Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.364
Filter
1.
Clin Transl Med ; 14(5): e1678, 2024 May.
Article in English | MEDLINE | ID: mdl-38736108

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 12 (CDK12)-deficient prostate cancer defines a subtype of castration-resistant prostate cancer (CRPC) with a poor prognosis. Current therapy, including PARP inhibitors, shows minimal treatment efficacy for this subtype of CRPC, and the underlying mechanism remains elusive. METHODS: Based on bioinformatics analysis, we evaluated the relationship between CDK12 deficiency and prostate cancer patient's prognosis and treatment resistance. Furthermore, we used CRISPR-Cas9 technology and mass spectrometry-based metabolomic profiling to reveal the metabolic characteristics of CDK12-deficient CRPC. To elucidate the specific mechanisms of CDK12 deficiency-mediated CRPC metabolic reprogramming, we utilized cell RNA-seq profiling and other molecular biology techniques, including cellular reactive oxygen species probes, mitochondrial function assays, ChIP-qPCR and RNA stability analyses, to clarify the role of CDK12 in regulating mitochondrial function and its contribution to ferroptosis. Finally, through in vitro drug sensitivity testing and in vivo experiments in mice, we identified the therapeutic effects of the electron transport chain (ETC) inhibitor IACS-010759 on CDK12-deficient CRPC. RESULTS: CDK12-deficient prostate cancers reprogramme cellular energy metabolism to support their aggressive progression. In particular, CDK12 deficiency enhanced the mitochondrial respiratory chain for electronic transfer and ATP synthesis to create a ferroptosis potential in CRPC cells. However, CDK12 deficiency downregulated ACSL4 expression, which counteracts the lipid oxidation stress, leading to the escape of CRPC cells from ferroptosis. Furthermore, targeting the ETC substantially inhibited the proliferation of CDK12-deficient CRPC cells in vitro and in vivo, suggesting a potential new target for the therapy of CDK12-deficient prostate cancer. CONCLUSIONS: Our findings show that energy and lipid metabolism in CDK12-deficient CRPC work together to drive CRPC progression and provide a metabolic insight into the worse prognosis of CDK12-deficient prostate cancer patients. KEY POINTS: CDK12 deficiency promotes castration-resistant prostate cancer (CRPC) progression by reprogramming cellular metabolism. CDK12 deficiency in CRPC leads to a more active mitochondrial electron transport chain (ETC), ensuring efficient cell energy supply. CDK12 phosphorylates RNA Pol II to ensure the transcription of ACSL4 to regulate ferroptosis. Mitochondrial ETC inhibitors exhibit better selectivity for CDK12-deficient CRPC cells, offering a promising new therapeutic approach for this subtype of CRPC patients.


Subject(s)
Cyclin-Dependent Kinases , Ferroptosis , Prostatic Neoplasms, Castration-Resistant , Male , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Ferroptosis/genetics , Humans , Mice , Animals , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Disease Progression , Cell Line, Tumor
2.
PLoS One ; 19(5): e0300413, 2024.
Article in English | MEDLINE | ID: mdl-38739593

ABSTRACT

Castration-resistant prostate cancer (CRPC) is associated with resistance to androgen deprivation therapy, and an increase in the population of neuroendocrine (NE) differentiated cells. It is hypothesized that NE differentiated cells secrete neuropeptides that support androgen-independent tumor growth and induce aggressiveness of adjacent proliferating tumor cells through a paracrine mechanism. The cytochrome b561 (CYB561) gene, which codes for a secretory vesicle transmembrane protein, is constitutively expressed in NE cells and highly expressed in CRPC. CYB561 is involved in the α-amidation-dependent activation of neuropeptides, and contributes to regulating iron metabolism which is often dysregulated in cancer. These findings led us to hypothesize that CYB561 may be a key player in the NE differentiation process that drives the progression and maintenance of the highly aggressive NE phenotype in CRPC. In our study, we found that CYB561 expression is upregulated in metastatic and NE prostate cancer (NEPC) tumors and cell lines compared to normal prostate epithelia, and that its expression is independent of androgen regulation. Knockdown of CYB561 in androgen-deprived LNCaP cells dampened NE differentiation potential and transdifferentiation-induced increase in iron levels. In NEPC PC-3 cells, depletion of CYB561 reduced the secretion of growth-promoting factors, lowered intracellular ferrous iron concentration, and mitigated the highly aggressive nature of these cells in complementary assays for cancer hallmarks. These findings demonstrate the role of CYB561 in facilitating transdifferentiation and maintenance of NE phenotype in CRPC through its involvement in neuropeptide biosynthesis and iron metabolism pathways.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Cell Line, Tumor , Phenotype , Neuroendocrine Cells/metabolism , Neuroendocrine Cells/pathology , Iron/metabolism , Cell Differentiation , Gene Expression Regulation, Neoplastic
3.
BMC Cancer ; 24(1): 554, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698344

