Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.349
Filter
1.
Med ; 5(5): 375-376, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38733968

ABSTRACT

The most important factor associated with liver-related mortality in NAFLD is liver fibrosis. There is no approved treatment for metabolic dysfunction-associated steatohepatitis (MASH) or liver fibrosis. In the MAESTRO-NASH trial, Harrison et al.1 demonstrated the efficacy of resmetirom, a selective THR-ß agonist, for the treatment of MASH and liver fibrosis at 52 weeks.


Subject(s)
Liver Cirrhosis , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Fatty Liver/metabolism , Propionates , Chalcones
2.
Chem Biol Drug Des ; 103(5): e14532, 2024 May.
Article in English | MEDLINE | ID: mdl-38725089

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) that causes severe liver damage, fibrosis, and scarring. Despite its potential to progress to cirrhosis or hepatic failure, approved drugs or treatments are currently unavailable. We developed 4,4-diallyl curcumin bis(2,2-hydroxymethyl)propanoate, also known as 35e, which induces upregulation of mitochondrial proteins including carnitine palmitoyltransferase I (CPT-I), carnitine palmitoyltransferase II, heat shock protein 60, and translocase of the outer mitochondrial membrane 20. Among these proteins, the upregulated expression of CPT-I was most prominent. CPT-I plays a crucial role in transporting carnitine across the mitochondrial inner membrane, thereby initiating mitochondrial ß-oxidation of fatty acids. Given recent research showing that CPT-I activation could be a viable pathway for NASH treatment, we hypothesized that 35e could serve as a potential agent for treating NASH. The efficacy of 35e in treating NASH was evaluated in methionine- and choline-deficient (MCD) diet- and Western diet (WD)-induced models that mimic human NASH. In the MCD diet-induced model, both short-term (2 weeks) and long-term (7 weeks) treatment with 35e effectively regulated elevated serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) concentrations and histological inflammation. However, the antisteatotic effect of 35e was obtained only in the short-term treatment group. As a comparative compound in the MCD diet-induced model, curcumin treatment did not produce significant regulatory effects on the liver triglyceride/total cholesterol, serum ALT/AST, or hepatic steatosis. In the WD-induced model, 35e ameliorated hepatic steatosis and hepatic inflammation, while increasing serum AST and hepatic lipid content. A decrease in epididymal adipose tissue weight and serum free fatty acid concentration suggested that 35e may promote lipid metabolism or impede lipid accumulation. Overall, 35e displayed significant antilipid accumulation and antifibrotic effects in the two complementary mice models. The development of new curcumin derivatives with the ability to induce CPT-I upregulation could further underscore their efficacy as anti-NASH agents.


Subject(s)
Curcumin , Disease Models, Animal , Methionine , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Methionine/metabolism , Methionine/deficiency , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/therapeutic use , Mice , Male , Diet, Western/adverse effects , Mice, Inbred C57BL , Carnitine O-Palmitoyltransferase/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Propionates/pharmacology , Propionates/therapeutic use , Propionates/metabolism , Humans , Choline/metabolism , Choline/pharmacology
3.
Nat Commun ; 15(1): 3962, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730247

ABSTRACT

Lanifibranor, a pan-PPAR agonist, improves liver histology in patients with metabolic dysfunction-associated steatohepatitis (MASH), who have poor cardiometabolic health (CMH) and cardiovascular events as major mortality cause. NATIVE trial secondary and exploratory outcomes (ClinicalTrials.gov NCT03008070) were analyzed for the effect of lanifibranor on IR, lipid and glucose metabolism, systemic inflammation, blood pressure (BP), hepatic steatosis (imaging and histological grading) for all patients of the original analysis. With lanifibranor, triglycerides, HDL-C, apolipoproteins, insulin, HOMA-IR, HbA1c, fasting glucose (FG), hs-CRP, ferritin, diastolic BP and steatosis improved significantly, independent of diabetes status: most patients with prediabetes returned to normal FG levels. Significant adiponectin increases correlated with hepatic and CMH marker improvement; patients had an average weight gain of 2.5 kg, with 49% gaining ≥2.5% weight. Therapeutic benefits were similar regardless of weight change. Here, we show that effects of lanifibranor on liver histology in MASH are accompanied with CMH improvement, indicative of potential cardiovascular clinical benefits.


Subject(s)
Chalcones , Adult , Aged , Female , Humans , Male , Middle Aged , Adiponectin/metabolism , Adiponectin/blood , Blood Glucose/metabolism , Blood Glucose/drug effects , Blood Pressure/drug effects , Cardiovascular Diseases/drug therapy , Chalcones/therapeutic use , Chalcones/pharmacology , Fatty Liver/drug therapy , Fatty Liver/metabolism , Insulin Resistance , Lipid Metabolism/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/metabolism , Propionates , Triglycerides/blood , Triglycerides/metabolism
4.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731399

