected in the suppression of downstream target gene expression, including those encoding fibronectin, plasminogen activator inhibitor-1, and N-cadherin. SIGNIFICANCE STATEMENT: Prodigiosin (PG) emerges from this study as a potent TGF-ß pathway inhibitor, disrupting receptor trafficking and glycosylation and reducing TGF-ß signaling and downstream gene expression. These findings not only shed light on PG's potential therapeutic role but also present a captivating avenue towards future anti-TGF-ß strategies.


Subject(s)
Protein Serine-Threonine Kinases , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Protein Serine-Threonine Kinases/metabolism , Prodigiosin/pharmacology , Prodigiosin/metabolism , Polymers/metabolism , Pyrroles , Receptors, Transforming Growth Factor beta/metabolism , Phosphorylation , Epithelial Cells/metabolism , Transforming Growth Factor beta1 , Smad2 Protein/metabolism
4.
Sci Rep ; 14(1): 181, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168547

ABSTRACT

Nowadays, breast cancer is considered one of the most upsetting malignancies among females. Encapsulation of celecoxib (CXB) and prodigiosin (PDG) into zein/sodium caseinate nanoparticles (NPs) produce homogenous and spherical nanoparticles with good encapsulation efficiencies (EE %) and bioavailability. In vitro cytotoxicity study conducted on human breast cancer MDA-MB-231 cell lines revealed that there was a significant decline in the IC50 for encapsulated drugs when compared to each drug alone or their free combination. In addition, results demonstrated that there is a synergism between CXB and PDG as their combination indices were 0.62251 and 0.15493, respectively. Moreover, results of scratch wound healing assay revealed enhanced antimigratory effect of free drugs and fabricated NPs in comparison to untreated cells. Furthermore, In vitro results manifested that formulated nanoparticles exhibited induction of apoptosis associated with reduced angiogenesis, proliferation, and inflammation. In conclusion, nanoencapsulation of multiple drugs into nanoparticles might be a promising approach to develop new therapies for the managing of triple negative breast cancer.


Subject(s)
Nanoparticles , Triple Negative Breast Neoplasms , Zein , Female , Humans , Celecoxib/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Prodigiosin/pharmacology , Caseins
5.
Molecules ; 28(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38138556

ABSTRACT

This study investigated the antivirulence capacity and mechanism of apple-skin-derived phloretin against Serratia marcescens NJ01, a vegetable spoilage bacterium. At 0.5 to 2 mg/mL doses, phloretin considerably inhibited the secretion of acyl homoserine lactones (AHLs), indicating that phloretin disrupted quorum sensing (QS) in S. marcescens NJ01. The dysfunction of QS resulted in reduced biofilms and the decreased production of protease, prodigiosin, extracellular polysaccharides (EPSs), and swimming and swarming motilities. Dysfunctional QS also weakened the activity of antioxidant enzymes and improved oxidative injury. The improved oxidative injury changed the composition of the membrane, improved membrane permeability, and eventually increased the susceptibility of biofilm cells to amikacin, netilmicin, and imipenem. The disrupted QS and enhanced oxidative stress also caused disorders of amino acid metabolism, energy metabolism, and nucleic acid metabolism, and ultimately attenuated the ability of S. marcescens NJ01 to induce spoilage. Our results indicated that phloretin can act as a potent drug to defend against spoilage by S. marcescens.


Subject(s)
Quorum Sensing , Serratia marcescens , Serratia marcescens/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Biofilms , Prodigiosin/pharmacology
6.
ACS Infect Dis ; 9(12): 2607-2621, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37971550

