Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Nature ; 629(8013): 886-892, 2024 May.
Article in English | MEDLINE | ID: mdl-38720071

ABSTRACT

Cobalamin (vitamin B12, herein referred to as B12) is an essential cofactor for most marine prokaryotes and eukaryotes1,2. Synthesized by a limited number of prokaryotes, its scarcity affects microbial interactions and community dynamics2-4. Here we show that two bacterial B12 auxotrophs can salvage different B12 building blocks and cooperate to synthesize B12. A Colwellia sp. synthesizes and releases the activated lower ligand α-ribazole, which is used by another B12 auxotroph, a Roseovarius sp., to produce the corrin ring and synthesize B12. Release of B12 by Roseovarius sp. happens only in co-culture with Colwellia sp. and only coincidently with the induction of a prophage encoded in Roseovarius sp. Subsequent growth of Colwellia sp. in these conditions may be due to the provision of B12 by lysed cells of Roseovarius sp. Further evidence is required to support a causative role for prophage induction in the release of B12. These complex microbial interactions of ligand cross-feeding and joint B12 biosynthesis seem to be widespread in marine pelagic ecosystems. In the western and northern tropical Atlantic Ocean, bacteria predicted to be capable of salvaging cobinamide and synthesizing only the activated lower ligand outnumber B12 producers. These findings add new players to our understanding of B12 supply to auxotrophic microorganisms in the ocean and possibly in other ecosystems.


Subject(s)
Prophages , Vitamin B 12 , Vitamin B 12/metabolism , Vitamin B 12/biosynthesis , Ligands , Prophages/metabolism , Corrinoids/metabolism , Atlantic Ocean , Microbial Interactions , Coculture Techniques , Actinobacteria/metabolism
2.
Science ; 383(6687): 1111-1117, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38452081

ABSTRACT

The extent to which prophage proteins interact with eukaryotic macromolecules is largely unknown. In this work, we show that cytoplasmic incompatibility factor A (CifA) and B (CifB) proteins, encoded by prophage WO of the endosymbiont Wolbachia, alter long noncoding RNA (lncRNA) and DNA during Drosophila sperm development to establish a paternal-effect embryonic lethality known as cytoplasmic incompatibility (CI). CifA is a ribonuclease (RNase) that depletes a spermatocyte lncRNA important for the histone-to-protamine transition of spermiogenesis. Both CifA and CifB are deoxyribonucleases (DNases) that elevate DNA damage in late spermiogenesis. lncRNA knockdown enhances CI, and mutagenesis links lncRNA depletion and subsequent sperm chromatin integrity changes to embryonic DNA damage and CI. Hence, prophage proteins interact with eukaryotic macromolecules during gametogenesis to create a symbiosis that is fundamental to insect evolution and vector control.


Subject(s)
Bacterial Proteins , Deoxyribonucleases , Drosophila melanogaster , Paternal Inheritance , Prophages , RNA, Long Noncoding , Spermatozoa , Viral Proteins , Wolbachia , Animals , Male , Cytoplasm/metabolism , DNA/metabolism , Prophages/genetics , Prophages/metabolism , RNA, Long Noncoding/metabolism , Spermatozoa/growth & development , Spermatozoa/metabolism , Wolbachia/metabolism , Wolbachia/virology , Viral Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/microbiology , Bacterial Proteins/metabolism , Deoxyribonucleases/metabolism
3.
mBio ; 15(2): e0216923, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38236051

