Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 606: 168-173, 2022 05 28.
Article in English | MEDLINE | ID: mdl-35364325

ABSTRACT

The New World (NW) mammarenavirus Junín (JUNV) is the etiological agent of Argentine hemorrhagic fever, a human endemic disease of Argentina. Promyelocytic leukemia protein (PML) has been reported as a restriction factor for several viruses although the mechanism/s behind PML-mediated antiviral effect may be diverse and are a matter of debate. Previous studies have reported a nuclear to cytoplasm translocation of PML during the murine Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) infection. This translocation was found to be mediated by the viral Z protein. Here, we show that PML restricts JUNV infection in human A549 cells. However, in contrast to LCVM, JUNV infection enhances PML expression and PML is not translocated to the cytoplasm neither it colocalizes with JUNV Z protein. Our study demonstrates that a NW mammarenavirus as JUNV interacts differently with the antiviral protein PML than LCMV.


Subject(s)
Hemorrhagic Fever, American , Junin virus , Promyelocytic Leukemia Protein , A549 Cells , Hemorrhagic Fever, American/metabolism , Humans , Promyelocytic Leukemia Protein/genetics , Viral Proteins , Virus Replication
2.
Clin Transl Oncol ; 23(10): 2163-2170, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33928496

ABSTRACT

PURPOSE: PIM kinase is called proto-oncogene, but there are less research on PIM family in colon cancer. This study was designed to explore the prognosis of PIM3 in colon cancer. METHODS: In this study, we downloaded RNA-seq and clinical information of colon cancer from the Gene Expression Omnibus (GEO) database. Kaplan-Meier method was used for analyzing the impact of PIM3 on the survival of patients with colon cancer. Single-factor and multi-factor cox regression analysis were used for verifying the prognostic value of PIM3. Spearman correlation analysis was used for screening PIM3 related genes. Functional enrichment analysis was used for analyzing the biological functions and pathways in which PIM3 related genes may be involved. STRING online tools were used for building a co-expression network. Cytoscape was used for co-expression network visualization. RESULTS: Compared with the low expression group, the patients in the PIM3 high expression group lived longer time. Single-factor and multi-factor cox regression analysis indicated that PIM3 was an independent prognostic factor for colon cancer. Sixty-two PIM3 related genes were screened, and GO and KEGG enrichment analyses suggested that PIM3 related genes might be involved in the MAPK and WNT pathways. The co-expression network showed a strong correlation between PIM3 and MLKL, MYL5, PPP3R1 and other genes. CONCLUSIONS: PIM3 is an independent prognostic factor of colon cancer and may be a target for the diagnosis and treatment of colon cancer.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Gene Expression Profiling , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Calcineurin/genetics , Colonic Neoplasms/pathology , Databases, Genetic , Humans , Kaplan-Meier Estimate , Mitogen-Activated Protein Kinase Kinases/metabolism , Prognosis , Promyelocytic Leukemia Protein/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins/physiology , Regression Analysis , Wnt Signaling Pathway
3.
Oncotarget ; 8(5): 8475-8483, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-28035072

ABSTRACT

Here, we evaluated whether the overexpression of transcriptionally inactive ΔNp73 cooperates with PML/RARA fusion protein in the induction of an APL-leukemic phenotype, as well as its role in vitro in proliferation, myeloid differentiation, and drug-induced apoptosis. Using lentiviral gene transfer, we showed in vitro that ΔNp73 overexpression resulted in increased proliferation in murine bone marrow (BM) cells from hCG-PML/RARA transgenic mice and their wild-type (WT) counterpart, with no accumulation of cells at G2/M or S phases; instead, ΔNp73-expressing cells had a lower rate of induced apoptosis. Next, we evaluated the effect of ΔNp73 on stem-cell self-renewal and myeloid differentiation. Primary BM cells lentivirally infected with human ΔNp73 were not immortalized in culture and did not present significant changes in the percentage of CD11b. Finally, we assessed the impact of ΔNp73 on leukemogenesis or its possible cooperation with PML/RARA fusion protein in the induction of an APL-leukemic phenotype. After 120 days of follow-up, all transplanted mice were clinically healthy and, no evidence of leukemia/myelodysplasia was apparent. Taken together, our data suggest that ΔNp73 had no leukemic transformation capacity by itself and apparently did not cooperate with the PML/RARA fusion protein to induce a leukemic phenotype in a murine BM transplantation model. In addition, the forced expression of ΔNp73 in murine BM progenitors did not alter the ATRA-induced differentiation rate in vitro or induce aberrant cell proliferation, but exerted an important role in cell survival, providing resistance to drug-induced apoptosis.


Subject(s)
Apoptosis , Leukemia/metabolism , Neoplastic Stem Cells/metabolism , Promyelocytic Leukemia Protein/metabolism , Retinoic Acid Receptor alpha/metabolism , Tumor Protein p73/metabolism , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis/drug effects , Bone Marrow Transplantation , Cathepsin G/genetics , Cathepsin G/metabolism , Cell Differentiation , Cell Proliferation , Cell Self Renewal , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Cytarabine/pharmacology , Gene Expression Regulation, Leukemic , Genetic Predisposition to Disease , Leukemia/drug therapy , Leukemia/genetics , Leukemia/pathology , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Phenotype , Promyelocytic Leukemia Protein/genetics , Retinoic Acid Receptor alpha/genetics , Signal Transduction , Time Factors , Transfection , Tumor Protein p73/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL