Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.130
Filter
1.
Cells ; 13(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38334645

ABSTRACT

We previously published that in patients with infantile hemangioma (IH) at the onset (T0) colony forming unit-fibroblasts (CFU-Fs) are present in in vitro cultures from PB. Herein, we characterize these CFU-Fs and investigate their potential role in IH pathogenesis, before and after propranolol therapy. The CFU-F phenotype (by flow cytometry), their differentiation capacity and ability to support angiogenesis (by in vitro cultures) and their gene expression (by RT-PCR) were evaluated. We found that CFU-Fs are actual circulating MSCs (cMSCs). In patients at T0, cMSCs had reduced adipogenic potential, supported the formation of tube-like structures in vitro and showed either inflammatory (IL1ß and ESM1) or angiogenic (F3) gene expression higher than that of cMSCs from CTRLs. In patients receiving one-year propranolol therapy, the cMSC differentiation in adipocytes improved, while their support in in vitro tube-like formation was lost; no difference was found between patient and CTRL cMSC gene expressions. In conclusion, in patients with IH at T0 the cMSC reduced adipogenic potential, their support in angiogenic activity and the inflammatory/angiogenic gene expression may fuel the tumor growth. One-year propranolol therapy modifies this picture, suggesting cMSCs as one of the drug targets.


Subject(s)
Hemangioma , Mesenchymal Stem Cells , Humans , Propranolol/pharmacology , Propranolol/therapeutic use , Propranolol/metabolism , Transcriptome , Mesenchymal Stem Cells/metabolism , Adipogenesis/genetics , Hemangioma/genetics , Hemangioma/drug therapy , Hemangioma/metabolism
2.
Plant Commun ; 5(1): 100679, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37653727

ABSTRACT

Plant diseases cause enormous economic losses in agriculture and threaten global food security, and application of agrochemicals is an important method of crop disease control. Exploration of disease-resistance mechanisms and synthesis of highly bioactive agrochemicals are thus important research objectives. Here, we show that propranolol, a phosphatidate phosphatase (Pah) inhibitor, effectively suppresses fungal growth, sporulation, sexual reproduction, and infection of diverse plants. The MoPah1 enzyme activity of the rice blast fungus Magnaporthe oryzae is inhibited by propranolol. Alterations in lipid metabolism are associated with inhibited hyphal growth and appressorium formation caused by propranolol in M. oryzae. Propranolol inhibits a broad spectrum of 12 plant pathogens, effectively inhibiting infection of barley, wheat, maize, tomato, and pear. To improve antifungal capacity, we synthesized a series of propranolol derivatives, one of which shows a 16-fold increase in antifungal ability and binds directly to MoPah1. Propranolol and its derivatives can also reduce the severity of rice blast and Fusarium head blight of wheat in the field. Taken together, our results demonstrate that propranolol suppresses fungal development and infection through mechanisms involved in lipid metabolism. Propranolol and its derivatives may therefore be promising candidates for fungicide development.


Subject(s)
Fungicides, Industrial , Magnaporthe , Oryza , Fungicides, Industrial/pharmacology , Fungicides, Industrial/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Oryza/microbiology , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/pharmacology , Propranolol/pharmacology , Propranolol/metabolism , Magnaporthe/metabolism , Triticum
3.
J Cell Mol Med ; 28(2): e18047, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37970991

ABSTRACT

Proranolol has long been recommended to prevent variceal bleeding in patients with cirrhosis. However, the mechanisms of propranolol in liver fibrosis have not yet been thoroughly elucidated. Autophagic cell death (ACD) of activated hepatic stellate cells (HSCs) is important in the alleviation of liver fibrosis. Our study aims to assess the mechanisms of propranolol regulating HSC ACD and liver fibrosis. ACD of HSCs was investigated using lentivirus transfection. The molecular mechanism was determined using a PCR profiler array. The role of autophagy-related protein 9b (ATG9b) in HSC ACD was detected using co-immunoprecipitation and co-localization of immunofluorescence. Changes in the signalling pathway were detected by the Phospho Explorer antibody microarray. Propranolol induces ACD and apoptosis in HSCs. ATG9b upregulation was detected in propranolol-treated HSCs. ATG9b upregulation promoted ACD of HSCs and alleviated liver fibrosis in vivo. ATG9b enhanced the P62 recruitment to ATG5-ATG12-LC3 compartments and increased the co-localization of P62 with ubiquitinated proteins. The PI3K/AKT/mTOR pathway is responsible for ATG9b-induced ACD in activated HSCs, whereas the p38/JNK pathway is involved in apoptosis. This study provides evidence for ATG9b as a new target gene and propranolol as an agent to alleviate liver fibrosis by regulating ACD of activated HSCs.


