Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 417
Filter
1.
Cell Commun Signal ; 22(1): 456, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327570

ABSTRACT

BACKGROUND: C-X-C receptor 4(CXCR4) is widely considered to be a highly conserved G protein-coupled receptor, widely involved in the pathophysiological processes in the human body, including fibrosis. However, its role in regulating macrophage-related inflammation in the fibrotic process of prostatitis has not been confirmed. Here, we aim to describe the role of CXCR4 in modulating macrophage M1 polarization through glycolysis in the development of prostatitis fibrosis. METHODS: Use inducible experimental chronic prostatitis as a model of prostatic fibrosis. Reduce CXCR4 expression in immortalized bone marrow-derived macrophages using lentivirus. In the fibrotic mouse model, use adenovirus carrying CXCR4 agonists to detect the silencing of CXCR4 and assess the in vivo effects. RESULTS: In this study, we demonstrated that reducing CXCR4 expression during LPS treatment of macrophages can alleviate M1 polarization. Silencing CXCR4 can inhibit glycolytic metabolism, enhance mitochondrial function, and promote macrophage transition from M1 to M2. Additionally, in vivo functional experiments using AAV carrying CXCR4 showed that blocking CXCR4 in experimental autoimmune prostatitis (EAP) can alleviate inflammation and experimental prostate fibrosis development. Mechanistically, CXCR4, a chemokine receptor, when silenced, weakens the PI3K/AKT/mTOR pathway as its downstream signal, reducing c-MYC expression. PFKFB3, a key enzyme involved in glucose metabolism, is a target gene of c-MYC, thus impacting macrophage polarization and glycolytic metabolism processes.


Subject(s)
Fibrosis , Glycolysis , Macrophages , Prostate , Receptors, CXCR4 , Male , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Macrophages/metabolism , Mice , Prostate/pathology , Prostate/metabolism , Prostatitis/pathology , Prostatitis/metabolism , Prostatitis/genetics , Signal Transduction , Mice, Inbred C57BL , Humans , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Polarity , Phosphatidylinositol 3-Kinases/metabolism , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics
2.
Sci Rep ; 14(1): 18829, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138267

ABSTRACT

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a urinary disorder that affects youthful to middle-aged men most frequently. It has been revealed that Th17/Treg imbalance is a crucial factor in the pathophysiological mechanisms behind this disease. However, this imbalance's mechanisms are unknown. In the experimental autoimmune prostatitis (EAP) mouse model, the NLRP3 inflammasome was turned on, IL-1ß levels went up. Moreover, there exists a discernible positive association between the upsurge in IL-1ß and the perturbation of Th17/Treg equilibrium. Additionally, we have revealed that IL-1ß plays a vital role in promoting the differentiation of Naïve CD4+ T cells into the Th17 cells and enhances the conversion of Treg cells into Th17 cells. Further studies revealed that IL-1ß promotes STAT3 phosphorylation, which is what causes Treg cells to become Th17 cells. All data strongly suggest that the NLRP3 inflammatory influence Th17 cell development and the conversion of Treg cells into Th17 cells through IL-1ß, disrupting the Th17/Treg balance and exacerbating EAP inflammation. In this article, we provide new theories for the pathogenesis of CP/CPPS and propose new prevention and therapy methods.


Subject(s)
Autoimmune Diseases , Disease Models, Animal , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein , Prostatitis , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Male , Prostatitis/immunology , Prostatitis/metabolism , Prostatitis/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-1beta/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , STAT3 Transcription Factor/metabolism , Inflammasomes/metabolism , Cell Differentiation , Mice, Inbred C57BL
3.
Zhonghua Nan Ke Xue ; 30(6): 531-539, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39212363

ABSTRACT

OBJECTIVE: To explore the mechanisms of Qianlie Jindan Tablets (QLJD) acting on chronic nonbacterial prostatitis (CNP) in rats based on non-targeted urine metabolomics. METHODS: According to the body mass index, we equally randomized 30 eight-week-old male SD rats into a blank control, a CNP model control and a QLJD medication group. We established the CNP model in the latter groups and, from the 4th day of modeling, treated the rats in the blank and model control groups intragastrically with normal saline and those in the QLJD medication group with QLJD suspension, qd, for 30 successive days. Then we detected the changes in the metabolites of the rats by ultra-high-performance liquid chromatography-tandem mass spectrometry, and identified the differential metabolites in different groups by multivariate statistical analysis, followed by functional annotation of the differential metabolites. RESULTS: Eight common metabolites were identified by metabolomics analysis, of which 5 were decreased in the CNP model controls and increased in the QLJD medication group, while the other 3 increased in the former and decreased in the latter group. Creatinine and genistein were important differential metabolites, and the arginine and proline metabolic pathways and isoflavone biosynthesis pathways were the main ones for QLJD acting on CNP. Compared with the blank controls, the model controls showed up-regulated arginine and proline metabolic pathways, increased production of creatinine, down-regulated isoflavone biosynthetic pathway and decreased production of genistein. The above changes in the model controls were all reversed in the QLJD medication group. CONCLUSION: QLJD acts effectively on CNP in male rats by regulating L-arginine and proline metabolic pathways, as well as the isoflavone biosynthesis pathway and naringenin metabolism.