ABSTRACT

The antibacterial effects of a selection of volatile fatty acids (acetic, propionic, butyric, valeric, and caproic acids) relevant to anaerobic digestion were investigated at 1, 2 and 4 g/L. The antibacterial effects were characterised by the dynamics of Enterococcus faecalis NCTC 00775, Escherichia coli JCM 1649 and Klebsiella pneumoniae A17. Mesophilic anaerobic incubation to determine the minimum bactericidal concentration (MBC) and median lethal concentration of the VFAs was carried out in Luria Bertani broth at 37 °C for 48 h. Samples collected at times 0, 3, 6, 24 and 48 h were used to monitor bacterial kinetics and pH. VFAs at 4 g/L demonstrated the highest bactericidal effect (p < 0.05), while 1 g/L supported bacterial growth. The VFA cocktail was the most effective, while propionic acid was the least effective. Enterococcus faecalis NCTC 00775 was the most resistant strain with the VFAs MBC of 4 g/L, while Klebsiella pneumoniae A17 was the least resistant with the VFAs MBC of 2 g/L. Allowing a 48 h incubation period led to more log decline in the bacterial numbers compared to earlier times. The VFA cocktail, valeric, and caproic acids at 4 g/L achieved elimination of the three bacteria strains, with over 7 log10 decrease within 48 h.


Subject(s)
Anti-Bacterial Agents , Enterococcus faecalis , Fatty Acids, Volatile , Klebsiella pneumoniae , Microbial Sensitivity Tests , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Anaerobiosis , Escherichia coli/drug effects , Escherichia coli/growth & development , Propionates/pharmacology , Hydrogen-Ion Concentration , Pentanoic Acids/pharmacology
5.
CNS Neurosci Ther ; 30(4): e14713, 2024 04.
Article in English | MEDLINE | ID: mdl-38615362

ABSTRACT

AIMS: We aimed to evaluate the potential of a novel selective α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) potentiator, LT-102, in treating cognitive impairments associated with schizophrenia (CIAS) and elucidating its mechanism of action. METHODS: The activity of LT-102 was examined by Ca2+ influx assays and patch-clamp in rat primary hippocampal neurons. The structure of the complex was determined by X-ray crystallography. The selectivity of LT-102 was evaluated by hERG tail current recording and kinase-inhibition assays. The electrophysiological characterization of LT-102 was characterized by patch-clamp recording in mouse hippocampal slices. The expression and phosphorylation levels of proteins were examined by Western blotting. Cognitive function was assessed using the Morris water maze and novel object recognition tests. RESULTS: LT-102 is a novel and selective AMPAR potentiator with little agonistic effect, which binds to the allosteric site formed by the intradimer interface of AMPAR's GluA2 subunit. Treatment with LT-102 facilitated long-term potentiation in mouse hippocampal slices and reversed cognitive deficits in a phencyclidine-induced mouse model. Additionally, LT-102 treatment increased the protein level of brain-derived neurotrophic factor and the phosphorylation of GluA1 in primary neurons and hippocampal tissues. CONCLUSION: We conclude that LT-102 ameliorates cognitive impairments in a phencyclidine-induced model of schizophrenia by enhancing synaptic function, which could make it a potential therapeutic candidate for CIAS.


Subject(s)
Cognitive Dysfunction , Propionates , Schizophrenia , Animals , Mice , Rats , Phencyclidine , Schizophrenia/complications , Schizophrenia/drug therapy , Cognitive Dysfunction/drug therapy , Isoxazoles
6.
Bioresour Technol ; 401: 130741, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670292

ABSTRACT

Acid accumulation and carbon emission are two major challenges in anaerobic digestion. Syntrophic consortia can employ reverse electron transfer (RET) to facilitate thermodynamically unfavorable redox reactions during acetogenesis. However, the potential mechanisms and regulatory methods of RET remain unclear. This study examines the regulatory mechanisms by which exogenous CO2 affects RET and demonstrates that biochar maximizes CO2 solubility at 25.8 mmol/L to enhance effects further. CO2 synergized with biochar significantly increases cumulative methane production and propionate degradation rate. From the bioenergetic perspective, CO2 decreases energy level to a maximum of -87 kJ/mol, strengthening the thermodynamic viability. The underlying mechanism can be attributed to RET promotion, as indicated by increased formate dehydrogenase and enrichment of H2/formate-producing bacteria with their partner Methanospirillum hungatei. Moreover, the 5 % 13CH4 and methane contribution result show that CO2 accomplishes directed methanogenesis. Overall, this investigation riches the roles of CO2 and biochar in AD surrounding RET.


