Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 870
Filter
1.
Mar Drugs ; 22(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38921555

ABSTRACT

Brown seaweeds of the Fucus genus represent a rich source of natural antiviral products. In this study, a Fucus ceranoides hydroalcoholic extract (FCHE) was found to inhibit 74.2 ± 1.3% of the proteolytic activity of the free SARS-CoV-2 3CL protease (3CLpro), an enzyme that plays a pivotal role in polyprotein processing during coronavirus replication and has been identified as a relevant drug discovery target for SARS- and MERS-CoVs infections. To purify and identify 3CLpro ligands with potential inhibitory activity using a one-step approach, we immobilized the enzyme onto magnetic microbeads (3CLpro-MPs), checked that the enzymatic activity was maintained after grafting, and used this bait for a ligand-fishing strategy followed by a high-resolution mass spectrometry analysis of the fished-out molecules. Proof of concept for the ligand-fishing capacity of the 3CLpro-MPs was demonstrated by doping the FCHE extract with the substrate peptide TSAVLQ-pNA, resulting in the preferential capture of this high-affinity peptide within the macroalgal complex matrix. Ligand fishing in the FCHE alone led to the purification and identification via high-resolution mass spectrometry (HRMS) of seven hepta-, octa-, and decapeptides in an eluate mix that significantly inhibited the free 3CLpro more than the starting FCHE (82.7 ± 2.2% inhibition). Molecular docking simulations of the interaction between each of the seven peptides and the 3CLpro demonstrated a high affinity for the enzyme's proteolytic active site surpassing that of the most affine peptide ligand identified so far (a co-crystallographic peptide). Testing of the corresponding synthetic peptides demonstrated that four out of seven significantly inhibited the free 3CLpro (from 46.9 ± 6.4 to 76.8 ± 3.6% inhibition at 10 µM). This study is the first report identifying peptides from Fucus ceranoides with high inhibitory activity against the SARS-CoV-2 3CLprotease which bind with high affinity to the protease's active site. It also confirms the effectiveness of the ligand-fishing strategy for the single-step purification of enzyme inhibitors from complex seaweed matrices.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Fucus , Protease Inhibitors , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Ligands , Fucus/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/isolation & purification , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Peptides/pharmacology , Peptides/chemistry , Molecular Docking Simulation , Humans , Seaweed/chemistry
2.
J Ethnopharmacol ; 332: 118349, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38762214

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Snakebite envenomation (SBE) is the world's most lethal neglected tropical disease. Bothrops jararaca is the species that causes the greatest number of SBEs in the South and Southeastern of Brazil. The main symptoms are local (inflammation, edema, hemorrhage, and myonecrosis) and systemic (hemorrhage, hemostatic alterations with consumptive coagulopathy, and death) effects. Species of the genus Siparuna, Siparunaceae, are used in folk and traditional medicine to treat SBE. However, limited information is available concerning Brazilian Siparuna species against SBE. AIM OF THE STUDY: To investigate the correlation between the compounds present in the extracts of five Siparuna species as potential agents against proteolytic activity, plasma coagulation, and phospholipase A2 (PLA2) activity caused by B. jararaca venom, using data obtained by UHPLC-MS/MS, biological activity, and multivariate statistics. MATERIALS AND METHODS: The ethanol extracts from leaves of S. ficoides, S. decipiens, S. glycycarpa, S. reginae, and S. cymosa were fractionated by liquid-liquid extraction using different solvents of increasing polarity (hexane, dichloromethane, ethyl acetate, and n-butanol), affording their respective extracts, totaling 25 samples that were assayed through in vitro plasma coagulation and proteolytic activity assays. Moreover, the extracts were analyzed by UHPLC-MS/MS, using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) in negative and positive ionization modes. The data was processed in MZmine v. 2.53 and evaluated by multivariate statistical tests (PLS) using the software UnscramblerX v. 10.4. These data were also used to build molecular networks (GNPS), and some ions of interest could be annotated using the library of molecules on the GNPS platform. RESULTS: A total of 19 extracts inhibited B. jararaca-induced plasma coagulation, with emphasis on S. cymosa and S. reginae (800 s). The inhibition of the proteolytic activity was also promising, ranging from 16% (S. glycycarpa) to 99% (S. cymosa, S. decipiens, and S. reginae). In addition, most extracts from S. cymosa and S. reginae inhibited 70-90% of PLA2 activity. Based on data from positive mode APCI analyses, it was possible to obtain a statistic model with reliable predictive capacity which exhibited an average R2 of 0.95 and a Q2 of 0.88, indicating a robust fit. This process revealed five ions, identified as the alkaloids: coclaurine (1), stepholidine (2) O-methylisopiline (3), nornantenine (4) and laurolitsine (5). This is the first study to evidence the potential antivenom of alkaloids from Siparuna species. CONCLUSIONS: Altogether, our results give support to the popular use of Siparuna extracts in SBE accidents, suggesting their potential as an alternative or complementary strategy against envenoming by B. jararaca venom. The predicted ions in the chemometric analysis for the assayed activities can also be correlated with the blocking activity and encourage the continuation of this study for possible isolation and testing of individual compounds on the used models.