Subject(s)
Drugs, Chinese Herbal , Metabolomics , Prostatitis , Rats, Sprague-Dawley , Male , Animals , Rats , Prostatitis/metabolism , Prostatitis/urine , Prostatitis/drug therapy , Metabolomics/methods , Tablets , Chromatography, High Pressure Liquid , Arginine/metabolism , Chronic Disease , Genistein/urine , Proline/urine , Proline/metabolism , Disease Models, Animal , Creatinine/urine , Creatinine/metabolism , Tandem Mass Spectrometry
4.
Free Radic Biol Med ; 223: 237-249, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094710

ABSTRACT

Chronic prostatitis-induced excessive inflammation and oxidative stress (OS) damage substantially affect men's quality of life. However, its treatment remains a major clinical challenge. Therefore, the identification of drugs that can decrease chronic prostatitis and oxidative stress targets is urgent and essential. CXCR4 is a classic chemokine receptor that is crucially associated with the occurrence and development of inflammation. This investigation aimed to elucidate how CXCR4 affects prostatitis regression and progression. The effect of CXCR4 on chronic prostatitis was evaluated by HE staining, immunohistochemistry, immunofluorescence, PCR, and TUNEL analyses. Furthermore, CXCR4 influence on metabolism was also evaluated by monitoring body weight, body temperature, food intake, and LC/MS. Additionally, chromatin immunoprecipitation, Western blot, and double luciferase reporter gene assays were carried out to elucidate the mechanism by which CXCR4 modulates Fads2 transcription by PPARγ. Lastly, ROS, DHE, mito-tracker, and ATP were utilized to validate the α-linolenic acid's protective effect against OS in prostate epithelial cells. It was revealed that the inhibition of CXCR4 can effectively alleviate prostatitis in mice. Furthermore, downregulating CXCR4 expression can markedly reduce the inflammatory cell infiltration in mouse prostates, decrease the elevated levels of DNA damage markers,MDA and 4-HNE, and mitigate apoptosis of prostatic epithelial cells. Moreover, treatment of CXCR4 knockdown mice with a PPARγ inhibitor revealed different degrees of changes in the above phenotypes. Mechanistically, the PPARγ protein translocates to the nucleus and serves as a transcription factor to regulate Fads2 expression, thereby altering PUFA metabolism. Additionally, in vitro experiments indicated that α-linolenic acid can effectively alleviate OS damage and RWPE-1 cell apoptosis by protecting mitochondrial function and enhancing the antioxidant capacity of prostatic epithelial cells. In conclusion, reducing the levels of CXCR4 can alleviate inflammation and OS damage in chronic prostatitis.


Subject(s)
Fatty Acid Desaturases , Oxidative Stress , PPAR gamma , Prostatitis , Receptors, CXCR4 , Male , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Mice , Prostatitis/metabolism , Prostatitis/pathology , Prostatitis/genetics , Prostatitis/drug therapy , PPAR gamma/metabolism , PPAR gamma/genetics , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Humans , Disease Models, Animal , Apoptosis , Fatty Acids, Unsaturated/metabolism , alpha-Linolenic Acid/pharmacology , alpha-Linolenic Acid/metabolism , Prostate/pathology , Prostate/metabolism , Prostate/drug effects , Mice, Inbred C57BL , Gene Expression Regulation
5.
Int Immunopharmacol ; 141: 112891, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39153310

ABSTRACT

In our investigation, we investigated the role of macrophage migration inhibitory factor (MIF), a key cytokine, in chronic nonbacterial prostatitis (CNP), an underexplored pathology. Elevated MIF expression was observed in the serum of individuals with chronic prostatitis-like symptoms (CP-LS) as well as in serum and tissue samples from experimental autoimmune prostatitis (EAP) mouse model. Treatment with ISO-1, a specific MIF antagonist, effectively mitigated prostatic inflammation and macrophage infiltration, thereby emphasizing the critical role of MIF in orchestrating immune responses within the prostate microenvironment. Further analyses revealed that MIF stimulates the PI3K/AKT and NLRP3 inflammasome pathways, which are integral to inflammation and cellular immunity. Pharmacological inhibition of the PI3K/AKT pathway by LY294002 substantially reduced prostatic inflammation and macrophage infiltration, potentially by inhibiting NLRP3 inflammasome activation. These findings collectively suggest that MIF is a potential diagnostic marker for CNP and suggest that targeting MIF or its downstream signalling pathways, PI3K/AKT and NLRP3, might represent a novel therapeutic strategy for this condition.


Subject(s)
Autoimmune Diseases , Inflammasomes , Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphatidylinositol 3-Kinases , Prostatitis , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Prostatitis/immunology , Prostatitis/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Inflammasomes/metabolism , Inflammasomes/immunology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Humans , Mice , Autoimmune Diseases/immunology , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/antagonists & inhibitors , Disease Models, Animal , Macrophages/immunology , Macrophages/metabolism , Adult
6.
Sci Rep ; 14(1): 15368, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965410