Subject(s)
Autophagic Cell Death , Esophageal and Gastric Varices , Humans , Hepatic Stellate Cells/metabolism , Propranolol/pharmacology , Propranolol/metabolism , Up-Regulation , Phosphatidylinositol 3-Kinases/metabolism , Esophageal and Gastric Varices/metabolism , Esophageal and Gastric Varices/pathology , Gastrointestinal Hemorrhage/metabolism , Gastrointestinal Hemorrhage/pathology , Liver Cirrhosis/metabolism , Liver/metabolism , Autophagy
4.
Environ Toxicol Chem ; 43(4): 807-820, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38146914

ABSTRACT

Propranolol is a heavily prescribed, nonspecific beta-adrenoceptor (bAR) antagonist frequently found in wastewater effluents, prompting concern over its potential to adversely affect exposed organisms. In the present study, the transcriptional responses of 4, 5, and 6 days postfertilization (dpf) ±1 h fathead minnow, exposed for 6, 24, or 48 h to 0.66 or 3.3 mg/L (nominal) propranolol were characterized using RNA sequencing. The number of differentially expressed genes (DEGs) was used as an estimate of sensitivity. A trend toward increased sensitivity with age was observed; fish >7 dpf at the end of exposure were particularly sensitive to propranolol. The DEGs largely overlapped among treatment groups, suggesting a highly consistent response that was independent of age. Cluster analysis was performed using normalized count data for unexposed and propranolol-exposed fish. Control fish clustered tightly by age, with fish ≥7 dpf clustering away from younger fish, reflecting developmental differences. When clustering was conducted using exposed fish, in cases where propranolol induced a minimal or no transcriptional response, the results mirrored those of the control fish and did not appreciably cluster by treatment. In treatment groups that displayed a more robust transcriptional response, the effects of propranolol were evident; however, fish <7 dpf clustered away from older fish, despite having similar numbers of DEGs. Increased sensitivity at 7 dpf coincided with developmental milestones with the potential to alter propranolol pharmacokinetics or pharmacodynamics, such as the onset of exogenous feeding and gill functionality as well as increased systemic expression of bAR. These results may have broader implications because toxicity testing often utilizes fish <4 dpf, prior to the onset of these potentially important developmental milestones, which may result in an underestimation of risk for some chemicals. Environ Toxicol Chem 2024;43:807-820. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Cyprinidae , Water Pollutants, Chemical , Animals , Propranolol/toxicity , Propranolol/metabolism , Cyprinidae/physiology , Water Pollutants, Chemical/analysis
5.
Molecules ; 28(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38067513

ABSTRACT

Propranolol, a non-selective beta-blocker medication, has been utilized in the treatment of cardiovascular diseases for several decades. Its hydroxynaphthyl metabolites have been recognized to possess varying degrees of beta-blocker activity due to the unaltered side-chain. This study achieved the successful separation and identification of diastereomeric glucuronic metabolites derived from 4-, 5-, and 7-hydroxypropranolol (4-OHP, 5-OHP, and 7-OHP) in human urine. Subsequently, reaction phenotyping of 5- and 7-hydroxypropranolol by different uridine 5'-diphospho-glucuronosyltransferases (UGTs) was carried out, with a comparison to the glucuronidation of 4-hydroxypropranolol (4-OHP). Among the 19 UGT enzymes examined, UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2A1, and UGT2A2 were found to be involved in the glucuronidation of 5-OHP. Furthermore, UGT1A6 exhibited glucuronidation activity towards 7-OHP, along with the aforementioned eight UGTs. Results obtained by glucuronidation of corresponding methoxypropranolols and MS/MS analysis of 1,2-dimethylimidazole-4-sulfonyl (DMIS) derivatives of hydroxypropranolol glucuronides suggest that both the aromatic and aliphatic hydroxy groups of the hydroxypropranolols may be glucuronidated in vitro. However, the analysis of human urine samples collected after the administration of propranolol leads us to conclude that aromatic-linked glucuronidation is the preferred pathway under physiological conditions.


Subject(s)
Glucuronides , Microsomes, Liver , Humans , Glucuronides/metabolism , Microsomes, Liver/metabolism , Propranolol/metabolism , Tandem Mass Spectrometry , Glucuronosyltransferase/metabolism , Adrenergic beta-Antagonists , Kinetics
6.
Biochem Pharmacol ; 218: 115922, 2023 12.
Article in English | MEDLINE | ID: mdl-37956892