ABSTRACT

Many temperate phages encode prophage-expressed functions that interfere with superinfection of the host bacterium by external phages. Salmonella phage P22 has four such systems that are expressed from the prophage in a lysogen that are encoded by the c2 (repressor), gtrABC, sieA, and sieB genes. Here we report that the P22-encoded SieA protein is necessary and sufficient for exclusion by the SieA system and that it is an inner membrane protein that blocks DNA injection by P22 and its relatives, but has no effect on infection by other tailed phage types. The P22 virion injects its DNA through the host cell membranes and periplasm via a conduit assembled from three "ejection proteins" after their release from the virion. Phage P22 mutants that overcome the SieA block were isolated, and they have amino acid changes in the C-terminal regions of the gene 16 and 20 encoded ejection proteins. Three different single-amino acid changes in these proteins are required to obtain nearly full resistance to SieA. Hybrid P22 phages that have phage HK620 ejection protein genes are also partially resistant to SieA. There are three sequence types of extant phage-encoded SieA proteins that are less than 30% identical to one another, yet comparison of two of these types found no differences in phage target specificity. Our data strongly suggest a model in which the inner membrane protein SieA interferes with the assembly or function of the periplasmic gp20 and membrane-bound gp16 DNA delivery conduit.IMPORTANCEThe ongoing evolutionary battle between bacteria and the viruses that infect them is a critical feature of bacterial ecology on Earth. Viruses can kill bacteria by infecting them. However, when their chromosomes are integrated into a bacterial genome as a prophage, viruses can also protect the host bacterium by expressing genes whose products defend against infection by other viruses. This defense property is called "superinfection exclusion." A significant fraction of bacteria harbor prophages that encode such protective systems, and there are many different molecular strategies by which superinfection exclusion is mediated. This report is the first to describe the mechanism by which bacteriophage P22 SieA superinfection exclusion protein protects its host bacterium from infection by other P22-like phages. The P22 prophage-encoded inner membrane SieA protein prevents infection by blocking transport of superinfecting phage DNA across the inner membrane during injection.


Subject(s)
Bacteriophage P22 , Bacteriophages , Superinfection , Humans , Bacteriophage P22/genetics , Bacteriophages/genetics , Prophages/genetics , Prophages/metabolism , Membrane Proteins/metabolism , DNA/metabolism , Amino Acids/metabolism
4.
Nucleic Acids Res ; 52(6): 2942-2960, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38153127

ABSTRACT

Bacterial gene regulatory networks orchestrate responses to environmental challenges. Horizontal gene transfer can bring in genes with regulatory potential, such as new transcription factors (TFs), and this can disrupt existing networks. Serious regulatory perturbations may even result in cell death. Here, we show the impact on Escherichia coli of importing a promiscuous TF that has adventitious transcriptional effects within the cryptic Rac prophage. A cascade of regulatory network perturbations occurred on a global level. The TF, a C regulatory protein, normally controls a Type II restriction-modification system, but in E. coli K-12 interferes with expression of the RacR repressor gene, resulting in de-repression of the normally-silent Rac ydaT gene. YdaT is a prophage-encoded TF with pleiotropic effects on E. coli physiology. In turn, YdaT alters expression of a variety of bacterial regulons normally controlled by the RcsA TF, resulting in deficient lipopolysaccharide biosynthesis and cell division. At the same time, insufficient RacR repressor results in Rac DNA excision, halting Rac gene expression due to loss of the replication-defective Rac prophage. Overall, Rac induction appears to counteract the lethal toxicity of YdaT. We show here that E. coli rewires its regulatory network, so as to minimize the adverse regulatory effects of the imported C TF. This complex set of interactions may reflect the ability of bacteria to protect themselves by having robust mechanisms to maintain their regulatory networks, and/or suggest that regulatory C proteins from mobile operons are under selection to manipulate their host's regulatory networks for their own benefit.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Prophages/genetics , Prophages/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , DNA Restriction-Modification Enzymes/metabolism
5.
NPJ Biofilms Microbiomes ; 9(1): 79, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821428

ABSTRACT

Elimination of specific enteropathogenic microorganisms is critical to gut health. However, the complexity of the gut community makes it challenging to target specific bacterial organisms. Accumulating evidence suggests that various foods can change the abundance of intestinal bacteria by modulating prophage induction. By using pathogenic Escherichia coli (E. coli) ATCC 25922 as a model in this research, we explored the potential of dietary modulation of prophage induction and subsequent bacterial survival. Among a panel of sugars tested in vitro, D-xylose was shown to efficiently induce prophages in E. coli ATCC 25922, which depends, in part, upon the production of D-lactic acid. In an enteric mouse model, prophage induction was found to be further enhanced in response to propionic acid. Dietary D-xylose increased the proportion of Clostridia which converted D-lactic acid to propionic acid. Intestinal propionic acid levels were diminished, following either oral gavage with the dehydrogenase gene (ldhA)-deficient E. coli ATCC 25922 or depletion of intestinal Clostridia by administration of streptomycin. D-Xylose metabolism and exposure to propionic acid triggered E. coli ATCC 25922 SOS response that promoted prophage induction. E. coli ATCC 25922 mutant of RecA, a key component of SOS system, exhibited decreased phage production. These findings suggest the potential of using dietary components that can induce prophages as antimicrobial alternatives for disease control and prevention by targeted elimination of harmful gut bacteria.