ABSTRACT

Quorum sensing (QS) inhibition is recognized as a novel antimicrobial target for infections caused by drug-resistant pathogens and is an attractive strategy for antipathogenic agent development. We designed and synthesized three parts of 3-(2-isocyanobenzyl)-1H-indole derivatives and tested their activity as novel quorum sensing inhibitors (QSIs). 3-(2-Isocyanobenzyl)-1H-indole derivatives demonstrated promising QS, biofilms, and prodigiosin inhibitory activities against Serratia marcescens at subminimum inhibitory concentrations (sub-MICs). In particular, 3-(2-isocyano-6-methylbenzyl)-1H-indole (IMBI, 32) was identified as the best candidate based on several screening assays, including biofilm and prodigiosin inhibition. Further studies demonstrated that exposure to IMBI at 1.56 µg/mL to S. marcescens NJ01 significantly inhibited the formation of biofilms by 42%. The IMBI treatment on S. marcescens NJ01 notably enhanced the susceptibility of the formed biofilms, destroying the architecture of the biofilms by up to 40%, as evidenced by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). For interference of virulence factors in S. marcescens NJ01, IMBI at 3.12 µg/mL inhibited the activity of protease and extracellular polysaccharides (EPS) by 17% and 51%, respectively, which were higher than that of the positive control vanillic acid (VAN). Furthermore, IMBI downregulated the expression of QS- and biofilm-related genes fimA, bsmA, pigP, flhC, rssB, fimC, and rsmA by 1.02- to 2.74-fold. To confirm these findings, molecular docking was performed, which indicated that the binding of IMBI to SmaR, RhlI, RhlR, LasR, and CviR could antagonize the expression of QS-linked traits. In addition, molecular dynamic simulations (MD) and energy calculations indicated that the binding of receptors with IMBI was extremely stable. The biofilms of S. marcescens NJ01 were markedly reduced by 50% when IMBI (0.39 µg/mL) was combined with kanamycin (0.15 µg/mL). In conclusion, this study highlights the potency of IMBI in inhibiting the virulence factors of S. marcescens. IMBI has all the potential to be developed as an effective and efficient QS inhibitor and antibiofilm agent in order to restore or improve antimicrobial drug sensitivity.


Subject(s)
Quorum Sensing , Serratia marcescens , Serratia marcescens/metabolism , Prodigiosin/pharmacology , Prodigiosin/metabolism , Molecular Docking Simulation , Anti-Bacterial Agents/chemistry , Virulence Factors/metabolism , Indoles/pharmacology
7.
Sci Rep ; 13(1): 17412, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833344

ABSTRACT

Prodigiosin, a red pigment produced by Hahella chejuensis, a marine-derived microorganism, has several biological functions, including antimicrobial activity and inflammatory relief. In this study, the antibacterial activity of prodigiosin against skin microorganisms was explored. Paper disc assay on skin bacterial cells revealed that Cutibacterium acnes related to acne vulgaris highly susceptible to prodigiosin. MIC (Minimal Inhibitory Concentration) and MBC (Minimal Bactericidal Concentration) were determined on Cutibacterium species. The RNA-seq analysis of prodigiosin-treated C. acnes cells was performed to understand the antibacterial mechanism of prodigiosin. Among changes in the expression of hundreds of genes, the expression of a stress-responsive sigma factor encoded by sigB increased. Conversely, the gene expression of cell wall biosynthesis and energy metabolism was inhibited by prodigiosin. Specifically, the expression of genes related to the metabolism of porphyrin, a pro-inflammatory metabolite, was significantly reduced. Therefore, prodigiosin could be used to control C. acnes. Our study provided new insights into the antimicrobial mechanism of prodigiosin against C. acnes strains.


Subject(s)
Acne Vulgaris , Prodigiosin , Humans , Prodigiosin/pharmacology , Transcriptome , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Acne Vulgaris/microbiology , Microbial Sensitivity Tests , Propionibacterium acnes/genetics
8.
Cell Commun Signal ; 21(1): 275, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798768

ABSTRACT

BACKGROUND: The bacterial secondary metabolite prodigiosin has been shown to exert anticancer, antimalarial, antibacterial and immunomodulatory properties. With regard to cancer, it has been reported to affect cancer cells but not non-malignant cells, rendering prodigiosin a promising lead compound for anticancer drug discovery. However, a direct protein target has not yet been experimentally identified. METHODS: We used mass spectrometry-based thermal proteome profiling in order to identify target proteins of prodigiosin. For target validation, we employed a genetic knockout approach and electron microscopy. RESULTS: We identified the Golgi stacking protein GRASP55 as target protein of prodigiosin. We show that prodigiosin treatment severely affects Golgi morphology and functionality, and that prodigiosin-dependent cytotoxicity is partially reduced in GRASP55 knockout cells. We also found that prodigiosin treatment results in decreased cathepsin activity and overall blocks autophagic flux, whereas co-localization of the autophagosomal marker LC3 and the lysosomal marker LAMP1 is clearly promoted. Finally, we observed that autophagosomes accumulate at GRASP55-positive structures, pointing towards an involvement of an altered Golgi function in the autophagy-inhibitory effect of this natural compound. CONCLUSION: Taken together, we propose that prodigiosin affects autophagy and Golgi apparatus integrity in an interlinked mode of action involving the regulation of organelle alkalization and the Golgi stacking protein GRASP55. Video Abstract.