ABSTRACT

BACKGROUND: Prostate cancer is dependent on androgen receptor (AR) signaling, and androgen deprivation therapy (ADT) has proven effective in targeting prostate cancer. However, castration-resistant prostate cancer (CRPC) eventually emerges. AR signaling inhibitors (ARSI) have been also used, but resistance to these agents develops due to genetic AR alterations and epigenetic dysregulation. METHODS: In this study, we investigated the role of OCT1, a member of the OCT family, in an AR-positive CRPC patient-derived xenograft established from a patient with resistance to ARSI and chemotherapy. We conducted a genome-wide analysis chromatin immunoprecipitation followed by sequencing and bioinformatic analyses using public database. RESULTS: Genome-wide analysis of OCT1 target genes in PDX 201.1 A revealed distinct OCT1 binding sites compared to treatment-naïve cells. Bioinformatic analyses revealed that OCT1-regulated genes were associated with cell migration and immune system regulation. In particular, C-terminal Binding Protein 2 (CTBP2), an OCT1/AR target gene, was correlated with poor prognosis and immunosuppressive effects in the tumor microenvironment. Metascape revealed that CTBP2 knockdown affects genes related to the immune response to bacteria. Furthermore, TISIDB analysis suggested the relationship between CTBP2 expression and immune cell infiltration in prostate cancer, suggesting that it may contribute to immune evasion in CRPC. CONCLUSIONS: Our findings shed light on the genome-wide network of OCT1 and AR in AR-positive CRPC and highlight the potential role of CTBP2 in immune response and tumor progression. Targeting CTBP2 may represent a promising therapeutic approach for aggressive AR-positive CRPC. Further validation will be required to explore novel therapeutic strategies for CRPC management.


Subject(s)
Alcohol Oxidoreductases , Co-Repressor Proteins , Gene Expression Regulation, Neoplastic , Octamer Transcription Factor-1 , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Mice , Animals , Octamer Transcription Factor-1/metabolism , Octamer Transcription Factor-1/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Up-Regulation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Tumor Microenvironment , Signal Transduction
4.
Sci Rep ; 14(1): 11271, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760451

ABSTRACT

Candidates for prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) of metastatic castration-resistant prostate cancer (mCRPC) frequently have "mismatch" lesions with pronounced 18-fluorodeoxyglucose ([18F]FDG) but attenuated PSMA ligand uptake on positron emission tomography (PET). However, no quantitative criteria yet exist to identify mismatch lesions and predict their response to RLT. To define such criteria, we retrospectively analyzed 267 randomly-selected glucometabolic mCRPC metastases from 22 patients. On baseline PET, we determined [18F]FDG and [68Ga]Ga-PSMA-11 maximum standardized uptake value (SUVmax), and calculated the [18F]FDG SUVmax/[68Ga]Ga-PSMA-11 SUVmax quotient (FPQ). From follow-up [18F]FDG PET after two lutetium-177-PSMA-617 RLT cycles, we evaluated the treatment response and categorized the lesions into three subgroups (partial remission, stable disease, progression) based on change in [18F]FDG SUVmax. Lastly, we compared the baseline PET variables in progressing versus non-progressing lesions. Variables differing significantly, and a score incorporating them, were assessed via receiver operator characteristic (ROC) curve analysis, regarding ability to predict lesional progression, with area under the curve (AUC) as metric. Cut-offs with optimal sensitivity and specificity were determined using the maximum value of Youden's index. Fifty-one of 267 lesions (19.1%) progressed, 102/267 (38.2%) manifested stable disease, and 114/267 (42.7%) partially responded after two RLT cycles. At baseline, median [68Ga]Ga-PSMA-11 SUVmax was significantly lower (p < 0.001), median FPQ significantly higher (p < 0.001), and median [18F]FDG SUVmax similar in progressing versus non-progressing lesions. [68Ga]Ga-PSMA-11 SUVmax and FPQ showed predictive power regarding progression (AUCs: 0.89, 0.90). An introduced clinical score combining both further improved predictive performance (AUC: 0.94). Optimal cut-offs to foretell progression were: [68Ga]Ga-PSMA-11 SUVmax < 11.09 (88.2% sensitivity, 81.9% specificity), FPQ ≥ 0.92 (90.2% sensitivity, 78.7% specificity), clinical score ≥ 6/9 points (88.2% sensitivity, 87.5% specificity). At baseline, a low [68 Ga]Ga-PSMA-11 SUVmax and a high FPQ predict early lesional progression under RLT; [18F]FDG SUVmax does not. A score combining [68 Ga]Ga-PSMA-11 SUVmax and FPQ predicts early lesional progression even more effectively and might therefore be useful to quantitatively identify mismatch lesions.