Subject(s)
Alkaloids , Blood Coagulation , Bothrops , Crotalid Venoms , Plant Extracts , Animals , Blood Coagulation/drug effects , Crotalid Venoms/toxicity , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemistry , Brazil , Proteolysis/drug effects , Phospholipases A2/metabolism , Phospholipase A2 Inhibitors/pharmacology , Phospholipase A2 Inhibitors/isolation & purification , Plant Leaves/chemistry , Antivenins/pharmacology , Antivenins/isolation & purification , Protease Inhibitors/pharmacology , Protease Inhibitors/isolation & purification , Tandem Mass Spectrometry , Bothrops jararaca
3.
Electrophoresis ; 45(11-12): 1010-1017, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38225719

ABSTRACT

In this work, a capillary electrophoresis method was developed as a quality control tool to determine the enantiomeric purity of a series of five chiral compounds evaluated as potential severe acute respiratory syndrome coronavirus 2 3CL protease inhibitors. The first cyclodextrin tested, that is, highly sulfated-ß-cyclodextrin, at 6% (m/v) in a 25 mM phosphate buffer, using a capillary dynamically coated with polyethylene oxide, at an applied voltage of 15 kV and a temperature of 25°C, was found to successfully separate the five derivatives. The limits of detection and quantification were calculated together with the greenness score of the method in order to evaluate the method in terms of analytical and environmental performance. In addition, it is noteworthy that simultaneously high-performance liquid chromatography separation of the enantiomers of the same compounds with two different columns, the amylose tris(3,5-dimethylphenylcarbamate)-coated and the cellulose tris(3,5-dichlorophenylcarbamate)-immobilized on silica stationary phases, was studied. Neither the former stationary phase nor the latter was able to separate all derivatives in a mobile phase consisting of n-heptane/propan-2-ol 80/20 (v/v).


Subject(s)
SARS-CoV-2 , Stereoisomerism , Protease Inhibitors/isolation & purification , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/analysis , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Chromatography, Micellar Electrokinetic Capillary/methods , Limit of Detection , COVID-19 , Humans , Betacoronavirus/isolation & purification , Betacoronavirus/chemistry , Chromatography, High Pressure Liquid/methods
4.
Pancreatology ; 23(6): 742-749, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37604733