Subject(s)
Carbon Dioxide , Charcoal , Methane , Methane/metabolism , Carbon Dioxide/metabolism , Charcoal/pharmacology , Charcoal/chemistry , Anaerobiosis , Electron Transport , Methanospirillum/metabolism , Propionates/metabolism
7.
Int J Biol Macromol ; 267(Pt 1): 131472, 2024 May.
Article in English | MEDLINE | ID: mdl-38599437

ABSTRACT

Lignin nanoparticles (LNPs) have gained significant attention for their potential as natural antioxidants. This study investigated the effect of various pretreatment methods on the lignin structure and subsequent antioxidant activity of LNPs. Among four pretreated LNPs, hydrothermal LNPs exhibited the highest antioxidant activity, surpassing unpretreated, acid-pretreated and kraft LNPs, with an impressive efficacy of 91.6%. The relationship between LNPs' structure and antioxidant activity was revealed by 2D heteronuclear singular quantum correlation (1H13C HSQC) and 31P nuclear magnetic resonance (NMR). 1H13C HSQC suggested the cleavage of ß-O-4 ether bonds, as well as a decrease in ferulic acid and p-coumaric acid, which directly influenced the antioxidant activity of LNPs. 31P NMR demonstrated a positive correlation between the total hydroxyl group content and the antioxidant activity. Besides, an isothermal kinetic model for scavenging free radicals was established based on Langmuir kinetic model instead of Freundlich model. Moreover, multilayer LNPs, based on layer-by-layer self-assembly, were prepared and exhibited remarkable antioxidant activity of 95.8%. More importantly, when blended with pure cosmetic cream, the multilayer LNPs maintained antioxidant activity of 86.7%. These finding may promote the practical applications of biomolecules, e.g. lignin additives in cosmetics and pharmaceuticals.


Subject(s)
Antioxidants , Lignin , Nanoparticles , Lignin/chemistry , Nanoparticles/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Coumaric Acids/chemistry , Kinetics , Free Radical Scavengers/chemistry , Propionates/chemistry
8.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38581217

ABSTRACT

Pelleted total mixed ration (P-TMR) feeding, which has become a common practice in providing nutrition for fattening sheep, requires careful consideration of the balance between forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) to maintain proper rumen functions. The present study aimed to investigate the effects of the dietary FNDF/RDS ratio (FRR) on chewing activity, ruminal fermentation, ruminal microbes, and nutrient digestibility in Hu sheep fed a P-TMR diet. This study utilized eight ruminally cannulated male Hu sheep, following a 4 × 4 Latin square design with 31 d each period. Diets consisted of four FRR levels: 1.0 (high FNDF/RDS ratio, HFRR), 0.8 (middle high FNDF/RDS ratio, MHFRR), 0.6 (middle low FNDF/RDS ratio, MLFRR), and 0.4 (low FNDF/RDS ratio, LFRR). Reducing the dietary FRR levels resulted in a linear decrease in ruminal minimum pH and mean pH, while linearly increasing the duration and area of pH below 5.8 and 5.6, as well as the acidosis index. Sheep in the HFRR and MHFRR groups did not experience subacute ruminal acidosis (SARA), whereas sheep in another two groups did. The concentration of total volatile fatty acid and the molar ratios of propionate and valerate, as well as the concentrate of lactate in the rumen linearly increased with reducing dietary FRR, while the molar ratio of acetate and acetate to propionate ratio linearly decreased. The degradability of NDF and ADF for alfalfa hay has a quadratic response with reducing the dietary FRR. The apparent digestibility of dry matter, organic matter, neutral detergent fiber, and acid detergent fiber linearly decreased when the dietary FRR was reduced. In addition, reducing the dietary FRR caused a linear decrease in OTUs, Chao1, and Ace index of ruminal microflora. Reducing FRR in the diet increased the percentage of reads assigned as Firmicutes, but it decreased the percentage of reads assigned as Bacteroidetes in the rumen. At genus level, the percentage of reads assigned as Prevotella, Ruminococcus, Succinivibrio, and Butyrivibrio linearly decreased when the dietary FRR was reduced. The results of this study demonstrate that the dietary FRR of 0.8 is crucial in preventing the onset of SARA and promotes an enhanced richness of ruminal microbes and also improves fiber digestibility, which is a recommended dietary FRR reference when formulating P-TMR diets for sheep.


Forage neutral detergent fiber (FNDF) and rumen degradable starch (RDS) are key components of carbohydrates in the diet for ruminants, which would reflect saliva secretion and the acid production potential of feed. However, appropriate FNDF to RDS ratios (FRR) applicable to ruminants under the condition of pelleted total mixed ration (P-TMR) feeding have not been reported. In this study, we investigated the effects of the dietary FRR on chewing activity, ruminal fermentation, ruminal microbial communities, and nutrient digestibility of Hu sheep under P-TMR feeding. The results indicate that reducing dietary FRR levels would induce acidosis in sheep, which negatively affected fiber utilization and ruminal bacterial communities. The FRR of 0.8 was a recommended dietary FRR when formulating a P-TMR diet for fattening sheep, as indicated by decreased ruminal acidosis risk and increased richness of ruminal microbes in the rumen as well as nutrient digestibility.