ABSTRACT

To detect and analyze the changes of microorganisms in expressed prostatic secretion (EPS) of patients with IIIB prostatitis before and after low-intensity pulsed ultrasound (LIPUS) treatment, and to explore the mechanism of LIPUS in the treatment of chronic prostatitis (CP). 25 patients (study power was estimated using a Dirichlet-multinomial approach and reached 96.5% at α = 0.05 using a sample size of 25) with IIIB prostatitis who were effective in LIPUS treatment were divided into two groups before and after LIPUS treatment. High throughput second-generation sequencing technique was used to detect and analyze the relative abundance of bacterial 16 s ribosomal variable regions in EPS before and after treatment. The data were analyzed by bioinformatics software and database, and differences with P < 0.05 were considered statistically significant. Beta diversity analysis showed that there was a significant difference between groups (P = 0.046). LEfSe detected four kinds of characteristic microorganisms in the EPS of patients with IIIB prostatitis before and after LIPUS treatment. After multiple comparisons among groups by DESeq2 method, six different microorganisms were found. LIPUS may improve patients' clinical symptoms by changing the flora structure of EPS, stabilizing and affecting resident bacteria or opportunistic pathogens.


Subject(s)
Prostate , Prostatitis , Ultrasonic Waves , Humans , Male , Prostatitis/therapy , Prostatitis/microbiology , Prostatitis/metabolism , Prostate/microbiology , Prostate/metabolism , Prostate/pathology , Adult , Bacteria/metabolism , Bacteria/genetics , Middle Aged , Ultrasonic Therapy/methods , Microbiota , RNA, Ribosomal, 16S/genetics
7.
Int J Biol Sci ; 20(9): 3393-3411, 2024.
Article in English | MEDLINE | ID: mdl-38993566

ABSTRACT

Chronic prostatitis is one of the most common urologic diseases that troubles young men, with unclear etiology and ineffective treatment approach. Pyroptosis is a novel model of cell death, and its roles in chronic prostatitis are unknown. In this study, P2X7R, NEK7, and GSDMD-NT expression levels were detected in prostate tissues from benign prostate hyperplasia (BPH) patients and experiment autoimmune prostatitis (EAP) mice. P2X7R agonist, antagonist, NLRP3 inhibitor, and disulfiram were used to explore the roles of the P2X7R-NEK7-NLRP3 axis in prostate epithelial cell pyroptosis and chronic prostatitis development. We found that P2X7R, NEK7, and GSDMD-NT were highly expressed in the prostate epithelial cells of BPH patients with prostatic inflammation and EAP mice. Activation of P2X7R exacerbated prostatic inflammation and increased NLRP3 inflammasome component expressions and T helper 17 (Th17) cell proportion. Moreover, P2X7R-mediated potassium efflux promoted NEK7-NLRP3 interaction, and NLRP3 assembly and activation, which caused GSDMD-NT-mediated prostate epithelial cell pyroptosis to exacerbate EAP development. Disulfiram could effectively improve EAP by inhibiting GSDMD-NT-mediated prostate epithelial cell pyroptosis. In conclusion, the P2X7R-NEK7-NLRP3 axis could promote GSDMD-NT-mediated prostate epithelial cell pyroptosis and chronic prostatitis development, and disulfiram may be an effective drug to treat chronic prostatitis.


Subject(s)
Epithelial Cells , NIMA-Related Kinases , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Prostate , Prostatitis , Pyroptosis , Animals , Humans , Male , Mice , Autoimmune Diseases/metabolism , Epithelial Cells/metabolism , Gasdermins , Mice, Inbred C57BL , NIMA-Related Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Prostate/metabolism , Prostatitis/metabolism , Pyroptosis/drug effects , Receptors, Purinergic P2X7/metabolism
8.
Int Immunopharmacol ; 139: 112669, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39029231

ABSTRACT

BACKGROUND: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is very common worldwide, and alcohol consumption is a notable contributing factor. Researches have shown that gut microbiota can be influenced by alcohol consumption and is an important mediator in regulating Th17 cell immunity. However, it is still unclear the exact mechanism by which alcohol exacerbates the CP/CPPS and the role of gut microbiota in this process. METHOD: We first constructed the most-commonly used animal model for CP/CPPS, the experimental autoimmune prostatitis (EAP) model, through immunoassay. Based on this, mice were divided into EAP group and alcohol-consuming EAP group. By 16S rRNA sequencing and non-targeted metabolomics analysis, differential gut microbiota and their metabolites between the two groups were identified. Subsequently, metabolomics detection targeting cholesterols was carried out to identify the exact difference in cholesterol. Furthermore, multiple methods such as flow cytometry and immunohistochemistry were used to detect the differentiation status of Th17 cells and severity of prostatitis treated with 27-hydroxycholesterol (the differential cholesterol) and its upstream regulatory factor-sterol regulatory element-binding protein 2 (SREBP2). Lastly, fecal transplantation was conducted to preliminary study on whether alcohol intake exacerbates EAP in immune receptor mice. RESULTS: Alcohol intake increased the proportion of Th17 cells and levels of related inflammatory factors. It also led to an altered gut bacterial richness and increased gut permeability. Further metabolomic analysis showed that there were significant differences in a variety of metabolites between EAP and alcohol-fed EAP mice. Metabolic pathway enrichment analysis showed that the pathways related to cholesterol synthesis and metabolism were significantly enriched, which was subsequently confirmed by detecting the expression of metabolic enzymes. By targeting cholesterol synthesis, 27-hydroxycholesterol was significantly increased in alcohol-fed EAP mice. Subsequent mechanistic research showed that supplementation with 27-hydroxycholesterol could aggravate EAP and promote Th17 cell differentiation both in vivo and in vitro, which is regulated by SREBP2. In addition, we observed that fecal transplantation from mice with alcohol intake aggravated EAP in immunized recipient mice fed a normal diet. CONCLUSION: Our study is the first to show that alcohol intake promotes Th17 cell differentiation and exacerbates EAP through microbiota-derived cholesterol biosynthesis.