ABSTRACT

Chymotrypsin-like protease (CTRL) is one of the four chymotrypsin isoforms expressed in the human exocrine pancreas. Human genetic and experimental evidence indicate that chymotrypsins B1, B2, and C (CTRB1, CTRB2 and CTRC) are important not only for protein digestion but also for protecting the pancreas against pancreatitis by degrading potentially harmful trypsinogen. CTRL has not been reported to play a similar role, possibly due to its low abundance and/or different substrate specificity. To address this problem, we investigated the specificity of the substrate-binding groove of CTRL by evolving the substrate-like canonical loop of the Schistocerca gregaria proteinase inhibitor 2 (SGPI-2), a small-protein reversible chymotrypsin inhibitor to bind CTRL. We found that phage-associated SGPI-2 variants with strong affinity to CTRL were similar to those evolved previously against CTRB1, CTRB2 or bovine chymotrypsin A (bCTRA), indicating comparable substrate specificity. When tested as recombinant proteins, SGPI-2 variants inhibited CTRL with similar or slightly weaker affinity than bCTRA, confirming that CTRL is a typical chymotrypsin. Interestingly, an SGPI-2 variant selected with a Thr29His mutation in its reactive loop was found to inhibit CTRL strongly, but it was digested rapidly by bCTRA. Finally, CTRL was shown to degrade human anionic trypsinogen, however, at a much slower rate than CTRB2, suggesting that CTRL may not have a significant role in the pancreatic defense mechanisms against inappropriate trypsinogen activation and pancreatitis.


Subject(s)
Chymases , Chymotrypsin , Protease Inhibitors , Animals , Cattle , Humans , Chymases/antagonists & inhibitors , Chymases/chemistry , Chymotrypsin/chemistry , Pancreatitis/prevention & control , Protease Inhibitors/chemistry , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Substrate Specificity , Trypsinogen , Peptide Library
5.
Mar Drugs ; 20(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35323478

ABSTRACT

Several natural products recovered from a marine-derived Aspergillus niger were tested for their inhibitory activity against SARS CoV-2 in vitro. Aurasperone A (3) was found to inhibit SARS CoV-2 efficiently (IC50 = 12.25 µM) with comparable activity with the positive control remdesivir (IC50 = 10.11 µM). Aurasperone A exerted minimal cytotoxicity on Vero E6 cells (CC50 = 32.36 mM, SI = 2641.5) and it was found to be much safer than remdesivir (CC50 = 415.22 µM, SI = 41.07). To putatively highlight its molecular target, aurasperone A was subjected to molecular docking against several key-viral protein targets followed by a series of molecular dynamics-based in silico experiments that suggested Mpro to be its primary viral protein target. More potent anti-SARS CoV-2 Mpro inhibitors can be developed according to our findings presented in the present investigation.


Subject(s)
Antiviral Agents/pharmacology , Chromones/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/isolation & purification , Aspergillus niger/chemistry , Chlorocebus aethiops , Chromones/isolation & purification , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Molecular Docking Simulation , Protease Inhibitors/isolation & purification , RNA Helicases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
6.
Microbiol Res ; 252: 126858, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34509708

ABSTRACT

Proteases play an indispensable role in the life cycles of several life-threatening organisms such as the ones causing malaria, cancer and AIDS. A targeted blockade of these enzymes could be an efficient approach for drug modeling against these causative agents. Our study was directed towards the extraction and characterization of a protease inhibitor having activity against Chikungunya virus (CHIKV). A protein-based protease inhibitor (PI) in Streptomyces griseoincarnatus HK12 with anti-viral activity against CHIKV was revealed when screened against two major proteases, papain and trypsin. The PI was efficiently extracted at 60 % ammonium sulfate saturation and purified by ion-exchange chromatography (CM-Sepharose) at 300 mM NaCl elution followed by SDS-PAGE (10 %). The protein was characterized by denaturing SDS-PAGE, reverse zymography, and MALDI-TOF peptide mass fingerprinting. The protein-based PI was studied to have a high molecular weight of 66-70 kDA. The PI was tested to supress the supress cytopathic effects (CPE) exerted by the clinically isolated virus in BHK21 cells. This was used as a measure to determine the antiviral activity. The PI exerted significant effects with an effective concentration calculated as EC50 11.21 µg/mL. The protein was found to be reported as the first of its kind which also stands out to be the first a natural protease inhibitor against the treatment of the chikungunya virus.