Subject(s)
Golgi Apparatus , Prodigiosin , Humans , Prodigiosin/pharmacology , Prodigiosin/metabolism , Golgi Apparatus/metabolism , Lysosomes/metabolism , Autophagosomes/metabolism , Autophagy
9.
Microbiol Res ; 274: 127422, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37301080

ABSTRACT

Prodigiosin pigment is a secondary metabolite produced by many bacterial species and is known for its medicinal properties. A few of these prodigiosin-producing bacteria are also reported to be entomopathogenic. It is intriguing to unravel the role of prodigiosin in insecticidal activities and its mode of action. In this study, we have shown the production and characterization of prodigiosin from the Serratia rubidaea MJ 24 isolated from the soil of the Western Ghats, India. Further, we assessed the effect of this pigment on the lepidopteran agricultural pest, Helicoverpa armigera. Prodigiosin-fed H. armigera indicated defective development of insect growth upon treatment. Due to defective early development, about 50% mortality and 40% reduction in body weight were observed in insects fed on a 500 ppm prodigiosin-containing diet. The transcriptomic analysis of these insects indicated significant dysregulation of Juvenile hormone synthesis and response related genes. In addition, dopamine related processes and their resultant melanization and sclerotization processes were also found to be affected. The changes in the expression levels of the key transcripts were further validated using real-time quantitative PCR. The metabolome data confirmed the developmental dysregulation of precursors and products of differentially regulated genes due to prodigiosin. Therefore, the corroborated data suggests that prodigiosin majorly affects H. armigera development through dysregulation of the Juvenile hormone-dopamine system and can be considered as a bioactive scaffold to design insect-pest management compounds. This study provides the first report of in-depth analysis of insecticidal system dynamics in H. armigera insects upon prodigiosin feeding via gene expression and metabolic change via omics approach.


Subject(s)
Insecticides , Moths , Animals , Prodigiosin/pharmacology , Prodigiosin/metabolism , Dopamine/metabolism , Dopamine/pharmacology , Serratia/genetics , Moths/microbiology , Insecticides/metabolism , Larva/microbiology
10.
Biofouling ; 39(4): 444-458, 2023.
Article in English | MEDLINE | ID: mdl-37369552

ABSTRACT

Staphylococcus aureus is known for forming bacterial biofilms that confer increased antimicrobial resistance. Combining antibiotics with antibiofilm agents is an alternative approach, but the antibiofilm ability of prodigiosin (PG), a potential antibiotic synergist, against antimicrobial-resistant (AMR) S. aureus remains to be understood. The antibiofilm activity of PG against 29 clinical AMR S. aureus strains was evaluated using crystal violet staining, and its synergistic effects with vancomycin (VAN) was confirmed using the checkerboard test. The viability and metabolic activity of biofilms and planktonic cells were also assessed. The results revealed that PG exhibited promising inhibitory activity against biofilm formation and synergistic activity with VAN. It effectively reduced the metabolic activity of biofilms and suppressed the production of exopolysaccharides, which might be attributed to the downregulation of biofilm-related genes such as sarA, agrA, and icaA. These findings suggest that PG could be used as a preventive coating or adjuvant against biofilms in clinical settings.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Prodigiosin/pharmacology , Biofilms , Anti-Bacterial Agents/pharmacology , Vancomycin/pharmacology , Microbial Sensitivity Tests
11.
J Physiol Pharmacol ; 74(1)2023 02.
Article in English | MEDLINE | ID: mdl-37245232