Subject(s)
Alcohol Drinking , Autoimmune Diseases , Cell Differentiation , Cholesterol , Disease Models, Animal , Gastrointestinal Microbiome , Mice, Inbred C57BL , Prostatitis , Th17 Cells , Animals , Male , Th17 Cells/immunology , Prostatitis/immunology , Prostatitis/microbiology , Prostatitis/metabolism , Prostatitis/chemically induced , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/chemically induced , Mice , Cell Differentiation/drug effects , Alcohol Drinking/adverse effects , Cholesterol/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/genetics
9.
Prostate ; 84(13): 1179-1188, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38899408

ABSTRACT

BACKGROUND: Chronic infection and inflammation have been linked to the development of prostate cancer. Dysbiosis of the oral and gut microbiomes and subsequent microbial translocation can lead to pathogenic prostate infections. Microbial-produced metabolites have also been associated with signaling pathways that promote prostate cancer development. A comprehensive discussion on the mechanisms of microbiome infection and the prostate microenvironment is essential to understand prostate carcinogenesis. METHODS: Published studies were used from the National Center for Biotechnology Information (NCBI) database to conduct a narrative review. No restrictions were applied in the selection of articles. RESULTS: Microbiome-derived short-chain fatty acids (SCFAs) have been found to upregulate multiple signaling pathways, including MAPK and PI3K, through IGF-1 signaling and M2 macrophage polarization. SCFAs can also upregulate Toll-like receptors, leading to chronic inflammation and the creation of a pro-prostate cancer environment. Dysbiosis of oral microbiota has been correlated with prostate infection and inflammation. Additionally, pathogenic microbiomes associated with urinary tract infections have shown a link to prostate cancer, with vesicoureteral reflux potentially contributing to prostate infection. CONCLUSIONS: This review offers a comprehensive understanding of the impact of microbial infections linked to intraprostatic inflammation as a causative factor for prostate cancer. Further studies involving the manipulation of the microbiome and its produced metabolites may provide a more complete understanding of the microenvironmental mechanisms that promote prostate carcinogenesis.


Subject(s)
Microbiota , Prostatic Neoplasms , Prostatic Neoplasms/microbiology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Humans , Male , Microbiota/physiology , Prostatitis/microbiology , Prostatitis/metabolism , Prostatitis/pathology , Prostatitis/immunology , Inflammation/microbiology , Inflammation/metabolism , Dysbiosis/microbiology , Prostate/microbiology , Prostate/pathology , Prostate/metabolism , Animals , Tumor Microenvironment
10.
J Cell Mol Med ; 28(10): e18445, 2024 May.
Article in English | MEDLINE | ID: mdl-38801403

ABSTRACT

Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS), a prevalent urological ailment, exerts a profound influence upon the well-being of the males. Autoimmunity driven by Th17 cells has been postulated as a potential factor in CP/CPPS pathogenesis. Nonetheless, elucidating the precise mechanisms governing Th17 cell recruitment to the prostate, triggering inflammation, remained an urgent inquiry. This study illuminated that CCL20 played a pivotal role in attracting Th17 cells to the prostate, thereby contributing to prostatitis development. Furthermore, it identified prostate stromal cells and immune cells as likely sources of CCL20. Additionally, this research unveiled that IL-17A, released by Th17 cells, could stimulate macrophages to produce CCL20 through the NF-κB/MAPK/PI3K pathway. The interplay between IL-17A and CCL20 establishes a positive feedback loop, which might serve as a critical mechanism underpinning the development of chronic prostatitis, thus adding complexity to its treatment challenges.


Subject(s)
Autoimmune Diseases , Chemokine CCL20 , Chemotaxis , Interleukin-17 , Prostatitis , Th17 Cells , Male , Prostatitis/immunology , Prostatitis/pathology , Prostatitis/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Chemokine CCL20/metabolism , Chemokine CCL20/genetics , Animals , Interleukin-17/metabolism , Interleukin-17/immunology , Mice , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Macrophages/metabolism , Macrophages/immunology , Disease Models, Animal , NF-kappa B/metabolism , Signal Transduction , Humans , Mice, Inbred C57BL , Prostate/pathology , Prostate/metabolism , Prostate/immunology , Phosphatidylinositol 3-Kinases/metabolism , Autoimmunity
11.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724995

ABSTRACT

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Subject(s)
Epithelial Cells , Exosomes , MicroRNAs , Prostatitis , Stromal Cells , Animals , Humans , Male , Mice , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Exosomes/metabolism , Inflammation/genetics , Inflammation/pathology , MAP Kinase Signaling System , MicroRNAs/genetics , MicroRNAs/metabolism , Pelvic Pain/genetics , Pelvic Pain/metabolism , Prostate/pathology , Prostate/metabolism , Prostatitis/genetics , Prostatitis/pathology , Prostatitis/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism
12.
Prostate ; 84(11): 1016-1024, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38804836