ABSTRACT

Infantile hemangioma (IH) is the most common benign tumor in children. Propranolol is the first-line treatment for IH, but the underlying mechanism of propranolol treatment in IH is not completely understood. Integrated transcriptional and metabolic analyses were performed to investigate the metabolic changes in hemangioma-derived endothelial cells (HemECs) after propranolol treatment. The findings were then further validated through independent cell experiments using a Seahorse XFp analyzer, Western blotting, immunohistochemistry and mitochondrial functional assays. Thirty-four differentially expressed metabolites, including the glycolysis metabolites glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-bisphosphate, were identified by targeted metabolomics. A KEGG pathway enrichment analysis showed that the disturbances in these metabolites were highly related to glucose metabolism-related pathways, including the pentose phosphate pathway, the Warburg effect, glycolysis and the citric acid cycle. Transcriptional analysis revealed that metabolism-related pathways, including glycine, serine and threonine metabolism, tyrosine metabolism, and glutathione metabolism, were highly enriched. Moreover, integration of the metabolomic and transcriptomic data revealed that glucose metabolism-related pathways, particularly glycolysis, were altered after propranolol treatment. Cell experiments demonstrated that HemECs exhibited higher levels of glycolysis than human umbilical vein ECs (HUVECs) and that propranolol suppressed glycolysis in HemECs. In conclusion, propranolol inhibited glucose metabolism in HemECs by suppressing glucose metabolic pathways, particularly glycolysis.


Subject(s)
Endothelial Cells , Hemangioma , Child , Humans , Endothelial Cells/metabolism , Propranolol/pharmacology , Propranolol/metabolism , Signal Transduction , Cell Proliferation , Hemangioma/drug therapy , Hemangioma/metabolism , Hemangioma/pathology , Glucose/metabolism , Phosphates/pharmacology
7.
Drug Metab Dispos ; 51(3): 306-317, 2023 03.
Article in English | MEDLINE | ID: mdl-36810196

ABSTRACT

The enantiomeric forms of chiral compounds have identical physical properties but may vary greatly in their metabolism by individual enzymes. Enantioselectivity in UDP-glucuronosyl transferase (UGT) metabolism has been reported for a number of compounds and with different UGT isoforms involved. However, the impact of such individual enzyme results on overall clearance stereoselectivity is often not clear. The enantiomers of medetomidine, RO5263397, and propranolol and the epimers testosterone and epitestosterone exhibit more than a 10-fold difference in glucuronidation rates by individual UGT enzymes. In this study, we examined the translation of human UGT stereoselectivity to hepatic drug clearance considering the combination of multiple UGTs to overall glucuronidation, the contribution of other metabolic enzymes such as cytochrome P450s (P450s), and the potential for differences in protein binding and blood/plasma partitioning. For medetomidine and RO5263397, the high individual enzyme (UGT2B10) enantioselectivity translated into ∼3- to >10-fold differences in predicted human hepatic in vivo clearance. For propranolol, the UGT enantioselectivity was irrelevant in the context of high P450 metabolism. For testosterone, a complex picture emerged due to differential epimeric selectivity of various contributing enzymes and potential for extrahepatic metabolism. Quite different patterns of P450- and UGT-mediated metabolism were observed across species, as well as differences in stereoselectivity, indicating that extrapolation from human enzyme and tissue data are essential when predicting human clearance enantioselectivity. SIGNIFICANCE STATEMENT: Individual enzyme stereoselectivity illustrates the importance of three-dimensional drug-metabolizing enzyme-substrate interactions and is essential when considering the clearance of racemic drugs. However, translation from in vitro to in vivo can be challenging as contributions from multiple enzymes and enzyme classes must be combined with protein binding and blood/plasma partitioning data to estimate the net intrinsic clearance for each enantiomer. Preclinical species may be misleading as enzyme involvement and metabolism stereoselectivity can differ substantially.


Subject(s)
Glucuronosyltransferase , Propranolol , Humans , Glucuronosyltransferase/metabolism , Propranolol/metabolism , Medetomidine/metabolism , Testosterone/metabolism , Cytochrome P-450 Enzyme System/metabolism , Microsomes, Liver/metabolism
8.
J Liposome Res ; 33(3): 258-267, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36594110

ABSTRACT

OBJECTIVE: In this work, a propranolol hydrochloride (PRH) transfersomes loaded cutaneous hydrogel patch was developed for topical drug delivery in the affected area of infantile haemangioma. METHODS: Sodium cholate was used as the edge activator to prepare the transfersomes. Based on the central composite design, transfersomes hydrogel patch formulation was optimised with 48 h cumulative penetration and time lag as response values. Particle sizes and morphology of the prepared transfersomes were assessed. They were loaded in a cutaneous hydrogel patch, after which their skin permeation abilities were evaluated, and histopathological effects were investigated using guinea pigs. Moreover, in vivo pharmacokinetics studies were performed in rats. RESULTS: The transfersomes system had a encapsulation efficiency of 81.84 ± 0.53%, particle size of 186.8 ± 3.38 nm, polydispersity index of 0.186 ± 0.002, and a zeta potential of -28.6 ± 2.39 mV. Transmission electron microscopy images revealed sphericity of the particles. The ex vivo drug's penetration of the optimised transfersomes hydrogel patch was 111.05 ± 11.97 µg/cm2 through rat skin within 48 h. Assessment of skin tissue did not reveal any histopathological alterations in epidermal and dermal cells. Pharmacokinetic studies showed that skin Cmax (68.22 µg/cm2) and AUC0-24 (1007.33 µg/cm2 × h) for PRH transfersomes hydrogel patch were significantly higher than those of commercially available oral dosage form and hydrogel patch without transfersomes. These findings imply that the transfersomes hydrogel patch can prolong drug accumulation in the affected skin area, and reduce systemic drug distribution via the blood stream. CONCLUSIONS: The hydrogel patch-loaded PRH transfersomes is a potentially useful drug formulation for infantile haemangioma.