Subject(s)
Chikungunya virus , Protease Inhibitors , Streptomyces , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Electrophoresis, Polyacrylamide Gel , Protease Inhibitors/chemistry , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Streptomyces/chemistry
7.
SLAS Discov ; 26(9): 1189-1199, 2021 10.
Article in English | MEDLINE | ID: mdl-34151620

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has a huge impact on the world. Although several vaccines have recently reached the market, the development of specific antiviral drugs against SARS-CoV-2 is an important additional strategy in fighting the pandemic. One of the most promising pharmacological targets is the viral main protease (Mpro). Here, we present an optimized biochemical assay procedure for SARS-CoV-2 Mpro. We have comprehensively investigated the influence of different buffer components and conditions on the assay performance and characterized Förster resonance energy transfer (FRET) substrates with a preference for 2-Abz/Tyr(3-NO2) FRET pairs. The substrates 2-AbzSAVLQSGTyr(3-NO2)R-OH, a truncated version of the established DABCYL/EDANS FRET substrate, and 2-AbzVVTLQSGTyr(3-NO2)R-OH are promising candidates for screening and inhibitor characterization. In the latter substrate, the incorporation of Val at position P5 improved the catalytic efficiency. Based on the obtained results, we present here a reproducible, reliable assay protocol using highly affordable buffer components.


Subject(s)
COVID-19 Drug Treatment , Drug Discovery , Peptide Hydrolases/genetics , Protease Inhibitors/isolation & purification , Antiviral Agents/isolation & purification , Antiviral Agents/therapeutic use , Biological Assay , COVID-19/epidemiology , COVID-19/virology , Cysteine Endopeptidases , Fluorescence Resonance Energy Transfer , Humans , Molecular Docking Simulation , Pandemics , Peptide Hydrolases/drug effects , Protease Inhibitors/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
8.
Biophys Chem ; 275: 106608, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33962341

ABSTRACT

This paper proposes natural drug candidate compounds for the treatment of coronavirus disease 2019 (COVID-19). We investigated the binding properties between the compounds in the Moringa oleifera plant and the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 using molecular docking and ab initio fragment molecular orbital calculations. Among the 12 compounds, niaziminin was found to bind the strongest to Mpro. We furthermore proposed novel compounds based on niaziminin and investigated their binding properties to Mpro. The results reveal that the introduction of a hydroxyl group into niaziminin enhances its binding affinity to Mpro. These niaziminin derivatives can be promising candidate drugs for the treatment of COVID-19.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Moringa oleifera/chemistry , Phytochemicals/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/chemistry , Thiocarbamates/chemistry , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Drug Design , Drug Discovery , Gene Expression , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/classification , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Protease Inhibitors/classification , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Quantum Theory , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Structure-Activity Relationship , Thermodynamics , Thiocarbamates/classification , Thiocarbamates/isolation & purification , Thiocarbamates/pharmacology , COVID-19 Drug Treatment
9.
Molecules ; 26(7)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916461

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic, which generated more than 1.82 million deaths in 2020 alone, in addition to 83.8 million infections. Currently, there is no antiviral medication to treat COVID-19. In the search for drug leads, marine-derived metabolites are reported here as prospective SARS-CoV-2 inhibitors. Two hundred and twenty-seven terpene natural products isolated from the biodiverse Red-Sea ecosystem were screened for inhibitor activity against the SARS-CoV-2 main protease (Mpro) using molecular docking and molecular dynamics (MD) simulations combined with molecular mechanics/generalized Born surface area binding energy calculations. On the basis of in silico analyses, six terpenes demonstrated high potency as Mpro inhibitors with ΔGbinding ≤ -40.0 kcal/mol. The stability and binding affinity of the most potent metabolite, erylosides B, were compared to the human immunodeficiency virus protease inhibitor, lopinavir. Erylosides B showed greater binding affinity towards SARS-CoV-2 Mpro than lopinavir over 100 ns with ΔGbinding values of -51.9 vs. -33.6 kcal/mol, respectively. Protein-protein interactions indicate that erylosides B biochemical signaling shares gene components that mediate severe acute respiratory syndrome diseases, including the cytokine- and immune-signaling components BCL2L1, IL2, and PRKC. Pathway enrichment analysis and Boolean network modeling were performed towards a deep dissection and mining of the erylosides B target-function interactions. The current study identifies erylosides B as a promising anti-COVID-19 drug lead that warrants further in vitro and in vivo testing.