Subject(s)
Acidosis , Sheep Diseases , Male , Female , Animals , Sheep , Milk/metabolism , Mastication/physiology , Starch/metabolism , Lactation/physiology , Detergents/metabolism , Silage/analysis , Propionates/metabolism , Fermentation , Rumen/metabolism , Dietary Fiber/metabolism , Dietary Carbohydrates/metabolism , Diet/veterinary , Nutrients , Acetates/metabolism , Acidosis/veterinary , Digestion/physiology
9.
Nat Commun ; 15(1): 3502, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664378

ABSTRACT

Beneficial gut bacteria are indispensable for developing colonic mucus and fully establishing its protective function against intestinal microorganisms. Low-fiber diet consumption alters the gut bacterial configuration and disturbs this microbe-mucus interaction, but the specific bacteria and microbial metabolites responsible for maintaining mucus function remain poorly understood. By using human-to-mouse microbiota transplantation and ex vivo analysis of colonic mucus function, we here show as a proof-of-concept that individuals who increase their daily dietary fiber intake can improve the capacity of their gut microbiota to prevent diet-mediated mucus defects. Mucus growth, a critical feature of intact colonic mucus, correlated with the abundance of the gut commensal Blautia, and supplementation of Blautia coccoides to mice confirmed its mucus-stimulating capacity. Mechanistically, B. coccoides stimulated mucus growth through the production of the short-chain fatty acids propionate and acetate via activation of the short-chain fatty acid receptor Ffar2, which could serve as a new target to restore mucus growth during mucus-associated lifestyle diseases.


Subject(s)
Colon , Dietary Fiber , Fatty Acids, Volatile , Gastrointestinal Microbiome , Intestinal Mucosa , Receptors, Cell Surface , Animals , Dietary Fiber/metabolism , Fatty Acids, Volatile/metabolism , Mice , Colon/metabolism , Colon/microbiology , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Female , Mice, Inbred C57BL , Mucus/metabolism , Fecal Microbiota Transplantation , Symbiosis , Propionates/metabolism , Clostridiales/metabolism , Acetates/metabolism , Adult
10.
PLoS One ; 19(4): e0301532, 2024.
Article in English | MEDLINE | ID: mdl-38626052

ABSTRACT

Physical exercise is known to modulate the intestinal microbiota composition and control the symptoms of metabolic syndrome. In this research, we intend to investigate and compare the effect of high-intensity interval and continuous endurance trainings (HIIT and CET) on cecal microbiota metabolites and inflammatory factors in diabetic rats. A number of Wistar rats were made diabetic by a high-fat diet and trained under two types of exercise protocols, HIIT and CET. After taking samples from the cecal tissue and serum of rats to reveal the effect of exercise, three microbial species from the Firmicute and Bacteroid phyla, which are the main types of intestinal microbes, and their metabolites include two short-chain fatty acids (SCFAs), butyrate and propionate and also, the inflammatory factors TLR4 and IL6 were analyzed through quantitative polymerase chain reaction (qPCR), high-performance liquid chromatography (HPLC), and Enzyme-linked immunosorbent assay (ELISA) methods. In general, exercise while increasing the representative of Firmicute has caused a relative reduction of Bacteroides and improved the concentration of SCFAs. In this regard, HIIT outperforms CET in up-regulating Akkermansia and Butyrivibrio expression, and butyrate and propionate metabolites concentration. Also, both exercises significantly reduced cecal expression of TLR4 and sera concentration of IL6 compared to the diabetic group, although the reduction rate was higher in the CET group than in HIIT. Our findings suggest that some symptoms of metabolic syndrome such as intestinal dysbiosis and the resulting metabolic disorders are better controlled by HIIT and inflammation by CET. Certainly, more extensive research on other contributing factors could help clarify the results.


Subject(s)
Diabetes Mellitus, Experimental , High-Intensity Interval Training , Metabolic Syndrome , Microbiota , Rats , Animals , Diet, High-Fat/adverse effects , Rats, Wistar , Propionates/pharmacology , Interleukin-6/pharmacology , Toll-Like Receptor 4 , Fatty Acids, Volatile/metabolism , Butyrates/pharmacology , High-Intensity Interval Training/methods
11.
Mol Genet Genomic Med ; 12(4): e2430, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581121

ABSTRACT

BACKGROUND: Congenital insensitivity to pain with anhidrosis (CIPA) is an extremely rare autosomal recessive disorder caused by loss-of-function mutations of the NTRK1 gene, affecting the autonomic and sensory nervous system. Clinical manifestation is varied and includes recurrent fever, pain insensitivity, anhidrosis, self-mutilating behavior, and intellectual disability. METHODS: Clinical and genetic features were assessed in two males and one female with genetically confirmed CIPA using exome or genome sequencing. RESULTS: CIPA symptoms including recurrent fever, pain insensitivity, and anhidrosis manifested at the age of 1 year (age range: 0.3-8 years). Two patients exhibited self-mutilation tendencies, intellectual disability, and developmental delay. Four NTRK1 (NM_002529.3) mutations, c.851-33T>A (p.?), c.2020G>T (p.Asp674Tyr), c.2303C>T (p.Pro768Leu), and c.574-156_850+1113del (exons 5-7 del) were identified. Two patients exhibited early onset and severe phenotype, being homozygous for c.851-33T>A (p.?) mutations and compound heterozygous for c.851-33T>A (p.?) and c.2020G>T (p.Asp674Tyr) mutation of NTRK1. The third patient with compound heterozygous mutations of c.2303C>T (p.Pro768Leu) and c.574-156_850+1113del (exons 5-7 del) displayed a late onset and milder clinical manifestation. CONCLUSION: All three patients exhibited variable phenotypes and disease severity. This research enriches our understanding of clinical and genetic aspects of CIPA, highlighting variable phenotypes and disease severity.