Subject(s)
Bacteriophages , Mice , Animals , Bacteriophages/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Xylose/metabolism , Prophages/genetics , Prophages/metabolism , Lactic Acid/metabolism
6.
New Phytol ; 240(3): 1202-1218, 2023 11.
Article in English | MEDLINE | ID: mdl-37559429

ABSTRACT

A prophage tail-like protein (Bg_9562) of Burkholderia gladioli strain NGJ1 possesses broad-spectrum antifungal activity, and it is required for the bacterial ability to forage over fungi. Here, we analyzed whether heterologous overexpression of Bg_9562 or exogenous treatment with purified protein can impart disease tolerance in tomato. The physiological relevance of Bg_9562 during endophytic growth of NGJ1 was also investigated. Bg_9562 overexpressing lines demonstrate fungal and bacterial disease tolerance. They exhibit enhanced expression of defense genes and activation of mitogen-activated protein kinases. Treatment with Bg_9562 protein induces defense responses and imparts immunity in wild-type tomato. The defense-inducing ability lies within 18-51 aa region of Bg_9562 and is due to sequence homology with the bacterial flagellin epitope. Interaction studies suggest that Bg_9562 is perceived by FLAGELLIN-SENSING 2 homologs in tomato. The silencing of SlSERK3s (BAK1 homologs) prevents Bg_9562-triggered immunity. Moreover, type III secretion system-dependent translocation of Bg_9562 into host apoplast is important for elicitation of immune responses during colonization of NGJ1. Our study emphasizes that Bg_9562 is important for the endophytic growth of B. gladioli, while the plant perceives it as an indirect indicator of the presence of bacteria to mount immune responses. The findings have practical implications for controlling plant diseases.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Burkholderia gladioli , Solanum lycopersicum , Flagellin , Burkholderia gladioli/metabolism , Prophages/metabolism , Arabidopsis/genetics , Plant Immunity/genetics , Arabidopsis Proteins/metabolism , Plant Diseases/microbiology
7.
Nature ; 620(7974): 625-633, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37495698

ABSTRACT

Most bacteria in the biosphere are predicted to be polylysogens harbouring multiple prophages1-5. In studied systems, prophage induction from lysogeny to lysis is near-universally driven by DNA-damaging agents6. Thus, how co-residing prophages compete for cell resources if they respond to an identical trigger is unknown. Here we discover regulatory modules that control prophage induction independently of the DNA-damage cue. The modules bear little resemblance at the sequence level but share a regulatory logic by having a transcription factor that activates the expression of a neighbouring gene that encodes a small protein. The small protein inactivates the master repressor of lysis, which leads to induction. Polylysogens that harbour two prophages exposed to DNA damage release mixed populations of phages. Single-cell analyses reveal that this blend is a consequence of discrete subsets of cells producing one, the other or both phages. By contrast, induction through the DNA-damage-independent module results in cells producing only the phage sensitive to that specific cue. Thus, in the polylysogens tested, the stimulus used to induce lysis determines phage productivity. Considering the lack of potent DNA-damaging agents in natural habitats, additional phage-encoded sensory pathways to lysis likely have fundamental roles in phage-host biology and inter-prophage competition.