Subject(s)
Invertebrates/chemistry , SARS-CoV-2/metabolism , Terpenes/chemistry , Viral Matrix Proteins/antagonists & inhibitors , Animals , Binding Sites , COVID-19/virology , Humans , Hydrogen Bonding , Invertebrates/metabolism , Lopinavir/chemistry , Lopinavir/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/isolation & purification , Protease Inhibitors/therapeutic use , Protein Binding , SARS-CoV-2/isolation & purification , Terpenes/isolation & purification , Terpenes/metabolism , Terpenes/therapeutic use , Thermodynamics , Viral Matrix Proteins/metabolism , COVID-19 Drug Treatment
10.
Mar Drugs ; 19(4)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916819

ABSTRACT

Only palliative therapeutic options exist for the treatment of Alzheimer's Disease; no new successful drug candidates have been developed in over 15 years. The widely used clinical anticoagulant heparin has been reported to exert beneficial effects through multiple pathophysiological pathways involved in the aetiology of Alzheimer's Disease, for example, amyloid peptide production and clearance, tau phosphorylation, inflammation and oxidative stress. Despite the therapeutic potential of heparin as a multi-target drug for Alzheimer's disease, the repurposing of pharmaceutical heparin is proscribed owing to the potent anticoagulant activity of this drug. Here, a heterogenous non-anticoagulant glycosaminoglycan extract, obtained from the shrimp Litopenaeus vannamei, was found to inhibit the key neuronal ß-secretase, BACE1, displaying a more favorable therapeutic ratio compared to pharmaceutical heparin when anticoagulant activity is considered.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Glycosaminoglycans/pharmacology , Penaeidae/metabolism , Protease Inhibitors/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Blood Coagulation/drug effects , Enzyme Stability , Glycosaminoglycans/isolation & purification , Humans , Partial Thromboplastin Time , Protease Inhibitors/isolation & purification , Prothrombin Time
11.
Pharmacol Res ; 166: 105521, 2021 04.
Article in English | MEDLINE | ID: mdl-33662574

ABSTRACT

Marine habitats are well-known for their diverse life forms that are potential sources of novel bioactive compounds. Evidence from existing studies suggests that these compounds contribute significantly to the field of pharmaceuticals, nutraceuticals, and cosmeceuticals. The isolation of natural compounds from a marine environment with protease inhibitory activity has gained importance due to drug discovery potential. Despite the increasing research endeavours focusing on protease inhibitors' design and characterization, many of these compounds have failed to reach final phases of clinical trials. As a result, the search for new sources for the development of protease inhibitors remains pertinent. This review focuses on the diverse marine protease inhibitors and their structure-activity relationships. Furthermore, the potential of marine protease inhibitors in drug discovery and molecular mechanism inhibitor binding are critically discussed.


Subject(s)
Drug Discovery , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Animals , Aquatic Organisms/chemistry , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Humans , Protease Inhibitors/isolation & purification , Structure-Activity Relationship
12.
Front Immunol ; 12: 626200, 2021.
Article in English | MEDLINE | ID: mdl-33732248