Subject(s)
Channelopathies , Hereditary Sensory and Autonomic Neuropathies , Hypohidrosis , Indoles , Intellectual Disability , Pain Insensitivity, Congenital , Propionates , Child , Child, Preschool , Female , Humans , Infant , Male , Hereditary Sensory and Autonomic Neuropathies/genetics , Hypohidrosis/genetics , Pain
12.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 332-337, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38595254

ABSTRACT

OBJECTIVE: To analyze the concentration of formic acid, propionic acid and butyric acid in gingival crevicular fluid (GCF) of patients with stages Ⅲ and Ⅳ periodontitis, and their relationship with periodontitis. METHODS: The study enrolled 37 systemically healthy patients with periodontitis and 19 healthy controls who visited Department of Periodontology, Peking University School and Hospital of Stomatology from February 2008 to May 2011. Their GCFs were collected from the mesial-buccal site of one molar or incisor in each quadrant. Periodontal clinical parameters, including plaque index(PLI), probing depth(PD), bleeding index(BI), and attachment loss(AL). Concentrations of formic acid, propionic acid and butyric acid in the supernatant of the GCFs were analyzed by high-performance capillary electrophoresis (HPCE). The prediction ability of formic acid, propionic acid and butyric acid with the risk of periodontitis and the differences between grade B and grade C periodontitis were analyzed. RESULTS: In this study, 32 patients with stage Ⅲ and 5 patients with stage Ⅳ were enrolled, including 9 patients with grade B and 28 patients with grade C. Clinical periodontal variables in the patients with periodontitis were significantly higher than those in the control group (P<0.001). Formic acid was significantly lower in periodontitis than that in the control group [5.37 (3.39, 8.49) mmol/L vs. 12.29 (8.35, 16.57) mmol/L, P<0.001]. Propionic acid and butyric acid in periodontitis were significantly higher than those in the control group: Propionic acid, 10.23 (4.28, 14.90) mmol/L vs. 2.71 (0.00, 4.25) mmol/L, P < 0.001; butyric acid, 2.63 (0.47, 3.81) mmol/L vs. 0.00 (0.00, 0.24) mmol/L, P<0.001. There was no significant difference in formic acid, propionic acid and butyric acid concentrations between grade B and grade C periodontitis (P>0.05). Propionic acid and butyric acid in the deep pocket were significantly higher than in the shallow pocket, while the concentration of formic acid decreased with the increase of PD. Propionic acid (OR=1.51, 95%CI: 1.29-1.75) and butyric acid (OR=3.72, 95%CI: 1.93-7.17) were risk factors for periodontitis, while formic acid (OR=0.87, 95%CI: 0.81-0.93) might be a protective factor for periodontitis. Propionic acid (AUC=0.852, 95%CI: 0.805-0.900), butyric acid (AUC=0.889, 95%CI: 0.841-0.937), f (formic acid, AUC=0.844, 95%CI: 0.793-0.895) demonstrated a good predictive capacity for the risk of periodontitis. CONCLUSION: The concentration of formic acid decrease in the GCF of periodontitis patients, which is a protective factor for periodontitis, its reciprocal have good predictive capacity. However, propionic acid and butyric acid increase, which are risk factors for periodontitis and have good predictive capacity. The concentration of formic acid, propionic acid, and butyric acid vary with probing depth, but there is no significant difference between grade B and grade C periodontitis.


Subject(s)
Formates , Gingival Crevicular Fluid , Periodontitis , Propionates , Humans , Butyric Acid/analysis , Gingival Crevicular Fluid/chemistry , Fatty Acids, Volatile/analysis , Periodontal Attachment Loss
13.
Org Lett ; 26(15): 3158-3163, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38588324

ABSTRACT

We uncovered the biosynthetic pathway of the lethal mycotoxin 3-nitropropanoic acid (3-NPA) from koji mold Aspergillus oryzae. The biosynthetic gene cluster (BGC) of 3-NPA, which encodes an amine oxidase and a decarboxylase, is conserved in many fungi used in food processing, although most of the strains have not been reported to produce 3-NPA. Our discovery will lead to efforts that improve the safety profiles of these indispensable microorganisms in making food, alcoholic beverages, and seasoning.