Subject(s)
Hemangioma , Propranolol , Rats , Animals , Guinea Pigs , Propranolol/metabolism , Propranolol/pharmacology , Skin Absorption , Hydrogels/pharmacology , Liposomes/metabolism , Skin/metabolism , Administration, Cutaneous , Drug Delivery Systems , Hemangioma/metabolism , Particle Size , Drug Carriers/pharmacology
9.
Prostate ; 83(3): 237-245, 2023 02.
Article in English | MEDLINE | ID: mdl-36373761

ABSTRACT

BACKGROUND: There is accumulating evidence that propranolol, an antagonist of beta-1 and beta-2 adrenoreceptors, extends survival of patients with prostate cancer; yet it is not known whether propranolol inhibits beta-adrenergic signaling in prostate cancer cells, or systemic effects of propranolol play the leading role in slowing down cancer progression. Recently initiated clinical studies offer a possibility to test whether administration of propranolol inhibits signaling pathways in prostate tumors, however, there is limited information on the dynamics of signaling pathways activated downstream of beta-2 adrenoreceptors in prostate cancer cells and on the inactivation of these pathways upon propranolol administration. METHODS: Western blot analysis was used to test the effects of epinephrine and propranolol on activation of protein kinase (PKA) signaling in mouse prostates and PKA, extracellular signal-regulated kinase (ERK), and protein kinase B/AKT (AKT) signaling in prostate cancer cell lines. RESULTS: In prostate cancer cell lines epinephrine induced robust phosphorylation of PKA substrates pS133CREB and pS157VASP that was evident 2 min after treatments and lasted for 3-6 h. Epinephrine induced phosphorylation of AKT in PTEN-positive 22Rv1 cells, whereas changes of constitutive AKT phosphorylation were minimal in PTEN-negative PC3, C42, and LNCaP cells. A modest short-term increase of pERK in response to epinephrine was observed in all tested cell lines. Incubation of prostate cancer cells with 10-fold molar excess of propranolol for 30 min inhibited all downstream pathways activated by epinephrine. Subjecting mice to immobilization stress induced phosphorylation of S133CREB, whereas injection of propranolol at 1.5 mg/kg prevented the stress-induced phosphorylation. CONCLUSIONS: The analysis of pS133CREB and pS157VASP allows measuring activation of PKA signaling downstream of beta-2 adrenoreceptors. Presented results on the ratio of propranolol/epinephrine and the time needed to inhibit signaling downstream of beta-2 adrenoreceptors will help to design clinical studies that examine the effects of propranolol on prostate tumors.


Subject(s)
Propranolol , Prostatic Neoplasms , Humans , Male , Animals , Mice , Propranolol/pharmacology , Propranolol/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology , Phosphorylation , Epinephrine/pharmacology , Epinephrine/metabolism
10.
J Exp Biol ; 226(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36484145

ABSTRACT

The hypoxic ventilatory response (HVR) in fish is an important reflex that aids O2 uptake when low environmental O2 levels constrain diffusion. In developing zebrafish (Danio rerio), the acute HVR is multiphasic, consisting of a rapid increase in ventilation frequency (fV) during hypoxia onset, followed by a decline to a stable plateau phase above fV under normoxic conditions. In this study, we examined the potential role of catecholamines in contributing to each of these phases of the dynamic HVR in zebrafish larvae. We showed that adrenaline elicits a dose-dependent ß-adrenoreceptor (AR)-mediated increase in fV that does not require expression of ß1-ARs, as the hyperventilatory response to ß-AR stimulation was unaltered in adrb1-/- mutants, generated by CRISPR/Cas9 knockout. In response to hypoxia and propranolol co-treatment, the magnitude of the rapidly occurring peak increase in fV during hypoxia onset was attenuated (112±14 breaths min-1 without propranolol to 68±17 breaths min-1 with propranolol), whereas the increased fV during the stable phase of the HVR was prevented in both wild type and adrb1-/- mutants. Thus, ß1-AR is not required for the HVR and other ß-ARs, although not required for initiation of the HVR, are involved in setting the maximal increase in fV and in maintaining hyperventilation during continued hypoxia. This adrenergic modulation of the HVR may arise from centrally released catecholamines because adrenaline exposure failed to activate (based on intracellular Ca2+ levels) cranial nerves IX and X, which transmit O2 signals from the pharyngeal arch to the central nervous system.