ABSTRACT

Tick saliva is a rich source of pharmacologically and immunologically active molecules. These salivary components are indispensable for successful blood feeding on vertebrate hosts and are believed to facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-3, a protein expressed in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Belonging to the serpin superfamily of protease inhibitors, Iripin-3 strongly inhibited the proteolytic activity of serine proteases kallikrein and matriptase. In an in vitro setup, Iripin-3 was capable of modulating the adaptive immune response as evidenced by reduced survival of mouse splenocytes, impaired proliferation of CD4+ T lymphocytes, suppression of the T helper type 1 immune response, and induction of regulatory T cell differentiation. Apart from altering acquired immunity, Iripin-3 also inhibited the extrinsic blood coagulation pathway and reduced the production of pro-inflammatory cytokine interleukin-6 by lipopolysaccharide-stimulated bone marrow-derived macrophages. In addition to its functional characterization, we present the crystal structure of cleaved Iripin-3 at 1.95 Å resolution. Iripin-3 proved to be a pluripotent salivary serpin with immunomodulatory and anti-hemostatic properties that could facilitate tick feeding via the suppression of host anti-tick defenses. Physiological relevance of Iripin-3 activities observed in vitro needs to be supported by appropriate in vivo experiments.


Subject(s)
Adaptive Immunity/drug effects , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Immunologic Factors/pharmacology , Insect Proteins/pharmacology , Ixodes/metabolism , Saliva/metabolism , Salivary Proteins and Peptides/pharmacology , Animals , Anticoagulants/isolation & purification , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/metabolism , Guinea Pigs , Humans , Immunologic Factors/isolation & purification , Insect Proteins/isolation & purification , Lymphocyte Activation/drug effects , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Rabbits , Salivary Proteins and Peptides/isolation & purification , Spleen/drug effects , Spleen/immunology , Spleen/metabolism
13.
Sci Rep ; 11(1): 5032, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658582

ABSTRACT

During oviposition, ectoparasitoid wasps not only inject their eggs but also a complex mixture of proteins and peptides (venom) in order to regulate the host physiology to benefit their progeny. Although several endoparasitoid venom proteins have been identified, little is known about the components of ectoparasitoid venom. To characterize the protein composition of Torymus sinensis Kamijo (Hymenoptera: Torymidae) venom, we used an integrated transcriptomic and proteomic approach and identified 143 venom proteins. Moreover, focusing on venom gland transcriptome, we selected additional 52 transcripts encoding putative venom proteins. As in other parasitoid venoms, hydrolases, including proteases, phosphatases, esterases, and nucleases, constitute the most abundant families in T. sinensis venom, followed by protease inhibitors. These proteins are potentially involved in the complex parasitic syndrome, with different effects on the immune system, physiological processes and development of the host, and contribute to provide nutrients to the parasitoid progeny. Although additional in vivo studies are needed, initial findings offer important information about venom factors and their putative host effects, which are essential to ensure the success of parasitism.


Subject(s)
Deoxyribonucleases/genetics , Esterases/genetics , Insect Proteins/genetics , Peptide Hydrolases/genetics , Phosphoric Monoester Hydrolases/genetics , Proteome/genetics , Wasp Venoms/chemistry , Animals , Deoxyribonucleases/classification , Deoxyribonucleases/isolation & purification , Deoxyribonucleases/metabolism , Esterases/classification , Esterases/isolation & purification , Esterases/metabolism , Gene Ontology , Insect Proteins/classification , Insect Proteins/isolation & purification , Insect Proteins/metabolism , Molecular Sequence Annotation , Oviposition/physiology , Peptide Hydrolases/classification , Peptide Hydrolases/isolation & purification , Peptide Hydrolases/metabolism , Phosphoric Monoester Hydrolases/classification , Phosphoric Monoester Hydrolases/isolation & purification , Phosphoric Monoester Hydrolases/metabolism , Protease Inhibitors/classification , Protease Inhibitors/isolation & purification , Protease Inhibitors/metabolism , Proteome/classification , Proteome/isolation & purification , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome , Wasp Venoms/toxicity , Wasps/chemistry , Wasps/pathogenicity , Wasps/physiology
14.
J Parasitol ; 107(1): 23-28, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33498082