Subject(s)
Disease Progression , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Aged , Positron-Emission Tomography/methods , Middle Aged , Retrospective Studies , Gallium Radioisotopes , Radiopharmaceuticals , Antigens, Surface/metabolism , Glutamate Carboxypeptidase II/metabolism , Aged, 80 and over , Lutetium
5.
Int J Hyperthermia ; 41(1): 2335201, 2024.
Article in English | MEDLINE | ID: mdl-38583875

ABSTRACT

PURPOSE: Radiotherapy (RT) is the primary treatment for prostate cancer (PCa); however, the emergence of castration-resistant prostate cancer (CRPC) often leads to treatment failure and cancer-related deaths. In this study, we aimed to explore the use of microwave hyperthermia (MW-HT) to sensitize PCa to RT and investigate the underlying molecular mechanisms. METHODS: We developed a dedicated MW-HT heating setup, created an in vitro and in vivo MW-HT + RT treatment model for CRPC. We evaluated PC3 cell proliferation using CCK-8, colony experiments, DAPI staining, comet assay and ROS detection method. We also monitored nude mouse models of PCa during treatment, measured tumor weight, and calculated the tumor inhibition rate. Western blotting was used to detect DNA damage repair protein expression in PC3 cells and transplanted tumors. RESULTS: Compared to control, PC3 cell survival and clone formation rates decreased in RT + MW-HT group, demonstrating significant increase in apoptosis, ROS levels, and DNA damage. Lower tumor volumes and weights were observed in treatment groups. Ki-67 expression level was reduced in all treatment groups, with significant decrease in RT + MW-HT groups. The most significant apoptosis induction was confirmed in RT + MW-HT group by TUNEL staining. Protein expression levels of DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways significantly decreased in RT + MW-HT groups. CONCLUSION: MW-HT + RT treatment significantly inhibited DNA damage repair by downregulating DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways, leading to increased ROS levels, aggravate DNA damage, apoptosis, and necrosis in PC3 cells, a well-established model of CRPC.


Subject(s)
Adenocarcinoma , Hyperthermia, Induced , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Humans , Male , Animals , Mice , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/metabolism , PC-3 Cells , Reactive Oxygen Species/metabolism , Microwaves , Tumor Suppressor Protein p53/metabolism , Hyperthermia, Induced/methods , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , DNA Repair , Apoptosis , Oxidative Stress , Hyperthermia , Adenocarcinoma/radiotherapy , DNA/metabolism , Cell Line, Tumor , Cell Proliferation
6.
J Pathol ; 263(2): 242-256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578195

ABSTRACT

There are diverse phenotypes of castration-resistant prostate cancer, including neuroendocrine disease, that vary in their sensitivity to drug treatment. The efficacy of BET and CBP/p300 inhibitors in prostate cancer is attributed, at least in part, to their ability to decrease androgen receptor (AR) signalling. However, the activity of BET and CBP/p300 inhibitors in prostate cancers that lack the AR is unclear. In this study, we showed that BRD4, CBP, and p300 were co-expressed in AR-positive and AR-null prostate cancer. A combined inhibitor of these three proteins, NEO2734, reduced the growth of both AR-positive and AR-null organoids, as measured by changes in viability, size, and composition. NEO2734 treatment caused consistent transcriptional downregulation of cell cycle pathways. In neuroendocrine models, NEO2734 treatment reduced ASCL1 levels and other neuroendocrine markers, and reduced tumour growth in vivo. Collectively, these results show that epigenome-targeted inhibitors cause decreased growth and phenotype-dependent disruption of lineage regulators in neuroendocrine prostate cancer, warranting further development of compounds with this activity in the clinic. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
E1A-Associated p300 Protein , Receptors, Androgen , Signal Transduction , Male , Humans , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Animals , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Mice , Xenograft Model Antitumor Assays , Bromodomain Containing Proteins , CREB-Binding Protein
7.
Prostate ; 84(9): 877-887, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38605532