Subject(s)
Catecholamines , Zebrafish , Animals , Zebrafish/physiology , Catecholamines/metabolism , Larva/metabolism , Propranolol/metabolism , Hypoxia , Receptors, Adrenergic, beta/metabolism , Epinephrine/pharmacology
11.
Int J Phytoremediation ; 25(1): 82-88, 2023.
Article in English | MEDLINE | ID: mdl-35414315

ABSTRACT

Micropollutants (MPs) include organic chemicals, for example, pharmaceuticals and personal care products. MPs have been detected in the aquatic environment at low concentrations (ng/L-µg/L), which may lead to negative impacts on the ecosystem and humans. Phytoremediation is a green clean-up technology, which utilizes plants and their associated rhizosphere microorganisms to remove pollutants. The selection of plant species is important for the effectiveness of the phytoremediation of MPs. The plant species Phragmites australis, Typha angustifolia, and Juncus effuses are often used for MP removal. In this study, batch experiments were conducted to select plant species with an optimal ability to remove MPs, study the effect of temperature on MP removal in plants and the phytotoxicity of MPs. This study also explored the degradation of a persistent MP propranolol in plants in more detail. Data show that all three investigated plant species removed most MPs efficiently (close to 100 %) at both 10 and 21.5 °C. The tested plant species showed a different ability to translocate and accumulate propranolol in plant tissues. Typha angustifolia and Juncus effuses had a higher tolerance to the tested MPs than Phragmites australis. Typha angustifolia and Juncus effuses are recommended to be applied for phytoremediation of MPs.Novelty statement The novelty of this study is the selection of Typha angustifolia and Juncus effuses as proper plant species for phytoremediation of micropollutants (MPs). These two plant species were selected due to their good ability to remove MPs, tolerate low temperature, and resist the toxicity of MPs. The outcomes from this study can also be applied for constructed wetlands in removing MPs from wastewater. This study demonstrates the uptake and degradation processes of persistent MP propranolol in plants in more detail. Understanding the degradation mechanisms of a MP in plants is significant not only for the application of phytoremediation on MP removal but also for the development of constructed wetland studies.


Subject(s)
Typhaceae , Water Pollutants, Chemical , Humans , Typhaceae/metabolism , Ecosystem , Biodegradation, Environmental , Propranolol/metabolism , Poaceae/metabolism , Plants/metabolism , Wetlands , Water Pollutants, Chemical/metabolism
12.
Neurotoxicology ; 93: 337-347, 2022 12.
Article in English | MEDLINE | ID: mdl-36341947

ABSTRACT

Propranolol hydrochloride is the first-line drug for the clinical treatment of hypertension, arrhythmia, and other diseases. However, with the increasing use of this drug, its safety and environmental health have received more and more attention. In this study, aquatic vertebrate zebrafish were used as a model to study the toxic effects and mechanisms of propranolol hydrochloride. It was revealed that zebrafish larvae exposed to propranolol hydrochloride showed aberrant head nerve development and locomotor disorders. Additionally, exposure to propranolol hydrochloride could induce oxidative stress, alter the activities of AChE and ATPase, and disrupt the expression of genes involved in neurodevelopment and neurotransmitter pathways. More interestingly, the expression of Parkinson's disease-related genes was altered in zebrafish treated with propranolol hydrochloride. We detected the expression of genes related to the Wnt signaling pathway and found that their expression appeared to be down-regulated. The phenotype of nerve developmental defects and locomotor disorders can be effectively rescued by astaxanthin and Wnt activators. Collectively, the results suggest that propranolol hydrochloride may induce neurotoxicity and abnormal movement behavior with PD-like symptoms in zebrafish larvae.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Larva , Embryo, Nonmammalian , Propranolol/toxicity , Propranolol/metabolism , Water Pollutants, Chemical/toxicity
13.
Cells ; 11(20)2022 10 19.
Article in English | MEDLINE | ID: mdl-36291161

ABSTRACT

Significant advancements in the field of preclinical in vitro blood-brain barrier (BBB) models have been achieved in recent years, by developing monolayer-based culture systems towards complex multi-cellular assays. The coupling of those models with other relevant organoid systems to integrate the investigation of blood-brain barrier permeation in the larger picture of drug distribution and metabolization is still missing. Here, we report for the first time the combination of a human induced pluripotent stem cell (hiPSC)-derived blood-brain barrier model with a cortical brain and a liver spheroid model from the same donor in a closed microfluidic system (MPS). The two model compounds atenolol and propranolol were used to measure permeation at the blood-brain barrier and to assess metabolization. Both substances showed an in vivo-like permeation behavior and were metabolized in vitro. Therefore, the novel multi-organ system enabled not only the measurement of parent compound concentrations but also of metabolite distribution at the blood-brain barrier.