ABSTRACT

Gastrointestinal nematode infection of small ruminants causes losses in livestock production. Plant compounds show promises as alternatives to commercial anthelmintics that have been exerting selective pressures that lead to the development of drug-resistant parasites. Soybean (Glycine max) is an economical value crop, with a higher protein content compared to other legumes. The objective of this study was to evaluate whether the protease inhibitors exuded from the G. max mature seeds have anthelmintic activity against Haemonchus contortus. To obtain the soybean exudates (SEX), mature seeds were immersed in 100 mM sodium acetate buffer, pH 5.0, at 10 C, for 24 hr. Then the naturally released substances present in SEX were collected and exhaustively dialyzed (cutoff 12 kDa) against distilled water. The dialyzed seed exudates (SEXD) were heated at 100 C for 10 min and centrifuged (12,000 g, at 4 C for 15 min). The supernatant obtained was recovered and designated as the heat-treated exudate fraction (SEXDH). The protein content, protease inhibitor activity, and the effect of each fraction on H. contortus egg hatch rate were evaluated. The inhibition extent of SEX, SEXD, and SEXDH on H. contortus egg proteases was 31.1, 42.9, and 63.8%, respectively. Moreover, SEX, SEXD, and SEXDH inhibited the egg hatching with EC50 of 0.175, 0.175, and 0.241 mg ml-1, respectively. Among the commercial protease inhibitors tested, only EDTA and E-64 inhibited the H. contortus hatch rate (79.0 and 28.9%, respectively). We present evidence demonstrating that soybean exudate proteins can effectively inhibit H. contortus egg hatching. This bioactivity is displayed by thermostable proteins and provides evidence that protease inhibitors are a potential candidate for anthelmintic use.


Subject(s)
Exudates and Transudates/chemistry , Glycine max/chemistry , Haemonchus/drug effects , Plant Extracts/pharmacology , Protease Inhibitors/pharmacology , Seeds/chemistry , Animals , Haemonchiasis/parasitology , Haemonchiasis/veterinary , Haemonchus/enzymology , Haemonchus/physiology , Hydrogen-Ion Concentration , Peptide Hydrolases/isolation & purification , Plant Extracts/isolation & purification , Protease Inhibitors/isolation & purification , Sheep , Sheep Diseases/parasitology , Soybean Proteins/chemistry
15.
Int J Mol Sci ; 22(2)2021 Jan 17.
Article in English | MEDLINE | ID: mdl-33477394

ABSTRACT

Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick-host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.


Subject(s)
Protease Inhibitors/isolation & purification , Protease Inhibitors/therapeutic use , Saliva/metabolism , Animals , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Saliva/chemistry , Salivary Glands/metabolism , Ticks/metabolism , Transcriptome/genetics
16.
Curr Top Med Chem ; 21(7): 571-596, 2021.
Article in English | MEDLINE | ID: mdl-33463470

ABSTRACT

Even after one year of its first outbreak reported in China, the coronavirus disease 2019 (COVID-19) pandemic is still sweeping the World, causing serious infections and claiming more fatalities. COVID-19 is caused by the novel coronavirus SARS-CoV-2, which belongs to the genus Betacoronavirus (ß-CoVs), which is of greatest clinical importance since it contains many other viruses that cause respiratory disease in humans, including OC43, HKU1, SARS-CoV, and MERS. The spike (S) glycoprotein of ß-CoVs is a key virulence factor in determining disease pathogenesis and host tropism, and it also mediates virus binding to the host's receptors to allow viral entry into host cells, i.e., the first step in virus lifecycle. Viral entry inhibitors are considered promising putative drugs for COVID-19. Herein, we mined the biomedical literature for viral entry inhibitors of other coronaviruses, with special emphasis on ß-CoVs entry inhibitors. We also outlined the structural features of SARS-CoV-2 S protein and how it differs from other ß-CoVs to better understand the structural determinants of S protein binding to its human receptor (ACE2). This review highlighted several promising viral entry inhibitors as potential treatments for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/chemistry , Protease Inhibitors/chemistry , Receptors, Virus/antagonists & inhibitors , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , COVID-19/enzymology , COVID-19/virology , Cathepsin L/antagonists & inhibitors , Cathepsin L/chemistry , Cathepsin L/genetics , Cathepsin L/metabolism , Gene Expression , Humans , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/isolation & purification , Small Molecule Libraries/pharmacology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , COVID-19 Drug Treatment
17.
Comb Chem High Throughput Screen ; 24(4): 591-597, 2021.
Article in English | MEDLINE | ID: mdl-32807047