Subject(s)
Bacteria , Bacteriophages , Lysogeny , Prophages , Viral Proteins , Bacteriophages/genetics , Bacteriophages/metabolism , Lysogeny/genetics , Prophages/genetics , Prophages/metabolism , Viral Proteins/metabolism , Virus Activation/genetics , Bacteria/virology , DNA Damage , DNA, Viral/genetics , DNA, Viral/metabolism , Single-Cell Analysis , Transcription Factors/metabolism , Host-Pathogen Interactions
8.
Sci Rep ; 13(1): 7450, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37156923

ABSTRACT

Multidrug-resistant (MDR) bacteria have become a growing threat to public health. The gram-positive Enterococcus faecium is classified by WHO as a high-priority pathogen among the global priority list of antibiotic-resistant bacteria. Peptidoglycan-degrading enzymes (PDEs), also known as enzybiotics, are useful bactericidal agents in the fight against resistant bacteria. In this work, a genome-based screening approach of the genome of E. faecium allowed the identification of a putative PDE gene with predictive amidase activity (EfAmi1; EC 3.5.1.28) in a prophage-integrated sequence. EfAmi1 is composed by two domains: a N-terminal Zn2+-dependent N-acetylmuramoyl-L-alanine amidase-2 (NALAA-2) domain and a C-terminal domain with unknown structure and function. The full-length gene of EfAmi1 was cloned and expressed as a 6xHis-tagged protein in E. coli. EfAmi1 was produced as a soluble protein, purified, and its lytic and antimicrobial activities were investigated using turbidity reduction and Kirby-Bauer disk-diffusion assays against clinically isolated bacterial pathogens. The crystal structure of the N-terminal amidase-2 domain was determined using X-ray crystallography at 1.97 Å resolution. It adopts a globular fold with several α-helices surrounding a central five-stranded ß-sheet. Sequence comparison revealed a cluster of conserved amino acids that defines a putative binding site for a buried zinc ion. The results of the present study suggest that EfAmi1 displays high lytic and antimicrobial activity and may represent a promising new antimicrobial in the post-antibiotic era.


Subject(s)
Enterococcus faecium , Prophages , Prophages/metabolism , Enterococcus faecium/genetics , Enterococcus faecium/metabolism , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Amidohydrolases/metabolism , Anti-Bacterial Agents
9.
Infect Immun ; 91(3): e0025022, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36853019

ABSTRACT

Almost all spirochetes in the genus Borrelia (sensu lato) naturally contain multiple variants of closely related prophages. In the Lyme disease borreliae, these prophages are maintained as circular episomes that are called circular plasmid 32 kb (cp32s). The cp32s of Lyme agents are particularly unique in that they encode two distinct families of lipoproteins, namely, Erp and Rev, that are expressed on the bacterial outer surface during infection of vertebrate hosts. All identified functions of those outer surface proteins involve interactions between the spirochetes and host molecules, as follows: Erp proteins bind plasmin(ogen), laminin, glycosaminoglycans, and/or components of complement and Rev proteins bind fibronectin. Thus, cp32 prophages provide their bacterial hosts with surface proteins that can enhance infection processes, thereby facilitating their own survival. Horizontal transfer via bacteriophage particles increases the spread of beneficial alleles and creates diversity among Erp and Rev proteins.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Animals , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , Prophages/genetics , Prophages/metabolism , Base Sequence , Bacterial Outer Membrane Proteins/genetics , Lyme Disease/microbiology , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Vertebrates/metabolism , Bacterial Proteins/genetics
10.
Protein Sci ; 32(3): e4585, 2023 03.
Article in English | MEDLINE | ID: mdl-36721347

ABSTRACT

Bacteriophages encode a wide variety of cell wall disrupting enzymes that aid the viral escape in the final stages of infection. These lytic enzymes have accumulated notable interest due to their potential as novel antibacterials for infection treatment caused by multiple-drug resistant bacteria. Here, the detailed functional and structural characterization of Thermus parvatiensis prophage peptidoglycan lytic amidase AmiP, a globular Amidase_3 type lytic enzyme adapted to high temperatures is presented. The sequence and structure comparison with homologous lytic amidases reveals the key adaptation traits that ensure the activity and stability of AmiP at high temperatures. The crystal structure determined at a resolution of 1.8 Å displays a compact α/ß-fold with multiple secondary structure elements omitted or shortened compared with protein structures of similar proteins. The functional characterization of AmiP demonstrates high efficiency of catalytic activity and broad substrate specificity toward thermophilic and mesophilic bacteria strains containing Orn-type or DAP-type peptidoglycan. The here presented AmiP constitutes the most thermoactive and ultrathermostable Amidase_3 type lytic enzyme biochemically characterized with a temperature optimum at 85°C. The extraordinary high melting temperature Tm 102.6°C confirms fold stability up to approximately 100°C. Furthermore, AmiP is shown to be more active over the alkaline pH range with pH optimum at pH 8.5 and tolerates NaCl up to 300 mM with the activity optimum at 25 mM NaCl. This set of beneficial characteristics suggests that AmiP can be further exploited in biotechnology.