Subject(s)
Blood-Brain Barrier , Induced Pluripotent Stem Cells , Pharmaceutical Preparations , Humans , Atenolol/metabolism , Blood-Brain Barrier/metabolism , Brain , Induced Pluripotent Stem Cells/metabolism , Liver , Pharmaceutical Preparations/metabolism , Propranolol/metabolism
14.
Commun Biol ; 5(1): 1097, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253525

ABSTRACT

Social recognition memory (SRM) is critical for maintaining social relationships and increasing the survival rate. The medial prefrontal cortex (mPFC) is an important brain area associated with SRM storage. Norepinephrine (NE) release regulates mPFC neuronal intrinsic excitability and excitatory synaptic transmission, however, the roles of NE signaling in the circuitry of the locus coeruleus (LC) pathway to the mPFC during SRM storage are unknown. Here we found that LC-mPFC NE projections bidirectionally regulated SRM consolidation. Propranolol infusion and ß-adrenergic receptors (ß-ARs) or ß-arrestin2 knockout in the mPFC disrupted SRM consolidation. When carvedilol, a ß-blocker that can mildly activate ß-arrestin-biased signaling, was injected, the mice showed no significant suppression of SRM consolidation. The impaired SRM consolidation caused by ß1-AR or ß-arrestin2 knockout in the mPFC was not rescued by activating LC-mPFC NE projections; however, the impaired SRM by inhibition of LC-mPFC NE projections or ß1-AR knockout in the mPFC was restored by activating the ß-arrestin signaling pathway in the mPFC. Furthermore, the activation of ß-arrestin signaling improved SRM consolidation in aged mice. Our study suggests that LC-mPFC NE projections regulate SRM consolidation through ß-arrestin-biased ß-AR signaling.


Subject(s)
Norepinephrine , Propranolol , Animals , Carvedilol/metabolism , Mice , Norepinephrine/metabolism , Norepinephrine/pharmacology , Prefrontal Cortex/physiology , Propranolol/metabolism , Propranolol/pharmacology , Receptors, Adrenergic, beta/metabolism , Signal Transduction , beta-Arrestins/metabolism
15.
Environ Toxicol Chem ; 41(12): 2993-2998, 2022 12.
Article in English | MEDLINE | ID: mdl-36102855

ABSTRACT

Uptake of active pharmaceutical ingredients (APIs) across the gill epithelium of fish is via either a passive or facilitated transport process, with the latter being more important at the lower concentrations more readily observed in the environment. The solute carrier (SLC) 22A family, which includes the organic cation transporter OCT2 (SLC22A2), has been shown in mammals to transport several endogenous chemicals and APIs. Zebrafish oct2 was expressed in Xenopus oocytes and the uptake of ranitidine, propranolol, and tetraethylammonium characterized. Uptake of ranitidine and propranolol was time- and concentration-dependent with a km and Vmax for ranitidine of 246 µM and 45 pmol/(oocyte × min) and for propranolol of 409 µM and 190 pmol/(oocyte × min), respectively. Uptake of tetraethylammonium (TEA) was inhibited by propranolol, amantadine, and cimetidine, known to be human OCT2 substrates, but not quinidine or ranitidine. At external media pH 7 and 8 propranolol uptake was 100-fold greater than at pH 6; pH did not affect ranitidine or TEA uptake. It is likely that cation uptake is driven by the electrochemical gradient across the oocyte. Uptake kinetics parameters, such as those derived in the present study, coupled with knowledge of transporter localization and abundance and API metabolism, can help derive pharmacokinetic models. Environ Toxicol Chem 2022;41:2993-2998. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Organic Cation Transport Proteins , Zebrafish , Animals , Cations , Oocytes/metabolism , Organic Cation Transport Proteins/metabolism , Organic Cation Transporter 2/metabolism , Propranolol/metabolism , Ranitidine/metabolism , Tetraethylammonium/metabolism , Xenopus laevis/metabolism , Zebrafish/metabolism
16.
Clin Transl Sci ; 15(10): 2392-2402, 2022 10.
Article in English | MEDLINE | ID: mdl-35962572