ABSTRACT

Prodigiosin (PRO) is a natural pigment that possesses multiple activities, covering anti-tumor, anti-bacteria, and immunosuppression. This study is committed to an investigation into the underlying function and the certain mechanism of PRO in acute lung damage followed by rheumatoid arthritis (RA). Cecal ligation and puncture (CLP) method was implemented to trigger a rat lung injury model, and a rat RA model was constructed with the help of rheumatoid arthritis induced by collagen. Prodigiosin was administered to intervene in the rats' lung tissues post-treatment. The expressions of pro-inflammatory cytokines (interleukin-1beta, interleukin-6, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 were determined. Western blot was carried out to detect anti-surfactant protein A (SPA), anti-surfactant protein D (SPD), apoptosis-concerned proteins (Bax, cleaved-caspase-3, Bcl-2, and pro-caspase-3), the nuclear factor-kappaB (NF-κB)/nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3)/apoptosis-concerned speckle-like protein (ASC)/caspase-1 signaling pathway. The apoptosis of pulmonary epithelial tissues was checked via TUNEL assay, as corresponding kits were adopted to confirm the activity of lactate dehydrogenase (LDH) and the levels of oxidative stress markers malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px). Prodigiosin ameliorated the pathological damage of CLP rats. Prodigiosin alleviated the production of inflammatory and oxidative stress mediators. In the RA rats with acute lung injury, prodigiosin hampered apoptosis in the lung. Mechanistically, prodigiosin hinders the activation of the NF-κB/NLRP3 signaling axis. In conclusion: prodigiosin relieves acute lung injury in a rat model of rheumatoid arthritis by exerting anti-inflammatory and anti-oxidative effects through downregulating the NF-κB/NLRP3 signaling axis.


Subject(s)
Acute Lung Injury , Arthritis, Rheumatoid , Rats , Animals , NF-kappa B/metabolism , Leucine , Prodigiosin/pharmacology , Prodigiosin/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrin Domain , Signal Transduction , Acute Lung Injury/drug therapy , Nucleotides
12.
Bioorg Chem ; 138: 106618, 2023 09.
Article in English | MEDLINE | ID: mdl-37244231

ABSTRACT

Triple-Negative Breast Cancer (TNBC) is found to be one of the life-threatening cancer. Poly (ADP-Ribose) Polymerase-1 (PARP-1) is overexpressed by those tumour cells, which become resistant to chemotherapies. Inhibition of PARP-1 has a considerable effect on treating TNBC. Prodigiosin is a valuable pharmaceutical compound that exhibits anticancer properties. The present study aims to virtually evaluate prodigiosin as a potent PARP-1 inhibitor using Molecular docking and Molecular Dynamics (MD) simulation studies. The PASS (Prediction of Activity Spectra for Substances) prediction tool evaluated the biological properties of prodigiosin. Then the drug-likeness and pharmacokinetic properties of prodigiosin were determined using Swiss-ADME software. It was suggested that prodigiosin obeyed Lipinski's rule of five and thus could act as a drug with good pharmacokinetic properties. Moreover, molecular docking was done with AutoDock 4.2 to identify the critical amino acids of the protein-ligand complex. It was indicated that prodigiosin has a docking score of -8.08 kcal/mol, which showed its effective interaction with crucial amino acid, His201A of PARP-1 protein. Further, MD simulation was performed using Gromacs software to validate the stability of the prodigiosin-PARP-1 complex. Prodigiosin was found to have good structural stability and affinity at the active site of PARP-1 protein. Additionally, PCA and MM-PBSA were calculated for the prodigiosin-PARP-1 complex, which revealed that prodigiosin has an excellent binding affinity towards PARP-1 protein. Prodigiosin can possibly be used as oral drug due to its PARP-1 inhibition through high binding affinity, structural stability, and receptor flexibility towards crucial amino acid residue His201A of PARP-1 protein. In-addition, in-vitro cytotoxicity, and apoptosis analysis of prodigiosin-treated TNBC cell line-MDA-MB-231 revealed that prodigiosin exhibited significant anticancer activity in 101.1 µg/mL concentration, when compared to commercially available synthetic drug cisplatin. Thus, prodigiosin could act as a potential candidate for treatment of TNBC than the commercially available synthetic drugs.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly (ADP-Ribose) Polymerase-1 , Triple Negative Breast Neoplasms/metabolism , Prodigiosin/pharmacology , Prodigiosin/therapeutic use , Molecular Docking Simulation , Cell Line, Tumor , Antineoplastic Agents/chemistry
13.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768226

ABSTRACT

The quest for sustainable biomaterials with excellent biocompatibility and tailorable properties has put polyhydroxyalkanoates (PHAs) into the research spotlight. However, high production costs and the lack of bioactivity limit their market penetration. To address this, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was combined with a bacterial pigment with strong anticancer activity, prodigiosin (PG), to obtain functionally enhanced PHBV-based biomaterials. The samples were produced in the form of films 115.6-118.8 µm in thickness using the solvent casting method. The effects of PG incorporation on the physical properties (morphology, biopolymer crystallinity and thermal stability) and functionality of the obtained biomaterials were investigated. PG has acted as a nucleating agent, in turn affecting the degree of crystallinity, thermal stability and morphology of the films. All samples with PG had a more organized internal structure and higher melting and degradation temperatures. The calculated degree of crystallinity of the PHBV copolymer was 53%, while the PG1, PG3 and PG3 films had values of 64.0%, 63.9% and 69.2%, respectively. Cytotoxicity studies have shown the excellent anticancer activity of films against HCT116 (colon cancer) cells, thus advancing PHBV biomedical application potential.