Subject(s)
Aspergillus oryzae , Mycotoxins , Mycotoxins/metabolism , Nitro Compounds , Propionates , Aspergillus oryzae/genetics , Aspergillus oryzae/metabolism
14.
Anim Biotechnol ; 35(1): 2337748, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38592802

ABSTRACT

The use of chitosan (CHI) in ruminant diets is a promising natural modifier for rumen fermentation, capable of modulating both the rumen pattern and microbial activities. The objective of this study was to explore the rumen fermentation and microbial populations in Dhofari goats fed a diet supplemented with CHI. A total of 24 Dhofari lactating goats (body weight, 27.32 ± 1.80 kg) were assigned randomly into three experimental groups (n = 8 ewes/group). Goats were fed a basal diet with either 0 (control), 180 (low), or 360 (high) mg CHI/kg of dietary dry matter (DM) for 45 days. Feeding high CHI linearly increased (p < 0.05) the propionate level and reduced the acetate, butyrate, and total protozoa count (p < 0.05). Ruminal ammonia nitrogen (NH3-N) concentrations and the acetate:propionate ratio decreased linearly when goats were fed CHI (p < 0.05). The abundances of both Spirochetes and Fibrobacteres phyla were reduced (p < 0.05) with both CHI doses relative to the control. Both low and high CHI reduced (p < 0.05) the relative abundances of Butyrivibrio hungatei, Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens, Selenomonas ruminantium and Neocallimastix californiae populations. Adding CHI significantly decreased (p < 0.05) the abundances of Ascomycota, Basidiomycota, and Bacillariophyta phyla compared to the control. Adding CHI to the diet reduces the abundance of fibrolytic-degrading bacteria, however, it increases the amylolytic-degrading bacteria. Application of 360 mg of CHI/kg DM modified the relative populations of ruminal microbes, which could enhance the rumen fermentation patterns in Dhofari goats.


Subject(s)
Chitosan , Animals , Sheep , Female , Chitosan/metabolism , Propionates/metabolism , Rumen/metabolism , Lactation , Goats , Fermentation , Diet/veterinary , Acetates/metabolism , Animal Feed/analysis
15.
Food Microbiol ; 121: 104525, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637087

ABSTRACT

The lack of vitamin B12 in unprocessed plant-based foods can lead to health problems in strict vegetarians and vegans. The main aim of this study was to investigate the potential synergy of co-culturing Bifidobacterium animalis subsp. lactis and Propionibacterium freudenreichii in improving production of vitamin B12 and short-chain fatty acids in soy whey. Different strategies including mono-, sequential and simultaneous cultures were adopted. Growth, short-chain fatty acids and vitamin B12 were assessed throughout the fermentation while free amino acids, volatiles, and isoflavones were determined on the final day. P. freudenreichii monoculture grew well in soy whey, whereas B. lactis monoculture entered the death phase by day 4. Principal component analysis demonstrates that metabolic changes in both sequential cultures did not show drastic differences to those of P. freudenreichii monoculture. However, simultaneous culturing significantly improved vitamin B12, acetic acid and propionic acid contents (1.3 times, 5 times, 2.5 times, compared to the next highest treatment [sequential cultures]) in fermented soy whey relative to other culturing modes. Hence, co-culturing of P. freudenreichii and B. lactis would provide an alternative method to improve vitamin B12, acetic acid and propionic acid contents in fermented foods.


Subject(s)
Bifidobacterium animalis , Propionibacterium freudenreichii , Propionates , Propionibacterium freudenreichii/metabolism , Bifidobacterium animalis/metabolism , Whey , Vitamin B 12/analysis , Vitamin B 12/metabolism , Propionibacterium/metabolism , Fatty Acids, Volatile/metabolism , Fermentation , Acetic Acid/metabolism , Whey Proteins/metabolism , Vitamins/metabolism
16.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38567815

ABSTRACT

In cattle, lateral asymmetry affects ovarian function and embryonic sex, but the underlying molecular mechanisms remain unknown. The plasma metabolome of recipients serves to predict pregnancy after embryo transfer (ET). Thus, the aim of this study was to investigate whether the plasma metabolome exhibits distinct lateral patterns according to the sex of the fetus carried by the recipient and the active ovary side (AOS), i.e., the right ovary (RO) or the left ovary (LO). We analyzed the plasma of synchronized recipients by 1H+NMR on day 0 (estrus, n = 366) and day 7 (hours prior to ET; n = 367). Thereafter, a subset of samples from recipients that calved female (n = 50) or male (n = 69) was used to test the effects of embryonic sex and laterality on pregnancy establishment. Within the RO, the sex ratio of pregnancies carried was biased toward males. Significant differences (P < 0.05) in metabolite levels were evaluated based on the day of blood sample collection (days 0, 7 and day 7/day 0 ratio) using mixed generalized models for metabolite concentration. The most striking differences in metabolite concentrations were associated with the RO, both obtained by multivariate (OPLS-DA) and univariate (mixed generalized) analyses, mainly with metabolites measured on day 0. The metabolites consistently identified through the OPLS-DA with a higher variable importance in projection score, which allowed for discrimination between male fetus- and female fetus-carrying recipients, were hippuric acid, l-phenylalanine, and propionic acid. The concentrations of hydroxyisobutyric acid, propionic acid, l-lysine, methylhistidine, and hippuric acid were lowest when male fetuses were carried, in particular when the RO acted as AOS. No pathways were significantly regulated according to the AOS. In contrast, six pathways were found enriched for calf sex in the day 0 dataset, three for day 7, and nine for day 7/day 0 ratio. However, when the AOS was the right, 20 pathways were regulated on day 0, 8 on day 7, and 13 within the day 7/day 0 ratio, most of which were related to amino acid metabolism, with phenylalanine, tyrosine, and tryptophan biosynthesis and phenylalanine metabolism pathways being identified throughout. Our study shows that certain metabolites in the recipient plasma are influenced by the AOS and can predict the likelihood of carrying male or female embryos to term, suggesting that maternal metabolism prior to or at the time of ET could favor the implantation and/or development of either male or female embryos.