ABSTRACT

Little is known about the impact of age on the processes governing human intestinal drug absorption. The Ussing chamber is a system to study drug transport across tissue barriers, but it has not been used to study drug absorption processes in children. This study aimed to explore the feasibility of the Ussing chamber methodology to assess pediatric intestinal drug absorption. Furthermore, differences between intestinal drug transport processes of children and adults were explored as well as the possible impact of age. Fresh terminal ileal leftover tissues from both children and adults were collected during surgery and prepared for Ussing chamber experiments. Paracellular (enalaprilat), transcellular (propranolol), and carrier-mediated drug transport by MDR1 (talinolol) and BCRP (rosuvastatin) were determined with the Ussing chamber methodology. We calculated apparent permeability coefficients and efflux ratios and explored their relationship with postnatal age. The success rate for the Ussing chamber experiments, as determined by electrophysiological measurements, was similar between children (58%, N = 15, median age: 44 weeks; range 8 weeks to 17 years) and adults (67%, N = 13). Mean serosal to mucosal transport of talinolol by MDR1 and rosuvastatin by BCRP was higher in adult than in pediatric tissues (p = 0.0005 and p = 0.0091). In contrast, within our pediatric cohort, there was no clear correlation for efflux transport across different ages. In conclusion, the Ussing chamber is a suitable model to explore pediatric intestinal drug absorption and can be used to further elucidate ontogeny of individual intestinal pharmacokinetic processes like drug metabolism and transport.


Subject(s)
Intestinal Mucosa , Propranolol , Child , Humans , Infant , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Biological Transport , Enalaprilat/metabolism , Intestinal Mucosa/metabolism , Neoplasm Proteins/metabolism , Propranolol/metabolism , Rosuvastatin Calcium/metabolism , Child, Preschool , Adolescent
17.
Environ Pollut ; 311: 120016, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36007789

ABSTRACT

The presence of contaminants of emerging concern in the aquatic environment directly impacts water-living organisms and can alter their living functions. These compounds are often metabolized and excreted, but they can also be accumulated and spread through the food chain. The metabolized contaminants can also lead to the formation of new compounds with unknown toxicity and bioaccumulation potential. In this work, we have studied the occurrence, bioconcentration, and biotransformation of CECs in glass eels (Anguilla anguilla) using UHPLC-HRMS. To select the target CECs, we first carried out an environmental risk assessment of the WWTP effluent that releases directly into the Adour estuary (Bayonne, Basque Country, France). The risk quotients of every detected contaminant were calculated and three ecotoxicologically relevant contaminants were chosen to perform the exposure experiment: propranolol, diazepam, and irbesartan. An experiment of 14 days consisting of 7 days of exposure and 7 days of depuration was carried out to measure the bioconcentration of the chosen compounds. The quantitative results of the concentrations in glass eel showed that diazepam and irbesartan reached BCF ≈10 on day 7, but both compounds were eliminated after 7 days of depuration. On the other hand, propranolol's concentration remains constant all along with the experiment, and its presence can be detected even in the non-exposed control group, which might suggest environmental contamination. Two additional suspect screening strategies were used to identify metabolization products of the target compounds and other xenobiotics already present in wild glass eels. Only one metabolite was identified, nordiazepam, a well-known diazepam metabolite, probably due to the low metabolic rate of glass eels at this stage. The xenobiotic screening confirmed the presence of more xenobiotics in wild glass eels, prominent among them, the pharmaceuticals exemestane, primidone, iloprost, and norethandrolone.


Subject(s)
Anguilla , Water Pollutants, Chemical , Anguilla/metabolism , Animals , Bioaccumulation , Biotransformation , Diazepam/metabolism , Eels/metabolism , Estuaries , Irbesartan , Pharmaceutical Preparations/metabolism , Propranolol/metabolism , Risk Assessment , Spain , Water Pollutants, Chemical/analysis
18.
Clin Exp Pharmacol Physiol ; 49(11): 1232-1245, 2022 11.
Article in English | MEDLINE | ID: mdl-35866379

ABSTRACT

Cardiovascular diseases are the most disturbing problems throughout the world. The side effects of existing drugs are continuously compelling the scientist to look for better options in terms of safety, efficacy and cost-effectiveness. Our study is also a move in this direction. We have chosen D-pinitol to see its cardioprotective role in isoproterenol-induced myocardial infarction in Swiss albino mice. Grouping was made by dividing mice into eight groups (n = 6). Group I, control; Group II, isoproterenol (ISO) (150 mg/kg, i.p.); Group III, D-pinitol (PIN) (25 mg); Group IV, PIN (50 mg); Group V, PIN (100 mg) per kg per oral, respectively with ISO; Group VI, PIN per se (100 mg D-pinitol only); Group VII, Propranolol (PRO) (20 mg/kg/oral) with ISO; and Group VIII, PRO per se (20 mg/kg, p.o.). After 24 h of the last dose, the blood sample was collected for biochemical parameters, then mice were, killed through cervical dislocation under anaesthesia and cardiac tissue was collected for biochemical, histopathological and ultrastructural evaluation. Administration of ISO in mice altered the level of antioxidant markers, cardiac injury markers and inflammatory markers, which were significantly restored towards normal by D-pinitol at the dose of 50 and 100 mg. 25 mg of D-pinitol dosage, did not produce significant cardio protection. The histopathological and ultrastructural analysis further confirmed these findings. Our study showed that D-pinitol significantly protected myocardial damage which was induced by ISO and reverted oxidative stress and inflammation considerably.