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is the second-leading cause of cancer mortalities in the United States and is the most commonly diagnosed malignancy in men. While androgen deprivation therapy (ADT) is the first-line treatment option to initial responses, most PCa patients invariably develop castration-resistant PCa (CRPC). Therefore, novel and effective treatment strategies are needed. The goal of this study was to evaluate the anticancer effects of the combination of two small molecule inhibitors, SZL-P1-41 (SKP2 inhibitor) and PBIT (KDM5B inhibitor), on PCa suppression and to delineate the underlying molecular mechanisms. METHODS: Human CRPC cell lines, C4-2B and PC3 cells, were treated with small molecular inhibitors alone or in combination, to assess effects on cell proliferation, migration, senescence, and apoptosis. RESULTS: SKP2 and KDM5B showed an inverse regulation at the translational level in PCa cells. Cells deficient in SKP2 showed an increase in KDM5B protein level, compared to that in cells expressing SKP2. By contrast, cells deficient in KDM5B showed an increase in SKP2 protein level, compared to that in cells with KDM5B intact. The stability of SKP2 protein was prolonged in KDM5B depleted cells as measured by cycloheximide chase assay. Cells deficient in KDM5B were more vulnerable to SKP2 inhibition, showing a twofold greater reduction in proliferation compared to cells with KDM5B intact (p < 0.05). More importantly, combined inhibition of KDM5B and SKP2 significantly decreased proliferation and migration of PCa cells as compared to untreated controls (p < 0.005). Mechanistically, combined inhibition of KDM5B and SKP2 in PCa cells abrogated AKT activation, resulting in an induction of both cellular senescence and apoptosis, which was measured via Western blot analysis and senescence-associated ß-galactosidase (SA-ß-Gal) staining. CONCLUSIONS: Combined inhibition of KDM5B and SKP2 was more effective at inhibiting proliferation and migration of CRPC cells, and this regimen would be an ideal therapeutic approach of controlling CRPC malignancy.


Subject(s)
Apoptosis , Cellular Senescence , Jumonji Domain-Containing Histone Demethylases , Prostatic Neoplasms, Castration-Resistant , Proto-Oncogene Proteins c-akt , S-Phase Kinase-Associated Proteins , Signal Transduction , Humans , S-Phase Kinase-Associated Proteins/metabolism , S-Phase Kinase-Associated Proteins/antagonists & inhibitors , S-Phase Kinase-Associated Proteins/genetics , Male , Apoptosis/drug effects , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/genetics , Cellular Senescence/drug effects , Cellular Senescence/physiology , Signal Transduction/drug effects , Cell Proliferation/drug effects , Disease Progression , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Cell Movement/drug effects , PC-3 Cells , Nuclear Proteins , Repressor Proteins
8.
Oncogene ; 43(21): 1631-1643, 2024 May.
Article in English | MEDLINE | ID: mdl-38589675

ABSTRACT

Androgen deprivation therapy (ADT) is the first line of treatment for metastatic prostate cancer (PCa) that effectively delays the tumor progression. However, it also increases the risk of venous thrombosis event (VTE) in patients, a leading cause of mortality. How a pro-thrombotic cascade is induced by ADT remains poorly understood. Here, we report that protein disulfide isomerase A2 (PDIA2) is upregulated in PCa cells to promote VTE formation and enhance PCa cells resistant to ADT. Using various in vitro and in vivo models, we demonstrated a dual function of PDIA2 that enhances tumor-mediated pro-coagulation activity via tumor-derived extracellular vehicles (EVs). It also stimulates PCa cell proliferation, colony formation, and xenograft growth androgen-independently. Mechanistically, PDIA2 activates the tissue factor (TF) on EVs through its isomerase activity, which subsequently triggers a pro-thrombotic cascade in the blood. Additionally, TF-containing EVs can activate the Src kinase inside PCa cells to enhance the AR signaling ligand independently. Androgen deprivation does not alter PDIA2 expression in PCa cells but enhances PDIA2 translocation to the cell membrane and EVs via suppressing the clathrin-dependent endocytic process. Co-recruitment of AR and FOXA1 to the PDIA2 promoter is required for PDIA2 transcription under androgen-deprived conditions. Importantly, blocking PDIA2 isomerase activity suppresses the pro-coagulation activity of patient plasma, PCa cell, and xenograft samples as well as castrate-resistant PCa xenograft growth. These results demonstrate that PDIA2 promotes VTE and tumor progression via activating TF from tumor-derived EVs. They rationalize pharmacological inhibition of PDIA2 to suppress ADT-induced VTE and castrate-resistant tumor progression.