This study explored how the active ovary side (AOS, i.e., left or right) and the sex of the calf carried by the recipient relate to the plasma metabolome in blood. For this purpose, we analyzed blood samples from heifers at two specific times: the day of the estrus and the day of the embryo transfer. We found significant differences in the sex ratio of pregnancies carried in the right ovary, and in the levels of certain metabolites depending on whether the active ovary was on the right or left and whether the calf was male or female. As examples, the concentrations of hydroxyisobutyric acid, propionic acid, l-lysine, methylhistidine, and hippuric acid were lowest when male calves were carried, in particular when the right ovary was active. Interestingly, the calf sex also influenced certain metabolic pathways, especially in the right AOS, several of them related to amino acid metabolism. However, no significant metabolic pathway changes were observed based solely on which ovary was active. Overall, the study suggests that the metabolism of the recipient, influenced by the AOS, might play a role in the successful implantation and development of embryos of a certain sex. This insight could potentially help to predict and improve pregnancy outcomes in cattle through embryo transfer techniques.


Subject(s)
Embryo Transfer , Hippurates , Ovary , Propionates , Male , Pregnancy , Cattle , Female , Animals , Pregnancy Rate , Embryo Transfer/veterinary , Metabolome , Phenylalanine
17.
Clin Transl Sci ; 17(2): e13731, 2024 02.
Article in English | MEDLINE | ID: mdl-38564661

ABSTRACT

Organic anion-transporting polypeptides (OATP)1B are drug transporters mainly expressed in the sinusoidal membrane. Many studies have suggested that OATP1B activity is affected by genetic factor, the uremic toxin 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), and inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Coproporphyrin-I (CP-I) is spotlighted as a highly accurate endogenous substrate of OATP1B. We previously reported a positive correlation between plasma CMPF and CP-I concentrations in patients with chronic kidney disease (CKD). The present study evaluated the impact of genetic polymorphisms, CMPF, IL-6, TNF-α, and estimated glomerular filtration rate (eGFR) on individual differences in OATP1B activity in patients with CKD. Seventy-three patients with CKD who received kidney transplant at least 3 months earlier were analyzed. Plasma CP-I concentration was higher in OATP1B1*15 carriers than in non-carriers. In all patients, CP-I did not correlate significantly with CMPF, IL-6, TNF-α, or eGFR. However, when the dataset was cut off at CMPF concentration of 8 and 7 µg/mL, 4 µg/mL, 3 µg/mL or 2 µg/mL, CMPF correlated positively with CP-I, and correlation coefficient tended to be higher as plasma CMPF concentration was lower. In conclusion, OATP1B1*15 impacted OATP1B activity in patients with CKD, but IL-6 and TNF-α did not. However, the impact of CMPF on OATP1B activity was limited to low CMPF concentrations, and the effect could be saturated at high concentrations. When prescribing an OATP1B substrate drug for patients with CKD, the OATP1B1*15 carrier status and plasma CMPF concentration may need to be considered to decide the dose regimen.


Subject(s)
Interleukin-6 , Propionates , Renal Insufficiency, Chronic , Humans , Tumor Necrosis Factor-alpha , Furans
18.
Inorg Chem ; 63(15): 6776-6786, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38572830

ABSTRACT

The heme-containing chlorite dismutases catalyze the rapid and efficient decomposition of chlorite (ClO2-) to yield Cl- and O2, and the catalytic efficiency of chlorite dismutase from Dechloromonas aromatica (DaCld) in catalyzing the decomposition of bromite (BrO2-) was dependent on pH, which was supposed to be caused by the conversion of active Cpd I to the inactive Cpd II by proton-coupled electron transfer (PCET) from the pocket Tyr118 to the propionate side chain of heme at high pH. However, the direct evidence of PCET and how the pH affects the efficiency of DaCld, as well as whether Cpd II is really inactive, are still poorly understood. Here, on the basis of the high-resolution crystal structures, the computational models in both acidic (pH 5.0) and alkaline (pH 9.0) environments were constructed, and a series of quantum mechanical/molecular mechanical calculations were performed. On the basis of our calculation results, the O-Br bond cleavage of BrO2- always follows the homolytic mode to generate Cpd II rather than Cpd I. It is different from the O-O cleavage of O2/H2O2 or peracetic acid catalyzed by the other heme-containing enzymes. Thus, in the subsequent O-O rebound reaction, it is the Fe(IV)═O in Cpd II that combines with the O-Br radical. Because the porphyrin ring in Cpd II does not bear an unpaired electron, the previously suggested PCET from Tyr118 to the propionate side chain of heme was not theoretically recognized in an alkaline environment. In addition, the O-O rebound step in an alkaline solution corresponds to an energy barrier that is larger than that in an acidic environment, which can well explain the pH dependence of the activity of DaCld. In addition, the protonation state of the propionic acid side chains of heme and the surrounding hydrogen bond networks were calculated to have a significant impact on the barriers of the O-O rebound step, which is mainly achieved by affecting the reactivity of the Fe(IV)═O group in Cpd II. In an acidic environment, the relatively weaker coordination of the O2 atom to Fe leads to its higher reactivity toward the O-O rebound reaction. These observations may provide useful information for understanding the catalysis of chlorite dismutases.