ABSTRACT

BACKGROUND: Our research focused on the assessment of the impact of systemic inhibition of Trk receptors, which bind to nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), on bladder hypersensitivity in two distinct rodent models of prostatic inflammation (PI). METHODS: Male Sprague-Dawley rats were divided into three groups (n = 6 each): the control group (no PI, vehicle administration), the untreated group (PI, vehicle administration), and the treated group (PI, nonselective Trk inhibitor, GNF 5837, administration). PI in rats was induced by a intraprostatic injection of 5% formalin. Posttreatment, we carried out conscious cystometry and a range of histological and molecular analyses. Moreover, the study additionally evaluated the effects of a nonselective Trk inhibitor on bladder overactivity in a mouse model of PI, which was induced by prostate epithelium-specific conditional deletion of E-cadherin. RESULTS: The rat model of PI showed upregulations of NGF and BDNF in both bladder and prostate tissues in association with bladder overactivity and inflammation in the ventral lobes of the prostate. GNF 5837 treatment effectively mitigated these PI-induced changes, along with reductions in TrkA, TrkB, TrkC, and TRPV1 mRNA expressions in L6-S1 dorsal root ganglia. Also, in the mouse PI model, GNF 5837 treatment similarly improved bladder overactivity. CONCLUSIONS: The findings of our study suggest that Trk receptor inhibition, which reduced bladder hypersensitivity and inflammatory responses in the prostate, along with a decrease in overexpression of Trk and TRPV1 receptors in sensory pathways, could be an effective treatment strategy for male lower urinary tract symptoms associated with PI and bladder overactivity.


Subject(s)
Prostatitis , Receptor, trkA , Urinary Bladder, Overactive , Animals , Male , Mice , Rats , Administration, Oral , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Disease Models, Animal , Inflammation/drug therapy , Inflammation/metabolism , Nerve Growth Factor/antagonists & inhibitors , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Prostate/drug effects , Prostate/pathology , Prostate/metabolism , Prostatitis/drug therapy , Prostatitis/pathology , Prostatitis/metabolism , Rats, Sprague-Dawley , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/metabolism , Receptor, trkB/antagonists & inhibitors , Receptor, trkB/metabolism , Urinary Bladder/drug effects , Urinary Bladder/pathology , Urinary Bladder/metabolism , Urinary Bladder, Overactive/drug therapy , Urinary Bladder, Overactive/etiology
13.
Technol Health Care ; 32(S1): 351-359, 2024.
Article in English | MEDLINE | ID: mdl-38759060

ABSTRACT

BACKGROUND: A growing body of evidence has shown that activating spinal cord glial cells (typically astrocytes and microglial cells) is closely related to hyperpathia and persistent pain. OBJECTIVE: To investigate the expression of GFAP and CR3/CD11b in cornu dorsale medullae spinalis of rats with nonbacterial prostatitis, to explore the therapeutic efficacy and action mechanism of intrathecal injection of BNP alleviating chronic neuropathic pain. METHODS: Eighteen male SPF SD rats were randomly divided into sham operation control group, nonbacterial prostatitis group (NBP) and intrathecal injection BNP group, the NBP model was established by intraprostatic injection of CFA, and the spinal cord of L6-S1 segment was extracted seven days after intrathecal injection of BNP; The expression of GFAP and CR3/CD11b in dorsal horn of spinal cord were detected by immunofluorescence and Western blot. RESULTS: The cumulative optical density values of GFAP and CR3/CD11b immunofluorescence assay in the NBP group were higher than those in the sham operation group, with statistical significance (p⁢ï⁢»â¢ 0.01); The expression of GFAP and CR3/CD11b in intrathecal injection BNP group were lower than those in NBP group, the differences were statistically significant (p⁢ï⁢»â¢ 0.01). Western blot results showed that the expression of GFAP and CR3/CD11B in NBP group were higher than those in sham operation group, with statistical significance (p⁢ï⁢»â¢ 0.05). The expression of GFAP and CR3/CD11B in intrathecal injection BNP group were lower than those in NBP group, the differences were statistically significant (p⁢ï⁢»â¢ 0.05). CONCLUSION: Intrathecal injection of BNP can down-regulate the expressions of GFAP and CR3/CD11b in L6-S1 spinal cord of NBP rat model and to further inhibit chronic pain caused by NBP.


Subject(s)
Glial Fibrillary Acidic Protein , Natriuretic Peptide, Brain , Prostatitis , Rats, Sprague-Dawley , Spinal Cord , Animals , Male , Rats , Prostatitis/metabolism , Spinal Cord/metabolism , Natriuretic Peptide, Brain/metabolism , Glial Fibrillary Acidic Protein/metabolism , CD11b Antigen/metabolism , Disease Models, Animal , Injections, Spinal , Neuralgia
14.
Environ Toxicol ; 39(8): 4221-4230, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38738704

ABSTRACT

Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is a common and serious disease with unclear pathogenesis and recurrent symptoms. Hedyotis diffusa Willd (HDW) has been recognized for its potential in managing various chronic inflammatory diseases. This research aimed to interrogate the mechanism of HDW in treating CP/CPPS. Complete Freund Adjuvant (CFA) and LPS were utilized to establish the rat and cell models of CP/CPPS. Results showed that HDW decreased levels of inflammation-related factors in CP rat prostate tissue and LPS-elicited RWPE-1 cell injury model. Moreover, HDW administration impaired oxidative stress in the prostate and RWPE-1 cells. In addition, HDW treatment activated the NRF2/ARE signaling in rat prostate tissue and cell models. Interestingly, NRF2/ARE pathway inhibitor ML385 reversed the inhibition effects of cell apoptosis, inflammation, and oxidative stress triggered by HDW. In summary, HDW alleviated inflammation and oxidative stress by activating NRF2/ARE signaling in CP/CPPS rat model and human prostate epithelial cell injury model.