Subject(s)
Disease Progression , Prostatic Neoplasms, Castration-Resistant , Protein Disulfide-Isomerases , Venous Thrombosis , Male , Humans , Animals , Mice , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Cell Line, Tumor , Venous Thrombosis/metabolism , Venous Thrombosis/chemically induced , Venous Thrombosis/pathology , Venous Thrombosis/genetics , Venous Thrombosis/etiology , Androgen Antagonists/pharmacology , Androgen Antagonists/adverse effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Thromboplastin/metabolism , Thromboplastin/genetics , Gene Expression Regulation, Neoplastic/drug effects
9.
Crit Rev Oncol Hematol ; 197: 104348, 2024 May.
Article in English | MEDLINE | ID: mdl-38588967

ABSTRACT

Prostate cancer (PCa) is a common health threat to men worldwide, and castration-resistant PCa (CRPC) is the leading cause of PCa-related deaths. Extracellular vesicles (EVs) are lipid bilayer compartments secreted by living cells that are important mediators of intercellular communication. EVs regulate the biological processes of recipient cells by transmitting heterogeneous cargoes, contributing to CRPC occurrence, progression, and drug resistance. These EVs originate not only from malignant cells, but also from various cell types within the tumor microenvironment. EVs are widely dispersed throughout diverse biological fluids and are attractive biomarkers derived from noninvasive liquid biopsy techniques. EV quantities and cargoes have been tested as potential biomarkers for CRPC diagnosis, progression, drug resistance, and prognosis; however, technical barriers to their clinical application continue to exist. Furthermore, exogenous EVs may provide tools for new therapies for CRPC. This review summarizes the current evidence on the role of EVs in CRPC.


Subject(s)
Extracellular Vesicles , Prostatic Neoplasms, Castration-Resistant , Humans , Extracellular Vesicles/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/therapy , Male , Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm , Tumor Microenvironment , Animals
10.
Exp Cell Res ; 438(1): 114026, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38604522

ABSTRACT

The emergence of AR-V7, a truncated isoform of AR upon androgen deprivation therapy treatment, leads to the development of castration resistant prostate cancer (CRPC). Understanding mechanisms that regulate AR-V7 expression is critical for developing newer therapeutic strategies. In this study, we have investigated the regulation of AR-V7 during cell cycle and identified a distinct pattern of periodic fluctuation, peaking during G2/M phase. This fluctuation correlates with the expression of Cdc-2 like kinase 1 (CLK1) and phosphorylated serine/arginine-rich splicing factor 1 (p-SRSF1) during these phases, pointing towards their role in AR-V7 generation. Functional assays reveal that CLK1 knockdown prolongs the S phase, leading to altered cell cycle distribution and increased accumulation of AR-V7 and pSRSF1 in G1/S phase. Conversely, CLK1 overexpression rescues AR-V7 and p-SRSF1 levels in the G2/M phase, consistent with observed cell cycle alterations upon AR-V7 knockdown and overexpression in CRPC cells. Furthermore, overexpression of kinase-deficient CLK1 mutant leads to diminished AR-V7 levels during G2/M, underlining the essential contribution of CLK1's kinase activity in modulating AR-V7 expression. Collectively, our findings, for the first time, show periodic regulation of AR-V7 expression, its effect on cell cycle progression and the critical role of CLK1-pSRSF1 axis in modulating AR-V7 expression throughout the cell cycle.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Protein-Tyrosine Kinases , Receptors, Androgen , Serine-Arginine Splicing Factors , Humans , Male , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , G2 Phase/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Phosphorylation , Cell Proliferation/genetics , G2 Phase Cell Cycle Checkpoints/genetics
11.
Cells ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667288

ABSTRACT

As the treatment landscape for prostate cancer gradually evolves, the frequency of treatment-induced neuroendocrine prostate cancer (NEPC) and double-negative prostate cancer (DNPC) that is deficient for androgen receptor (AR) and neuroendocrine (NE) markers has increased. These prostate cancer subtypes are typically refractory to AR-directed therapies and exhibit poor clinical outcomes. Only a small range of NEPC/DNPC models exist, limiting our molecular understanding of this disease and hindering our ability to perform preclinical trials exploring novel therapies to treat NEPC/DNPC that are urgently needed in the clinic. Here, we report the development of the CU-PC01 PDX model that represents AR-negative mCRPC with PTEN/RB/PSMA loss and CTNN1B/TP53/BRCA2 genetic variants. The CU-PC01 model lacks classic NE markers, with only focal and/or weak expression of chromogranin A, INSM1 and CD56. Collectively, these findings are most consistent with a DNPC phenotype. Ex vivo and in vivo preclinical studies revealed that CU-PC01 PDX tumours are resistant to mCRPC standard-of-care treatments enzalutamide and docetaxel, mirroring the donor patient's treatment response. Furthermore, short-term CU-PC01 tumour explant cultures indicate this model is initially sensitive to PARP inhibition with olaparib. Thus, the CU-PC01 PDX model provides a valuable opportunity to study AR-negative mCRPC biology and to discover new treatment avenues for this hard-to-treat disease.