Subject(s)
Antioxidants , Myocardial Infarction , Animals , Antioxidants/metabolism , Arrhythmias, Cardiac/drug therapy , Cardiotonic Agents/adverse effects , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Inositol/analogs & derivatives , Isoproterenol/toxicity , Mice , Myocardial Infarction/chemically induced , Myocardial Infarction/drug therapy , Myocardial Infarction/prevention & control , Myocardium/metabolism , Oxidative Stress , Propranolol/adverse effects , Propranolol/metabolism , Rats , Rats, Wistar
19.
J Mol Med (Berl) ; 100(9): 1299-1306, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35895125

ABSTRACT

Preclinical and early clinical mechanistic studies of antitumor activity from the beta-adrenergic receptor (ß-AR) blocker propranolol have revealed both cell signaling and immune function pathway effects. Intertumoral studies were performed using propranolol, a ß1-AR selective agent (atenolol), and a ß2-AR selective agent (ICI 118,551) in a preclinical in vivo model, as a step to dissect the contribution of cell signaling and CD8+ immunological effects on anticancer activity. We found that repression of ß2-AR but not ß1-AR signaling selectively suppressed cell viability and inhibited xenograft growth in vivo. Moreover, western blot analysis indicated that the phosphorylation levels of AKT/MEK/ERK were significantly decreased following the inhibition of ß2-AR. Furthermore, propranolol was found to activate the tumor microenvironment by inducing an increased intratumoral frequency of CD8+ T cells, whereas neither selective ß1 nor ß2-AR blockers had a significant effect on the tumor immune microenvironment. Thus, the results of this mechanistic dissection support a predominant role of tumor cell signaling, rather than the accumulation of CD8+ T cells, as the basis for propranolol antitumor activity. KEY MESSAGES : Molecular signaling of AKT/MAPK pathway contributes to propranolol caused cancer control. CD8+ T cells in tumor microenvironment were activated upon propranolol exposure. The basis for propranolol antitumor activity was predominantly dependent on cell signaling, rather than the activation of CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Propranolol , Adrenergic beta-Antagonists/metabolism , Adrenergic beta-Antagonists/pharmacology , Adrenergic beta-Antagonists/therapeutic use , Humans , Propranolol/metabolism , Propranolol/pharmacology , Propranolol/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
20.
Function (Oxf) ; 3(3): zqac020, 2022.
Article in English | MEDLINE | ID: mdl-35620477

ABSTRACT

ß-adrenergic receptor (ß-AR) signaling in cardiac myocytes is central to cardiac function, but spatiotemporal activation within myocytes is unresolved. In rabbit ventricular myocytes, ß-AR agonists or high extracellular [Ca] were applied locally at one end, to measure ß-AR signal propagation as Ca-transient (CaT) amplitude and sarcoplasmic reticulum (SR) Ca uptake. High local [Ca]o, increased CaT amplitude under the pipette faster than did ISO, but was also more spatially restricted. Local isoproterenol (ISO) or norepinephrine (NE) increased CaT amplitude and SR Ca uptake, that spread along the myocyte to the unexposed end. Thus, local [Ca]i decline kinetics reflect spatio-temporal progression of ß-AR end-effects in myocytes. To test whether intracellular ß-ARs contribute to this response, we used ß-AR-blockers that are membrane permeant (propranolol) or not (sotalol). Propranolol completely blocked NE-dependent CaT effects. However, blocking surface ß-ARs only (sotalol) suppressed only ∼50% of the NE-induced increase in CaT peak and rate of [Ca]i decline, but these changes spread more gradually than NE alone. We also tested whether A-kinase anchoring protein 7γ (AKAP7γ; that interacts with phospholamban) is mobile, such that it might contribute to intracellular spatial propagation of ß-AR signaling. We found AKAP7γ to be highly mobile using fluorescence recovery after photobleach of GFP tagged AKAP7γ, and that PKA activation accelerated AKAP7γ-GFP wash-out upon myocyte saponin-permeabilization, suggesting increased AKAP7γ mobility. We conclude that local ß-AR activation can activate SR Ca uptake at remote myocyte sites, and that intracellular ß-AR and AKAP7γ mobility may play a role in this spread of activation.


Subject(s)
Calcium , Myocytes, Cardiac , Animals , Rabbits , Adrenergic Agents/metabolism , Calcium/metabolism , Calcium Signaling , Calcium, Dietary/metabolism , Isoproterenol/pharmacology , Propranolol/metabolism , Receptors, Adrenergic, beta , Sotalol/metabolism , Adaptor Proteins, Signal Transducing/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...