Subject(s)
Peptidoglycan , Prophages , Prophages/metabolism , Peptidoglycan/metabolism , Sodium Chloride , Catalytic Domain , Models, Molecular , Amidohydrolases/metabolism , Cell Wall , N-Acetylmuramoyl-L-alanine Amidase/chemistry , N-Acetylmuramoyl-L-alanine Amidase/metabolism
11.
Nat Commun ; 13(1): 7855, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543802

ABSTRACT

Some bacteriophage encode a recombinase that catalyzes single-stranded DNA annealing (SSA). These proteins are apparently related to RAD52, the primary human SSA protein. The best studied protein, Redß from bacteriophage λ, binds weakly to ssDNA, not at all to dsDNA, but tightly to a duplex intermediate of annealing formed when two complementary DNA strands are added to the protein sequentially. We used single particle cryo-electron microscopy (cryo-EM) to determine a 3.4 Å structure of a Redß homolog from a prophage of Listeria innocua in complex with two complementary 83mer oligonucleotides. The structure reveals a helical protein filament bound to a DNA duplex that is highly extended and unwound. Native mass spectrometry confirms that the complex seen by cryo-EM is the predominant species in solution. The protein shares a common core fold with RAD52 and a similar mode of ssDNA-binding. These data provide insights into the mechanism of protein-catalyzed SSA.


Subject(s)
DNA , Recombinases , Cryoelectron Microscopy , DNA/chemistry , DNA/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , Prophages/genetics , Prophages/metabolism , Protein Binding , Rad51 Recombinase/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Recombinases/metabolism
12.
PLoS Biol ; 20(11): e3001790, 2022 11.
Article in English | MEDLINE | ID: mdl-36327213

ABSTRACT

Gene transfer agents (GTAs) are prophage-like entities found in many bacterial genomes that cannot propagate themselves and instead package approximately 5 to 15 kbp fragments of the host genome that can then be transferred to related recipient cells. Although suggested to facilitate horizontal gene transfer (HGT) in the wild, no clear physiological role for GTAs has been elucidated. Here, we demonstrate that the α-proteobacterium Caulobacter crescentus produces bona fide GTAs. The production of Caulobacter GTAs is tightly regulated by a newly identified transcription factor, RogA, that represses gafYZ, the direct activators of GTA synthesis. Cells lacking rogA or expressing gafYZ produce GTAs harboring approximately 8.3 kbp fragment of the genome that can, after cell lysis, be transferred into recipient cells. Notably, we find that GTAs promote the survival of Caulobacter in stationary phase and following DNA damage by providing recipient cells a template for homologous recombination-based repair. This function may be broadly conserved in other GTA-producing organisms and explain the prevalence of this unusual HGT mechanism.


Subject(s)
Caulobacter crescentus , Prophages , Prophages/genetics , Prophages/metabolism , Caulobacter crescentus/genetics , Caulobacter crescentus/metabolism , Gene Transfer, Horizontal/genetics , Genome, Bacterial , DNA Repair/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
13.
Nucleic Acids Res ; 50(19): 10964-10980, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36271797