Subject(s)
Piperazines , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Animals , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Mice , Xenograft Model Antitumor Assays , Phenylthiohydantoin/pharmacology , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/therapeutic use , Neoplasm Metastasis , Nitriles/pharmacology , Disease Models, Animal , Benzamides/pharmacology , Phthalazines/pharmacology , Phthalazines/therapeutic use
12.
Sci Signal ; 17(831): eadh1922, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593154

ABSTRACT

Androgen deprivation therapy (ADT) is the primary treatment for prostate cancer; however, resistance to ADT invariably develops, leading to castration-resistant prostate cancer (CRPC). Prostate cancer progression is marked by increased de novo synthesis of fatty acids due to overexpression of fatty acid synthase (FASN), making this enzyme a therapeutic target for prostate cancer. Inhibition of FASN results in increased intracellular amounts of ceramides and sphingomyelin, leading to DNA damage through the formation of DNA double-strand breaks and cell death. We found that combining a FASNi with the poly-ADP ribose polymerase (PARP) inhibitor olaparib, which induces cell death by blocking DNA damage repair, resulted in a more pronounced reduction in cell growth than that caused by either drug alone. Human CRPC organoids treated with a combination of PARP and FASNi were smaller, had decreased cell proliferation, and showed increased apoptosis and necrosis. Together, these data indicate that targeting FASN increases the therapeutic efficacy of PARP inhibitors by impairing DNA damage repair, suggesting that combination therapies should be explored for CRPC.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Androgen Antagonists , Cell Death/genetics , Cell Line, Tumor , DNA Damage , Lipids , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism
13.
J Theor Biol ; 587: 111806, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38574968

ABSTRACT

Cancer therapy often leads to the selective elimination of drug-sensitive cells from the tumour. This can favour the growth of cells resistant to the therapeutic agent, ultimately causing a tumour relapse. Castration-resistant prostate cancer (CRPC) is a well-characterised instance of this phenomenon. In CRPC, after systemic androgen deprivation therapy (ADT), a subset of drug-resistant cancer cells autonomously produce testosterone, thus enabling tumour regrowth. A previous theoretical study has shown that such a tumour relapse can be delayed by inhibiting the growth of drug-resistant cells using biotic competition from drug-sensitive cells. In this context, the centrality of resource dynamics to intra-tumour competition in the CRPC system indicates clear scope for the construction of theoretical models that can explicitly incorporate the underlying mechanisms of tumour ecology. In the current study, we use a modified logistic framework to model cell-cell interactions in terms of the production and consumption of resources. Our results show that steady state composition of CRPC can be understood as a composite function of the availability and utilisation efficiency of two resources-oxygen and testosterone. In particular, we show that the effect of changing resource availability or use efficiency is conditioned by their general abundance regimes. Testosterone typically functions in trace amounts and thus affects steady state behaviour of the CRPC system differently from oxygen, which is usually available at higher levels. Our data thus indicate that explicit consideration of resource dynamics can produce novel and useful mechanistic understanding of CRPC. Furthermore, such a modelling approach also incorporates variables into the system's description that can be directly measured in a clinical context. This is therefore a promising avenue of research in cancer ecology that could lead to therapeutic approaches that are more clearly rooted in the biology of CRPC.


Subject(s)
Models, Biological , Prostatic Neoplasms, Castration-Resistant , Testosterone , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Testosterone/metabolism , Oxygen/metabolism , Cell Communication/physiology , Drug Resistance, Neoplasm
14.
J Clin Invest ; 134(10)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546787

ABSTRACT

Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling, but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppressed the growth of CRPC xenografts but also induced tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplified and modulated the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affected stromal gene expression, indicating that Mediator kinase activity in CRPC molded the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulated the MYC pathway, and Mediator kinase inhibition suppressed a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors showed efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlated with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediated androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.