Subject(s)
Polyesters , Polyhydroxyalkanoates , Polyesters/chemistry , Prodigiosin/pharmacology , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry
14.
Gene ; 857: 147178, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36627092

ABSTRACT

Janthinobacterium from cold niches has been studied broadly for bioactive violacein production. However, reports on the atypical red-pigmented Janthinobacterium strains are shallow. The bioactive red prodigiosin pigment has immense pharmacological significance, including antioxidant, antimicrobial and anticancer potential. Here, we report the first complete genome of a prodigiosin-producing Janthinobacterium sp. ERMR3:09 from Sikkim Himalaya in an attempt to elucidate its cold adaptation and prodigiosin biosynthesis. Nanopore sequencing and Flye assembly of the ERMR3:09 genome resulted in a single contig of 6,262,330 bp size and 62.26% GC content. Phylogenomic analysis and genome indices indicate that ERMR3:09 is a potentially novel species of the genus Janthinobacterium. The multicopy cold-responsive genes and gene upregulation under cold stress denoted its cold adaptation mechanisms. Genome analysis identified the unique genes, gene cluster and pathway for prodigiosin biosynthesis in ERMR3:09. Considering the notable antioxidant activity, it can be the next powerhouse of bioactive prodigiosin production.


Subject(s)
Antioxidants , Prodigiosin , Prodigiosin/pharmacology , Ice Cover , Genomics
15.
Environ Toxicol ; 38(2): 266-277, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36447373

ABSTRACT

Prodigiosin (PDG) is a bacterial metabolite with numerous biological and pharmaceutical properties. Exposure to aluminium is considered a root etiological factor in the pathological progress of Alzheimer's disease (AD). Here, in this investigation, we explored the neuroprotective potential of PDG against aluminium chloride (AlCl3 )-mediated AD-like neurological alterations in rats. For this purpose, rats were gavaged either AlCl3 (100 mg/kg), PDG (300 mg/kg), or both for 42 days. As a result of the analyzes performed on the hippocampal tissue, it was observed that AlCl3 induced biochemical, molecular, and histopathological changes like those related to AD. PDG pre-treatment significantly decreased acetylcholinesterase activity and restored the levels of brain-derived neurotrophic factor, monoamines (dopamine, norepinephrine, and serotonin), and transmembrane protein (Na+ /K+ -ATPase). Furthermore, PDG boosted the hippocampal antioxidant capacity, as shown by the increased superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione contents. These findings were accompanied by decreases in malondialdehyde and nitric oxide levels. The antioxidant effect may promote the upregulation of the expression of antioxidant genes (Nrf2 and HO-1). Moreover, PDG exerted notable anti-inflammatory effects via the lessening of interleukin-1 beta, tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor kappa B, and decreases in the gene expression of inducible nitric oxide synthase. In addition, noteworthy decreases in pro-apoptotic (Bax and caspase-3) levels and increases in anti-apoptotic (Bcl-2) biomarkers suggested an anti-apoptotic effect of PDG. In support, the hippocampal histological examination validated the aforementioned changes. To summarize, the promising neuromodulatory, antioxidative, anti-inflammatory, and anti-apoptotic activities of PDG establish it as a potent therapeutic option for AD.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Animals , Rats , Acetylcholinesterase/metabolism , Aluminum Chloride/toxicity , Aluminum Chloride/therapeutic use , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Glutathione/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Prodigiosin/metabolism , Prodigiosin/pharmacology , Prodigiosin/therapeutic use
16.
Probiotics Antimicrob Proteins ; 15(5): 1271-1286, 2023 10.
Article in English | MEDLINE | ID: mdl-36030493