Subject(s)
Betaproteobacteria , Chlorides , Hydrogen Peroxide , Oxidoreductases , Propionates , Hydrogen Peroxide/chemistry , Catalysis , Protons , Hydrogen-Ion Concentration , Heme/chemistry
19.
Article in English | MEDLINE | ID: mdl-38573743

ABSTRACT

Facultatively anaerobic bacterial strains were isolated from samples of a methanogenic reactor and, based on 16S rRNA gene sequences, found to be affiliated with the family Propionibacteriaceae in the phylum Actinomycetota. Four strains with almost-identical 16S rRNA gene sequences were comprehensively characterized. The most closely related species to the strains was Brooklawnia cerclae BL-34T (96.4 % sequence similarity). Although most of the phenotypic characteristics of the four strains were identical, distinct differences in some cellular and physiological properties were also detected. Cells of the strains were Gram-stain-positive, non-spore-forming, pleomorphic rods. The strains utilized carbohydrates and organic acids. The strains produced acetate, propionate and lactate from glucose, but the molar ratios of the products were variable depending on the strains. The strains grew at 10-40 °C (optimum at 35 °C) and pH 5.3-8.8 (optimum at pH 6.8-7.5.) The major cellular fatty acids of the strains were anteiso-C15 : 0, C15 : 0 and C15 : 0 dimethylacetal (as a summed feature). The major respiratory quinone was menaquinone MK-9(H4) and the diagnostic diamino acid in the peptidoglycan was meso-diaminopimelic acid. The genome size of the type strain (SH051T) was 3.21 Mb and the genome DNA G+C content was 65.7 mol%. Genes responsible for propionate production through the Wood-Werkman pathway were detected in the genome of strain SH051T. Based on the results of phylogenetic, genomic and phenotypic analyses of the novel strains, the name Brooklawnia propionicigenes sp. nov. is proposed to accommodate the four strains. The type strain of the novel species is SH051T (=NBRC 116195T=DSM 116141T).


Subject(s)
Propionates , Propionibacteriaceae , Cattle , Animals , Anaerobiosis , Farms , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Bacteria, Anaerobic
20.
J Nutr Sci Vitaminol (Tokyo) ; 70(2): 139-149, 2024.
Article in English | MEDLINE | ID: mdl-38684384

ABSTRACT

Since propionate exerts several physiological effects, maintenance of its normal colonic fermentation is essential. To investigate whether vitamin B12 (VB12) is essential for normal propionate fermentation by colonic bacteria, via the succinate pathway, we examined if high-amylose cornstarch (HACS) feeding activated such a pathway, if high HACS feeding impaired propionate fermentation, and if oral VB12 supplementation normalized propionate fermentation. Male rats were given control, 20% HACS or 3% fucose diets (Expt. 1); a VB12-free control diet or one supplemented with 5-30% HACS (Expt. 2); and the 20% HACS diet supplemented with 0.025-25 mg/kg of VB12 (Expt. 3), for 14 d. HACS feeding significantly increased cecal succinate concentration, activating the succinate pathway (Expt. 1). Cecal cobalamin concentration in 20% and 30% HACS groups was about 75% of that in the control group (Expt. 2). Cecal succinate and propionate concentrations significantly increased and decreased in 30% HACS groups, respectively, compared with the control group. Although HACS group supplemented with 0.025 mg/kg of VB12 had a low concentration of cecal propionate, adding high amounts of VB12 to HACS diets provided sufficient amounts of VB12 to rat ceca and increased cecal propionate concentration (Expt. 3). Compared with the non-HACS group, the relative abundance of Akkermansia muciniphila, but not Bacteroides/Phocaeicola, was lower in the HACS counterpart and showed improvement with increased VB12 doses. To summarize, feeding high HACS decreased and increased cecal VB12 and succinate concentrations, respectively. Furthermore, colonic delivery of sufficient amounts of VB12 to rats likely reduced accumulation of succinate and normalized propionate fermentation.


Subject(s)
Amylose , Cecum , Colon , Dietary Supplements , Fermentation , Propionates , Starch , Vitamin B 12 , Animals , Male , Propionates/metabolism , Cecum/microbiology , Cecum/metabolism , Vitamin B 12/administration & dosage , Vitamin B 12/pharmacology , Colon/metabolism , Colon/microbiology , Starch/metabolism , Starch/administration & dosage , Amylose/administration & dosage , Amylose/metabolism , Rats , Succinic Acid/metabolism , Diet , Rats, Wistar , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...