Subject(s)
Cyclin-Dependent Kinase 8 , Cyclin-Dependent Kinases , Prostatic Neoplasms, Castration-Resistant , Protein Kinase Inhibitors , Xenograft Model Antitumor Assays , Male , Humans , Animals , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/enzymology , Mice , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Tumor Microenvironment/drug effects
15.
J Biol Chem ; 300(4): 107139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447792

ABSTRACT

Androgen receptor (AR) is one of the key targets for the treatment of castration-resistant prostate cancer (CRPC). Current endocrine therapy can greatly improve patients with CRPC. However, with the change of pathogenic mechanism, acquired resistance often leads to the failure of treatment. Studies have shown that tanshinone IIA (TS-IIA) and its derivatives have significant antitumor activity, and have certain AR-targeting effects, but the mechanism is unknown. In this study, the TS-IIA analog TB3 was found to significantly inhibit the growth of CRPC in vitro and in vivo. Molecular docking, cellular thermal shift assay, and cycloheximide experiments confirmed that AR was the target of TB3 and promoted the degradation of AR. Furthermore, TB3 can significantly inhibit glycolysis metabolism by targeting the AR/PKM2 axis. The addition of pyruvic acid could significantly alleviate the inhibitory effect of TB3 on CRPC cells. Besides, the knockdown of AR or PKM2 also could reverse the effect of TB3 on CRPC cells. Taken together, our study suggests that TS-IIA derivative TB3 inhibits glycolysis to prevent the CRPC process by targeting the AR/PKM2 axis.


Subject(s)
Abietanes , Glycolysis , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Thyroid Hormone-Binding Proteins , Animals , Humans , Male , Mice , Abietanes/pharmacology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Glycolysis/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Nude , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Thyroid Hormones/metabolism
16.
Oncogene ; 43(20): 1522-1533, 2024 May.
Article in English | MEDLINE | ID: mdl-38532114

ABSTRACT

Androgen deprivation therapies (ADT) are the mainstay treatments for castration-resistant prostate cancer (CRPC). ADT suppresses the androgen receptor (AR) signaling by blocking androgen biosynthesis or inhibiting AR with antiandrogens that target AR's ligand-binding domain (LBD). However, the ADT's effect is short-lived, as the AR signaling inevitably arises again, which is frequently coupled with AR-V7 overexpression. AR-V7 is a truncated form of AR that lacks the LBD, thus being constitutively active in the absence of androgens and irresponsive to AR-LBD-targeting inhibitors. Though compelling evidence has tied AR-V7 to drug resistance in CRPC, pharmacological inhibition of AR-V7 is still an unmet need. Here, we discovered a small molecule, SC912, which binds to full-length AR as well as AR-V7 through AR N-terminal domain (AR-NTD). This pan-AR targeting relies on the amino acids 507-531 in the AR-NTD. SC912 also disrupted AR-V7 transcriptional activity, impaired AR-V7 nuclear localization and DNA binding. In the AR-V7 positive CRPC cells, SC912 suppressed proliferation, induced cell-cycle arrest, and apoptosis. In the AR-V7 expressing CRPC xenografts, SC912 attenuated tumor growth and antagonized intratumoral AR signaling. Together, these results suggested the therapeutic potential of SC912 for CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Animals , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Protein Domains , Apoptosis/drug effects , Signal Transduction/drug effects , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use
17.
Cell Death Differ ; 31(5): 592-604, 2024 May.
Article in English | MEDLINE | ID: mdl-38514847

ABSTRACT

RB transcriptional corepressor 1 (RB) deletion is the most important genomic factor associated with the prognosis of castration-resistant prostate cancer (CRPC) patients receiving androgen receptor (AR) signaling inhibitor therapy. Loss of RB could support prostate cancer cell growth in a hormone-independent manner, but the underlying mechanism by which RB regulates tumor progression extends far beyond the cell cycle pathway. A previous study indicated that RB inactivates AKT signaling but has no effect on mTOR signaling in cancer cells. Here, we found that the S249/T252 site in RB is key to regulating the transcriptional activity of the tumor-promoting factor TRIM24 in CRPC, as identified through FXXXV mapping. The RB/TRIM24 complex functions through DUSP2, which serves as an intermediate bridge, to activate the mTOR pathway and promote prostate cancer progression. Accordingly, we designed RB-linker-proteolysis-targeting chimera (PROTAC) molecules, which decreased TRIM24 protein levels and inactivated the mTOR signaling pathway, thereby inhibiting prostate cancer. Therefore, this study not only elucidates the novel function of RB but also provides a theoretical basis for the development of new drugs for treating prostate cancer.