ABSTRACT

Bacterial gene expression depends on the efficient functioning of global transcriptional networks, however their interconnectivity and orchestration rely mainly on the action of individual DNA binding proteins called transcription factors (TFs). TFs interact not only with their specific target sites, but also with secondary (off-target) sites, and vary in their promiscuity. It is not clear yet what mechanisms govern the interactions with secondary sites, and how such rewiring affects the overall regulatory network, but this could clearly constrain horizontal gene transfer. Here, we show the molecular mechanism of one such off-target interaction between two unrelated TFs in Escherichia coli: the C regulatory protein of a Type II restriction-modification system, and the RacR repressor of a defective prophage. We reveal that the C protein interferes with RacR repressor expression, resulting in derepression of the toxic YdaT protein. These results also provide novel insights into regulation of the racR-ydaST operon. We mapped the C regulator interaction to a specific off-target site, and also visualized C protein dynamics, revealing intriguing differences in single molecule dynamics in different genetic contexts. Our results demonstrate an apparent example of horizontal gene transfer leading to adventitious TF cross-talk with negative effects on the recipient's viability. More broadly, this study represents an experimentally-accessible model of a regulatory constraint on horizontal gene transfer.


Subject(s)
DNA Restriction-Modification Enzymes , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , DNA Restriction-Modification Enzymes/genetics , Prophages/genetics , Prophages/metabolism , Gene Expression Regulation, Bacterial , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Regulatory Networks
14.
Int J Mol Sci ; 23(17)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36077542

ABSTRACT

Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium that presents resistance to several antibiotics, thus, representing a major threat to human and animal health. Phage-derived products, namely lysins, or peptidoglycan-hydrolyzing enzymes, can be an effective weapon against antibiotic-resistant bacteria. Whereas in Gram-positive bacteria, lysis from without is facilitated by the exposed peptidoglycan layer, this is not possible in the outer membrane-protected peptidoglycan of Gram-negative bacteria. Here, we suggest the encapsulation of lysins in liposomes as a delivery system against Gram-negative bacteria, using the model of P. aeruginosa. Bioinformatic analysis allowed for the identification of 38 distinct complete prophages within 66 P. aeruginosa genomes (16 of which newly sequenced) and led to the identification of 19 lysins of diverse sequence and function, 5 of which proceeded to wet lab analysis. The four purifiable lysins showed hydrolytic activity against Gram-positive bacterial lawns and, on zymogram assays, constituted of autoclaved P. aeruginosa cells. Additionally, lysins Pa7 and Pa119 combined with an outer membrane permeabilizer showed activity against P. aeruginosa cells. These two lysins were successfully encapsulated in DPPC:DOPE:CHEMS (molar ratio 4:4:2) liposomes with an average encapsulation efficiency of 33.33% and 32.30%, respectively. The application of the encapsulated lysins to the model P. aeruginosa led to a reduction in cell viability and resulted in cell lysis as observed in MTT cell viability assays and electron microscopy. In sum, we report here that prophages may be important sources of new enzybiotics, with prophage lysins showing high diversity and activity. In addition, these enzybiotics following their incorporation in liposomes were able to potentiate their antibacterial effect against the Gram-negative bacteria P. aeruginosa, used as the model.


Subject(s)
Prophages , Pseudomonas aeruginosa , Animals , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism , Humans , Liposomes , Peptidoglycan/metabolism , Prophages/metabolism , Pseudomonas aeruginosa/metabolism
15.
Nature ; 609(7925): 144-150, 2022 09.
Article in English | MEDLINE | ID: mdl-35850148

ABSTRACT

Retrons are prokaryotic genetic retroelements encoding a reverse transcriptase that produces multi-copy single-stranded DNA1 (msDNA). Despite decades of research on the biosynthesis of msDNA2, the function and physiological roles of retrons have remained unknown. Here we show that Retron-Sen2 of Salmonella enterica serovar Typhimurium encodes an accessory toxin protein, STM14_4640, which we renamed as RcaT. RcaT is neutralized by the reverse transcriptase-msDNA antitoxin complex, and becomes active upon perturbation of msDNA biosynthesis. The reverse transcriptase is required for binding to RcaT, and the msDNA is required for the antitoxin activity. The highly prevalent RcaT-containing retron family constitutes a new type of tripartite DNA-containing toxin-antitoxin system. To understand the physiological roles of such toxin-antitoxin systems, we developed toxin activation-inhibition conjugation (TAC-TIC), a high-throughput reverse genetics approach that identifies the molecular triggers and blockers of toxin-antitoxin systems. By applying TAC-TIC to Retron-Sen2, we identified multiple trigger and blocker proteins of phage origin. We demonstrate that phage-related triggers directly modify the msDNA, thereby activating RcaT and inhibiting bacterial growth. By contrast, prophage proteins circumvent retrons by directly blocking RcaT. Consistently, retron toxin-antitoxin systems act as abortive infection anti-phage defence systems, in line with recent reports3,4. Thus, RcaT retrons are tripartite DNA-regulated toxin-antitoxin systems, which use the reverse transcriptase-msDNA complex both as an antitoxin and as a sensor of phage protein activities.