Subject(s)
Hedyotis , Inflammation , NF-E2-Related Factor 2 , Oxidative Stress , Prostatitis , Signal Transduction , Male , Prostatitis/chemically induced , Prostatitis/pathology , Prostatitis/metabolism , Prostatitis/drug therapy , Animals , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Humans , Hedyotis/chemistry , Rats , Rats, Sprague-Dawley , Plant Extracts/pharmacology , Prostate/drug effects , Prostate/pathology , Prostate/metabolism , Cell Line , Antioxidant Response Elements/drug effects , Chronic Disease
15.
Urologiia ; (1): 41-48, 2024 Mar.
Article in Russian | MEDLINE | ID: mdl-38650405

ABSTRACT

PURPOSE: dentification of bioimpedance and clinical features in young men with chronic pelvic pain inflammatory syndrome (CP/CPPS NIH IIIa) depending on the somatotype. METHOD: s. 150 men of the first period of adulthood from 22 to 35 years old with CP/CPPS NIH IIIa were examined from 2018 to 2022 years. The average age was 31 [28; 34] year. Somatotypes were computed according to Carter and Heath. Body composition was assessed anthropometry and bioimpedance analysis. RESULTS: Ectomorphs had the least clinical, laboratory and instrumental manifestations of CP/CPPS NIH IIIa, the levels of total and free testosterone were the highest. The active cell mass predominated in the component composition of the body. Manifestations in mesomorphs had a moderate degree of severity. Endomorphs had the most severe manifestations of CP/CPPS NIH IIIa, the largest amount of fat mass was noted in the body composition than in men of other somatotypes, the hormonal status was characterized by the lowest levels of free and total testosterone, and the highest level of estradiol. DISCUSSION: Based on the literature data and our own results, it can be assumed that the identified changes in the body component composition and hormonal status of men contribute to the maintenance of chronic inflammation in the prostate, organ ischemia, impaired intracranial metabolism, recurrent course of CP/CPPS NIH IIIa, which significantly reduces the patients quality of life and increases the risk of prostate inflammation with age. CONCLUSION: Determining the somatotype and conducting a component analysis of body composition allows patients to be divided into groups according to the severity of manifestations of CP/CPPS NIH IIIa. The revealed patterns allow us to classify male endomorphs into the group with the most severe manifestations of CP/CPPS NIH IIIa.


Subject(s)
Body Composition , Pelvic Pain , Prostatitis , Somatotypes , Humans , Male , Prostatitis/metabolism , Prostatitis/blood , Prostatitis/complications , Prostatitis/pathology , Adult , Pelvic Pain/blood , Pelvic Pain/etiology , Pelvic Pain/metabolism , Young Adult , Testosterone/blood , Chronic Pain/blood , Chronic Pain/etiology
16.
J Ethnopharmacol ; 328: 118068, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38513777

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Prostatitis and benign prostatic hyperplasia (BPH) are inflammations of the prostate gland, which surrounds the urethra in males. Jinqiancao granules are a traditional Chinese medicine used to treat kidney stones and this medicine consists of four herbs: Desmodium styracifolium (Osbeck) Merr., Pyrrosia calvata (Baker) Ching, Plantago asiatica L. and stigma of Zea mays L. AIM OF THE STUDY: We hypothesized that Jinqiancao granules could be a potential therapy for prostatitis and BPH, and this work aimed to elucidate active compounds in Jinqiancao granules and their target mechanisms for the potential treatment of the two diseases. MATERIALS AND METHODS: Jinqiancao granules were commercially available and purchased. Database-driven data mining and networking were utilized to establish a general correlation between Jinqiancao granules and the two diseases above. Ultra-performance liquid chromatography-mass spectrometry was used for compound separation and characterization. The characterized compounds were evaluated on four G-protein coupled receptors (GPCRs: GPR35, muscarinic acetylcholine receptor M3, alpha-1A adrenergic receptor α1A and cannabinoid receptor CB2). A dynamic mass redistribution technique was applied to evaluate compounds on four GPCRs. Nitric acid (NO) inhibition was tested on the macrophage cell line RAW264.7. Molecular docking was conducted on GPR35-active compounds and GPR35 crystal structure. Statistical analysis using GEO datasets was conducted. RESULTS: Seventy compounds were isolated and twelve showed GPCR activity. Three compounds showed potent GPR35 agonistic activity (EC50 < 10 µM) and the GPR35 agonism action of PAL-21 (Scutellarein) was reported for the first time. Docking results revealed that the GPR35-targeting compounds interacted at the key residues for the agonist-initiated activation of GPR35. Five compounds showed weak antagonistic activity on M3, which was confirmed to be a disease target by statistical analysis. Seventeen compounds showed NO inhibitory activity. Several compounds showed multi-target properties. An experiment-based network reflected a pharmacological relationship between Jinqiancao granules and the two diseases. CONCLUSIONS: This study identified active compounds in Jinqiancao granules that have synergistic mechanisms, contributing to anti-inflammatory effects. The findings provide scientific evidence for the potential use of Jinqiancao granules as a treatment for prostatitis and BPH.