Subject(s)
Signal Transduction , TOR Serine-Threonine Kinases , Male , Humans , TOR Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Animals , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Retinoblastoma Protein/metabolism , Carrier Proteins/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Mice , Mice, Nude , Cell Proliferation
18.
Exp Cell Res ; 437(1): 113991, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38462208

ABSTRACT

The compound 2-4(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PBIT) is an inhibitor of the KDM5 family of lysine-specific histone demethylases that has been suggested as a lead compound for cancer therapy. The goal of this study was to explore the effects of PBIT within human prostate cancers. Micromolar concentrations of PBIT altered proliferation of castration-sensitive LNCaP and castration-resistant C4-2B, LNCaP-MDV3100 and PC-3 human prostate cancer cell lines. We then characterized the mechanism underlying the anti-proliferative effects of PBIT within the C4-2B and PC-3 cell lines. Data from Cell Death ELISAs suggest that PBIT does not induce apoptosis within C4-2B or PC-3 cells. However, PBIT did increase the amount of senescence associated beta-galactosidase. PBIT also altered cell cycle progression and increased protein levels of the cell cycle protein p21. PC-3 and C4-2B cells express varying amounts of KDM5A, KDM5B, and KDM5C, the therapeutic targets of PBIT. siRNA-mediated knockdown studies suggest that inhibition of multiple KDM5 isoforms contribute to the anti-proliferative effect of PBIT. Furthermore, combination treatments involving PBIT and the PPARγ agonist 15-deoxy-Δ-12, 14 -prostaglandin J2 (15d-PGJ2) also reduced PC-3 cell proliferation. Together, these data strongly suggest that PBIT significantly reduces the proliferation of prostate cancers via a mechanism that involves cell cycle arrest and senescence.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Cell Proliferation , Cell Line, Tumor , Cell Cycle Checkpoints , Apoptosis , Cell Cycle , Retinoblastoma-Binding Protein 2/metabolism
19.
Cancer Lett ; 588: 216815, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38490329

ABSTRACT

Epigenetic modifiers are upregulated during the process of prostate cancer, acquiring resistance to castration therapy and becoming lethal metastatic castration-resistant prostate cancer (CRPC). However, the relationship between regulation of histone modifications and chromatin structure in CRPC has yet not fully been validated. Here, we reanalyzed publicly available clinical transcriptome and clinical outcome data and identified NSD2, a histone methyltransferase that catalyzes H3K36me2, as an epigenetic modifier that was upregulated in CRPC and whose increased expression in prostate cancer correlated with higher recurrence rate. We performed ChIP-seq, RNA-seq, and Hi-C to conduct comprehensive epigenomic and transcriptomic analyses to identify epigenetic reprogramming in CRPC. In regions where H3K36me2 was increased, H3K27me3 was decreased, and the compartment was shifted from inactive to active. In these regions, 68 aberrantly activated genes were identified as candidate downstream genes of NSD2 in CRPC. Among these genes, we identified KIF18A as critical for CRPC growth. Under NSD2 upregulation in CRPC, epigenetic alteration with H3K36me2-gain and H3K27me3-loss occurs accompanying with an inactive-to-active compartment shift, suggesting that histone modification and chromatin structure cooperatively change prostate carcinogenesis.


Subject(s)
Chromatin , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Chromatin/genetics , Histones/genetics , Histones/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Cell Line, Tumor , Gene Expression Profiling , Receptors, Androgen/metabolism , Kinesins/metabolism
20.
Oncogene ; 43(19): 1399-1410, 2024 May.
Article in English | MEDLINE | ID: mdl-38480915

ABSTRACT

Castration-resistant prostate cancer (CRPC) is an aggressive disease with poor prognosis, and there is an urgent need for more effective therapeutic targets to address this challenge. Here, we showed that dihydroorotate dehydrogenase (DHODH), an enzyme crucial in the pyrimidine biosynthesis pathway, is a promising therapeutic target for CRPC. The transcript levels of DHODH were significantly elevated in prostate tumors and were negatively correlated with the prognosis of patients with prostate cancer. DHODH inhibition effectively suppressed CRPC progression by blocking cell cycle progression and inducing apoptosis. Notably, treatment with DHODH inhibitor BAY2402234 activated androgen biosynthesis signaling in CRPC cells. However, the combination treatment with BAY2402234 and abiraterone decreased intratumoral testosterone levels and induced apoptosis, which inhibited the growth of CWR22Rv1 xenograft tumors and patient-derived xenograft organoids. Taken together, these results establish DHODH as a key player in CRPC and as a potential therapeutic target for advanced prostate cancer.


Subject(s)
Androstenes , Apoptosis , Dihydroorotate Dehydrogenase , Oxidoreductases Acting on CH-CH Group Donors , Prostatic Neoplasms, Castration-Resistant , Xenograft Model Antitumor Assays , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Animals , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Mice , Androstenes/pharmacology , Androstenes/therapeutic use , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...