Subject(s)
Antitoxins , Bacteriophages , Retroelements , Salmonella typhimurium , Toxin-Antitoxin Systems , Antitoxins/genetics , Bacteriophages/metabolism , DNA, Bacterial/genetics , DNA, Single-Stranded/genetics , Nucleic Acid Conformation , Prophages/metabolism , RNA-Directed DNA Polymerase/metabolism , Retroelements/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/growth & development , Salmonella typhimurium/virology , Toxin-Antitoxin Systems/genetics
16.
Mol Cell ; 82(11): 2161-2166.e3, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35623354

ABSTRACT

CRISPR systems are prokaryotic adaptive immune systems that use RNA-guided Cas nucleases to recognize and destroy foreign genetic elements. To overcome CRISPR immunity, bacteriophages have evolved diverse families of anti-CRISPR proteins (Acrs). Recently, Lin et al. (2020) described the discovery and characterization of 7 Acr families (AcrVIA1-7) that inhibit type VI-A CRISPR systems. We detail several inconsistencies that question the results reported in the Lin et al. (2020) study. These include inaccurate bioinformatics analyses and bacterial strains that are impossible to construct. Published strains were provided by the authors, but MS2 bacteriophage plaque assays did not support the published results. We also independently tested the Acr sequences described in the original report, in E. coli and mammalian cells, but did not observe anti-Cas13a activity. Taken together, our data and analyses prompt us to question the claim that AcrVIA1-7 reported in Lin et al. are type VI anti-CRISPR proteins.


Subject(s)
Bacteriophages , CRISPR-Associated Proteins , Animals , Bacteriophages/genetics , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Escherichia coli/genetics , Escherichia coli/metabolism , Leptotrichia/genetics , Mammals/metabolism , Prophages/genetics , Prophages/metabolism , Ribonucleases/metabolism
17.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563361

ABSTRACT

In this study, several different depolymerases encoded in the prophage regions of Acinetobacter baumannii genomes have been bioinformatically predicted and recombinantly produced. The identified depolymerases possessed multi-domain structures and were identical or closely homologous to various proteins encoded in other A. baumannii genomes. This means that prophage-derived depolymerases are widespread, and different bacterial genomes can be the source of proteins with polysaccharide-degrading activities. For two depolymerases, the specificity to capsular polysaccharides (CPSs) of A. baumannii belonging to K1 and K92 capsular types (K types) was determined. The data obtained showed that the prophage-derived depolymerases were glycosidases that cleaved the A. baumannii CPSs by the hydrolytic mechanism to yield monomers and oligomers of the K units. The recombinant proteins with established enzymatic activity significantly reduced the mortality of Galleria mellonella larvae infected with A. baumannii of K1 and K92 capsular types. Therefore, these enzymes can be considered as suitable candidates for the development of new antibacterials against corresponding A. baumannii K types.