Subject(s)
Prostatic Hyperplasia , Prostatitis , Male , Humans , Prostatitis/drug therapy , Prostatitis/metabolism , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/metabolism , Molecular Docking Simulation , Prostate , Receptors, G-Protein-Coupled/metabolism
17.
In Vivo ; 38(2): 691-698, 2024.
Article in English | MEDLINE | ID: mdl-38418142

ABSTRACT

BACKGROUND/AIM: This study aimed to investigate the role of NOTCH receptor 1 (NOTCH1)-mediated activation of microglia in the L5-S2 spinal dorsal horn in chronic prostatitis pain. MATERIALS AND METHODS: Rats were divided into chronic prostatitis (CP) group and control group. Complete Freund's adjuvant was injected into the prostate, and prostate pathology and pain-related behavior were monitored to assess the successful establishment of the CP-related pain model. The dorsal horn of the L5-S2 spinal cord was collected for the detection of ionized calcium-binding adapter molecule 1 (IBA-1) and NOTCH1 expression by quantitative real time polymerase chain reaction and the detection of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) by enzyme-linked immunosorbent assay. Electrical excitability was assessed with whole-cell patch clamp. In addition, NOTCH1 receptor inhibitor or inhibitor of microglial cell activation was injected into the subarachnoid space, and the pro-inflammatory cytokines in the spinal cord were detected. RESULTS: In the CP group, the expression of NOTCH1, IBA-1, TNF-α and IL-1ß began to increase at 4 days, peaked at 12 days, and began to decline at 24 days, and it was significantly higher than in the control group (p<0.01). Inhibition of microglia or NOTCH1 receptor markedly reduced the content of TNF-α and IL-1ß in the spinal cord (p<0.05). At 4, 12 and 24 days, the amplitude and frequency of neuronal action potential increased and the threshold decreased markedly as compared to the control group (p<0.05), and spontaneous action potential was noted. CONCLUSION: NOTCH1 mediates the activation of microglia in the L5-S2 spinal cord, leading to the secretion of inflammatory factors and enhanced electrical excitability of neurons, which is related to persistent and refractory chronic prostatitis-related pain.


Subject(s)
Prostatitis , Animals , Humans , Male , Rats , Chronic Disease , Microglia/metabolism , Pain , Prostatitis/therapy , Prostatitis/metabolism , Prostatitis/pathology , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
18.
Curr Med Chem ; 31(27): 4249-4266, 2024.
Article in English | MEDLINE | ID: mdl-38243983

ABSTRACT

Chronic prostatitis is a highly prevalent condition that significantly impacts the quality of life and fertility of men. Because of its heterogeneous nature, there is no definitive treatment, which requires ongoing research into its etiology. Additionally, the association between prostatitis and an elevated risk of prostate cancer highlights the importance of comprehending androgen involvement in prostatitis. This paper examines the current understanding of androgen signaling in prostatitis and explores contemporary therapeutic approaches. It was reviewed Medline articles comprehensively, using keywords such as nonbacterial prostatitis, prostatitis infertility, androgen role in prostatitis, and chronic pelvic pain. Several cellular targets are linked to androgen signaling. Notably, the major tyrosine phosphatase activity (cPAcP) in normal human prostate is influenced by androgen signaling, and its serum levels inversely correlate with prostate cancer progression. Androgens also regulate membrane-associated zinc and pyruvate transporters transduction in prostate cells, suggesting promising avenues for novel drug development aimed at inhibiting these molecules to reduce cancer tumor growth. Various therapies for prostatitis have been evaluated, including antibiotics, anti-inflammatory medications (including bioflavonoids), neuromodulators, alpha-blockers, 5α-reductase inhibitors, and androgen receptor antagonists. These therapies have demonstrated varying degrees of success in ameliorating symptoms.In conclusion, aging decreases circulating T and intraprostatic DHT, altering the proper functioning of the prostate, reducing the ability of androgens to maintain normal Zn2+ levels, and diminishing the secretion of citrate, PAcP, and other proteins into the prostatic fluid. The Zn2+-transporter decreases or is absent in prostate cancer, so the pyruvate transporter activates. Consequently, the cell ATP increases, inducing tumor growth.