ABSTRACT

Lactobacillus acidophilus ghosts (LAGs) with the unique safety of a probiotic, inherent tropism for colon cells, and multiple bioactivities offer promise as drug carriers for colon targeting. Our objective was to evaluate LAGs functionalized with prodigiosin (PG), apoptotic secondary bacterial metabolite, as a bioinspired formulation against colorectal cancer (CRC). LAGs were prepared by a chemical method and highly purified by density gradient centrifugation. LAGs were characterized by microscopic and staining techniques as relatively small-sized uniform vesicles (≈1.6 µm), nearly devoid of cytoplasmic and genetic materials and having a negatively charged intact envelope. PG was highly bound to LAGs envelope, generating a physiologically stable bioactive entity (PG-LAGs), as verified by multiple microscopic techniques and lack of PG release under physiological conditions. PG-LAGs were active against HCT116 CRC cells at both the cellular and molecular levels. Cell viability data highlighted the cytotoxicity of PG and LAGs and LAGs-induced enhancement of PG selectivity for HCT116 cells, anticipating dose reduction for PG and LAGs. Molecularly, expression of the apoptotic caspase 3 and P53 biomarkers in HCT116 intracellular proteins was significantly upregulated while that of the anti-apoptotic Bcl-2 (B-cell lymphoma 2) was downregulated by PG-LAGs relative to PG and 5-fluorouracil. PG-LAGs provide a novel bacteria-based combination for anticancer biomedicine.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Probiotics , Humans , Prodigiosin/pharmacology , Prodigiosin/therapeutic use , Antineoplastic Agents/pharmacology , Apoptosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology
17.
Molecules ; 27(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36364107

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary liver malignant tumor, and the targeted therapy for HCC is very limited. Our previous study demonstrated that prodigiosin(PG), a secondary metabolite from Serratia marcescens found in the intestinal flora of cockroaches, inhibits the proliferation of HCC and increases the expression of CHOP, a marker protein for endoplasmic reticulum stress (ERS)-mediated apoptosis, in a dose-dependent manner. However, the mechanisms underlying the activity of PG in vivo and in vitro are unclear. This study explored the molecular mechanisms of PG-induced ERS against liver cancer in vitro and in vivo. The apoptosis of hepatocellular carcinoma cells induced by PG through endoplasmic reticulum stress was observed by flow cytometry, colony formation assay, cell viability assay, immunoblot analysis, and TUNEL assay. The localization of PG in cells was observed using laser confocal fluorescence microscopy. Flow cytometry was used to detect the intracellular Ca2+ concentration after PG treatment. We found that PG could promote apoptosis and inhibit the proliferation of HCC. It was localized in the endoplasmic reticulum of HepG2 cells, where it induces the release of Ca2+. PG also upregulated the expression of key unfolded response proteins, including PERK, IRE1α, Bip, and CHOP, and related apoptotic proteins, including caspase3, caspase9, and Bax, but down-regulated the expression of anti-apoptotic protein Bcl-2 in liver cancer. Alleviating ERS reversed the above phenomenon. PG had no obvious negative effects on the functioning of the liver, kidney, and other main organs in nude mice, but the growth of liver cancer cells was inhibited by inducing ERS in vivo. The findings of this study showed that PG promotes apoptosis of HCC by inducing ERS.


Subject(s)
Carcinoma, Hepatocellular , Cockroaches , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/metabolism , Endoplasmic Reticulum Stress , Liver Neoplasms/pathology , Prodigiosin/pharmacology , Endoribonucleases/metabolism , Serratia marcescens/metabolism , Mice, Nude , Cockroaches/metabolism , Protein Serine-Threonine Kinases , Apoptosis , Cell Proliferation
18.
Sci Rep ; 12(1): 18527, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323805

ABSTRACT

Prodigiosin (PG), a member of a family of natural red pigments produced by a variety of bacteria, was first discovered in Serratia marcescens. PG has been reported to have an apoptosis-inducing effect in many cancers, such as lymphoma, colon cancer and nasopharyngeal carcinoma. For this study, we used three glioblastoma (GBM) cell lines (LN229, U251 and A172) to explore the effect of prodigiosin on GBM cells. A CCK8 assay was used to evaluate cell viability. We determinedthe cell cycle distribution by flow cytometry and measured proliferation by an EdU incorporation assay. The expression of different molecules was investigated by western blotting and RT-PCR. We further confirmed our results by plasmid transfection and lentiviral transduction. The LN229 xenograft model was used to study the effect of prodigiosin in vivo. We confirmed that prodigiosin played an anticancer role in several GBM cell lines through the KIAA1524/PP2A/Akt signalling pathway. Prodigiosin inhibited the protein expression of KIAA1524 by suppressing its transcription, which led to activation of PP2A. Afterward, PP2A inhibited the phosphorylation of Akt, thereby inducing increased expression of p53/p21. Furthermore, it was verified that prodigiosin inhibited the KIAA1524/PP2A/Akt axis in vivo in the LN229 xenograft model. These data improve the understanding of the anticancer effects of prodigiosin and further highlight the potential of prodigiosin for the development of anti-glioma drugs.