Subject(s)
Acinetobacter baumannii , Bacteriophages , Acinetobacter baumannii/chemistry , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Bacterial Capsules/genetics , Bacterial Capsules/metabolism , Bacteriophages/chemistry , Bacteriophages/metabolism , Glycoside Hydrolases/metabolism , Polysaccharides/metabolism , Polysaccharides, Bacterial/metabolism , Prophages/genetics , Prophages/metabolism
18.
J Gen Appl Microbiol ; 68(2): 71-78, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35387911

ABSTRACT

Site-specific recombination (SSR) systems are employed in many genetic mobile elements, including temperate phages, for their integration and excision. Recently, they have also been used as tools for applications in fields ranging from basic to synthetic biology. SPß is a temperate phage of the Siphoviridae family found in the laboratory standard Bacillus subtilis strain 168. SPß encodes a serine-type recombinase, SprA, and recombination directionality factor (RDF), SprB. SprA catalyzes recombination between the attachment site of the phage, attP, and that of the host, attB, to integrate phage genome into the attB site of the host genome and generate attL and attR at both ends of the prophage genome. SprB works in conjunction with SprA and switches from attB/attP to attL/R recombination, which leads to excision of the prophage. In the present study, we took advantage of this highly efficient recombination system to develop a site-specific integration and excision plasmid vector, named pSSß. It was constructed using pUC plasmid and the SSR system components, attP, sprA and sprB of SPß. pSSß was integrated into the attB site with a significantly high efficiency, and the resulting pSSß integrated strain also easily eliminated pSSß itself from the host genome by the induction of SprB expression with xylose. This report presents two applications using pSSß that are particularly suitable for gene complementation experiments and for a curing system of SPß prophage, that may serve as a model system for the removal of prophages in other bacteria.


Subject(s)
Bacteriophages , Prophages , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacteriophages/genetics , DNA , Integrases/genetics , Integrases/metabolism , Prophages/genetics , Prophages/metabolism , Recombination, Genetic
19.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35163484

ABSTRACT

Bacterial cryptic prophage (defective prophage) genes are known to drastically influence host physiology, such as causing cell growth arrest or lysis, upon expression. Many phages encode lytic proteins to destroy the cell envelope. As natural antibiotics, only a few lysis target proteins were identified. ydfD is a lytic gene from the Qin cryptic prophage that encodes a 63-amino-acid protein, the ectopic expression of which in Escherichia coli can cause nearly complete cell lysis rapidly. The bacterial 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is responsible for synthesizing the isoprenoids uniquely required for sustaining bacterial growth. In this study, we provide evidence that YdfD can interact with IspG, a key enzyme involved in the MEP pathway, both in vivo and in vitro. We show that intact YdfD is required for the interaction with IspG to perform its lysis function and that the mRNA levels of ydfD increase significantly under certain stress conditions. Crucially, the cell lysis induced by YdfD can be abolished by the overexpression of ispG or the complementation of the IspG enzyme catalysis product methylerythritol 2,4-cyclodiphosphate. We propose that YdfD from the Qin cryptic prophage inhibits IspG to block the MEP pathway, leading to a compromised cell membrane and cell wall biosynthesis and eventual cell lysis.


Subject(s)
Biocatalysis , Erythritol/analogs & derivatives , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Prophages/metabolism , Sugar Phosphates/metabolism , Viral Proteins/metabolism , Conserved Sequence , Cysteine/chemistry , Erythritol/metabolism , Escherichia coli/ultrastructure , Models, Biological , Protein Binding , Protein Structure, Secondary , RNA, Messenger/genetics , RNA, Messenger/metabolism , Solutions , Stress, Physiological , Viral Proteins/chemistry
20.
Curr Opin Virol ; 52: 174-181, 2022 02.
Article in English | MEDLINE | ID: mdl-34952265

ABSTRACT

Machine learning has been broadly implemented to investigate biological systems. In this regard, the field of phage biology has embraced machine learning to elucidate and predict phage-host interactions, based on receptor-binding proteins, (anti-)defense systems, prophage detection, and life cycle recognition. Here, we highlight the enormous potential of integrating information from omics data with insights from systems biology to better understand phage-host interactions. We conceptualize and discuss the potential of a multilayer model that mirrors the phage infection process, integrating adsorption, bacterial pan-immune components and hijacking of the bacterial metabolism to predict phage infectivity. In the future, this model can offer insights into the underlying mechanisms of the infection process, and digital phagograms can support phage cocktail design and phage engineering.


Subject(s)
Bacteriophages , Bacteria , Machine Learning , Prophages/metabolism , Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...