Subject(s)
Androgens , Prostatitis , Signal Transduction , Humans , Prostatitis/metabolism , Prostatitis/drug therapy , Male , Signal Transduction/drug effects , Androgens/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Animals
19.
Zhonghua Nan Ke Xue ; 29(2): 165-173, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-37847089

ABSTRACT

OBJECTIVE: To explore the regulating mechanism of the Chinese medicinal compound Qianliexin Capsules (QLX) in the treatment of chronic nonbacterial prostatitis (CNP). METHODS: We randomly divided 18 SPF SD male rats into a normal control (n = 6), a model control (n = 6) and a QLX group (n = 6). After successful establishment of a CNP model in the latter two groups by injecting 50 µl 1% carrageenan bilaterally into the prostate, we treated the rats in the QLX group by intragastrical administration of QLX at 4 g/kg, tid, and those in the normal and model control groups with the same volume of pure water, all for 45 days. Then, we examined the possible lower urinary tract symptoms (LUTS) of CNP by detecting the prostate indexes, expression of the tissue inflammatory factor IL-1 ß, 24-hour urine volume and pain threshold reaction (PTR) time, and conducted a metabonomics analysis of the urine and plasma samples. RESULTS: Compared with the normal controls, the CNP model rats showed dramatically increased prostate coefficient (ï¼»0.75 ± 0.09ï¼½ ‰ vs ï¼»1.60 ± 0.35ï¼½ ‰, P < 0.01) and the expression of IL-1ß (ï¼»22.61 ± 2.77ï¼½ vs ï¼»55.12 ± 4.94ï¼½ ng/ml, P < 0.01), which were both decreased in the QLX group (ï¼»0.97 ± 0.10ï¼½ ‰ and ï¼»36.64 ± 7.25ï¼½ ng/ml) in comparison with those in the model controls (P < 0.01). The urine volume was remarkably reduced in the model control group compared with that in the normal controls (4 ml vs 16.38 ml, P < 0.01), and so was the PTR time (ï¼»13.83 ± 5.67ï¼½ vs ï¼»23.73 ± 2.52ï¼½ s, P < 0.01), while the levels of urea nitrogen (ï¼»23.06 ± 3.71ï¼½ vs ï¼»17.92 ± 1.41ï¼½ mg/dL, P < 0.01), creatinine (ï¼»48.08 ± 9.31ï¼½ vs ï¼»40.31 ± 3.53ï¼½ µmol/L, P < 0.01) and uric acid (ï¼»181.36 ± 64.06ï¼½ vs ï¼»84.33 ± 21.40ï¼½ µmol/L, P < 0.01) increased significantly. The animals in the QLX group exhibited significant improvement in the urine volume (ï¼»13.44 ± 2.26ï¼½ ml), PTR time (ï¼»31.45 ± 2.96ï¼½ s), urea nitrogen (ï¼»16.49 ± 1.86ï¼½ mg/dL), creatinine (ï¼»36.88 ± 7.98ï¼½ µmol/L) and uric acid (ï¼»117.47 ± 40.09ï¼½ µmol/L) in comparison with the model controls (P < 0.01). Metabonomics analysis revealed a reversing effect of QLX on the carrageenin-induced alteration in a variety of metabolites in the urine and serum, restoring the ratios of such metabolites as glycine, cysteine, ketoimine quinolinic acid, aminobutyraldehyde and triphosphate to almost normal. Pathway enrichment analysis showed that the main metabolic pathways were aspartate and glutamate pathways. The ratios of such metabolites as neuroside, adipic acid, diacylglycerol, choline lecithin and so on in the plasma sample were dramatically improved in the QLX group compared with those in the model controls (P < 0.01). CONCLUSION: QLX significantly improves the symptoms of CNP and has a definite effect on amino acids, phosphatidyl and other biomarkers through the tricarboxylic acid cycle, amino acid metabolism, lipid metabolism and other related pathways.


Subject(s)
Prostatitis , Humans , Rats , Male , Animals , Prostatitis/drug therapy , Prostatitis/metabolism , Carrageenan , Creatinine , Uric Acid , Nitrogen , Urea
20.
J Sci Food Agric ; 103(15): 7896-7904, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37486857

ABSTRACT

BACKGROUND: Rapeseed bee pollen has been recognized as a critical treatment for chronic non-bacterial prostatitis (CNP) and it also can modulate gut microbiota and improve gut health. This study aimed to explore the anti-prostatitis effects of rapeseed bee pollen with or without wall-disruption, and to investigate the connection between this treatment and gut microbiota. RESULTS: The results reveal that rapeseed bee pollen can effectively alleviate chronic non-bacteria prostatitis by selectively regulating gut microbiota, with higher doses and wall-disrupted pollen showing greater efficacy. Treatment with a high dose of wall-disrupted rapeseed bee pollen (WDH, 1.26 g kg-1 body weight) reduced prostate wet weight and prostate index by approximately 32% and 36%, respectively, nearly the levels observed in the control group. Wall-disrupted rapeseed bee pollen treatment also reduced significantly (p < 0.05) the expression of proinflammatory cytokines (IL-6, IL-8, IL-1ß, and TNF-α), as confirmed by immunofluorescence with laser scanning confocal microscope. Our results show that rapeseed bee pollen can inhibit pathogenic bacteria and enhance probiotics, particularly in the Firmicutes-to-Bacteroidetes (F/B) ratio and the abundance of Prevotella (genus). CONCLUSION: This is the first study to investigate the alleviation of CNP with rapeseed bee pollen through gut microbiota. These results seem to provide better understanding for the development of rapeseed bee pollen as a complementary medicine. © 2023 Society of Chemical Industry.


Subject(s)
Brassica napus , Brassica rapa , Gastrointestinal Microbiome , Prostatitis , Humans , Male , Bees , Animals , Prostatitis/drug therapy , Prostatitis/metabolism , Pollen/metabolism , Bacteria/genetics
SELECTION OF CITATIONS
SEARCH DETAIL