Subject(s)
Glioblastoma , Prodigiosin , Humans , Apoptosis , Cell Division , Cell Line, Tumor , Cell Proliferation , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Prodigiosin/pharmacology , Prodigiosin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Serratia marcescens/metabolism , Signal Transduction , Protein Phosphatase 2/metabolism
19.
Int J Biol Macromol ; 222(Pt B): 2966-2976, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36243154

ABSTRACT

Prodigiosin, a red bacterial pigment is a compound with promising therapeutic properties. Major hindrance in applying prodigiosin in pharmaceutics is the insolubility in water and lack of bioavailability. This study aims to optimize two different types of chitosan based delivery systems, microspheres and nanoparticles for prodigiosin derived from Serratia marcescens NITDPER1 through Taguchi method and determine toxicity perspectives. The results revealed 0.5 % chitosan, 1 % sodium-alginate and 5 % CaCl2 optimum for microsphere and 0.1 % chitosan, 1.5 % TPP and 1.5 % acetic acid for nanoparticle with the entrapment efficiency and maximum release of 89.27 ± 1.2 % and 87.42 ± 1.9 % for microspheres and 96.36 ± 1.7 % and 91.58 ± 2.1 % for nanoparticles. Particle size was 93.03 ± 0.3 µm and 75.1 ± 1.4 nm for micro and nanoformulations. Kinetic parameters of release fitted best with Korsmeyer-Peppas model. Swelling index of microsphere and nanoparticles in pH 6.8 was 799 ± 7.1 % and 35.3 ± 2.1 % respectively. FESEM, FT-IR and XRD revealed spherical morphology, preservation of prodigiosin functional groups and amorphous nature of the formulations. Anticancer IC50 values were (µg mL-1) 11.7 ± 1.2, 10.8 ± 1.4 and 9.4 ± 0.8 for free prodigiosin, microsphere and nanoparticles respectively. Toxicity studies on HEK-293 cell line, Daphnia magna and zebrafish model determined non-toxic nature of the bacterial prodigiosin and its formulations revealing suitability of animal system application.


Subject(s)
Chitosan , Prodigiosin , Animals , Humans , Prodigiosin/pharmacology , Chitosan/metabolism , Spectroscopy, Fourier Transform Infrared , Nanoparticle Drug Delivery System , HEK293 Cells , Zebrafish , Serratia marcescens/metabolism , Models, Animal
20.
Lasers Med Sci ; 37(9): 3631-3638, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36156750

ABSTRACT

Prodigiosin (PG) is a secondary metabolite of bacterial origin that is able to absorb the visible light and plays a role as a photosensitizer in photodynamic therapy (PDT). This in vitro study aimed to investigate the cytotoxicity of PG-mediated PDT against the reference strains of Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of PG were determined. Each strain was then allocated into four groups as follows: G1: control (no treatment), G2: PG-treated groups that received different PG concentrations (1000-1.95 µM), G3: laser-treated group (wavelength: 520 nm, radiation dose: 187 J/cm2), and G4: PG-mediated PDT groups that were initially treated with different concentrations of PG and were then exposed to laser irradiation in the same way as the previous group. Finally, the number of colony-forming units per milliliter (CFU/mL) was calculated and analyzed using the SPSS software. PG had both bacteriostatic and bactericidal activities on the tested bacteria, with the maximum antibacterial effect being observed against S. aureus. In all bacterial strains, the maximum number of CFUs was observed in the control group followed by the laser-irradiated and PG-treated groups, but the differences were not statistically significant (p > 0.05). However, the utilization of PG-mediated PDT resulted in a significant decrease in the mean number of CFUs in all the tested bacteria (p < 0.0001). PG-mediated PDT had the potential to kill some bacterial strains in the laboratory. Yet, further studies are warranted to confirm its efficacy and safety to be applied in clinical settings.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Staphylococcal Infections , Humans , Staphylococcus aureus , Pseudomonas aeruginosa , Photochemotherapy/methods , Escherichia coli , Prodigiosin/pharmacology , Prodigiosin/therapeutic use , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...