ABSTRACT

AIM AND OBJECTIVE: At present, the world is facing a global pandemic threat of SARSCoV- 2 or COVID-19 and to date, there are no clinically approved vaccines or antiviral drugs available for the treatment of coronavirus infections. Studies conducted in China recommended the use of liquorice (Glycyrrhiza species), an integral medicinal herb of traditional Chinese medicine, in the deactivation of COVID-19. Therefore, the present investigation was undertaken to identify the leads from the liquorice plant against COVID-19 using molecular docking simulation studies. MATERIALS AND METHODS: A set of reported bioactive compounds of liquorice were investigated for COVID-19 main protease (Mpro) inhibitory potential. The study was conducted on Autodock vina software using COVID-19 Mpro as a target protein having PDB ID: 6LU7. RESULTS: Out of the total 20 docked compounds, only six compounds showed the best affinity towards the protein target, which included glycyrrhizic acid, isoliquiritin apioside, glyasperin A, liquiritin, 1-methoxyphaseollidin and hedysarimcoumestan B. From the overall observation, glycyrrhizic acid followed by isoliquiritin apioside demonstrated the best affinity towards Mpro representing the binding energy of -8.6 and -7.9 Kcal/mol, respectively. Nevertheless, the other four compounds were also quite comparable with the later one. CONCLUSION: From the present investigation, we conclude that the compounds having oxane ring and chromenone ring substituted with hydroxyl 3-methylbut-2-enyl group could be the best alternative for the development of new leads from liquorice plant against COVID-19.


Subject(s)
Coronavirus 3C Proteases/drug effects , Glycyrrhiza/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , COVID-19/virology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/isolation & purification , Protease Inhibitors/therapeutic use , SARS-CoV-2/metabolism
18.
Molecules ; 25(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233753

ABSTRACT

The main objective of the current study was the extraction, purification, and biochemical characterization of a protein protease inhibitor from Conyzadioscoridis. Antimicrobial potential and cytotoxic effects were also examined. The protease inhibitor was extracted in 0.1 M phosphate buffer (pH 6-7). Then, the protease inhibitor, named PDInhibitor, was purified using ammonium sulfate precipitation followed by filtration through a Sephadex G-50 column and had an apparent molecular weight of 25 kDa. The N-terminal sequence of PDInhibitor showed a high level of identity with those of the Kunitz family. PDInhibitor was found to be active at pH values ranging from 5.0 to 11.0, with maximal activity at pH 9.0. It was also fully active at 50 °C and maintained 90% of its stability at over 55 °C. The thermostability of the PDInhibitor was clearly enhanced by CaCl2 and sorbitol, whereas the presence of Ca2+ and Zn2+ ions, Sodium taurodeoxycholate (NaTDC), Sodium dodecyl sulfate (SDS), Dithiothreitol (DTT), and ß-ME dramatically improved the inhibitory activity. A remarkable affinity of the protease inhibitor with available important therapeutic proteases (elastase and trypsin) was observed. PDInhibitor also acted as a potent inhibitor of commercial proteases from Aspergillus oryzae and of Proteinase K. The inhibitor displayed potent antimicrobial activity against gram+ and gram- bacteria and against fungal strains. Interestingly, PDInhibitor affected several human cancer cell lines, namely HCT-116, MDA-MB-231, and Lovo. Thus, it can be considered a potentially powerful therapeutic agent.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Conyza/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/isolation & purification , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Chromatography, Gel , Drug Stability , Electrophoresis, Polyacrylamide Gel , Humans , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Oxidants/chemistry , Oxidants/pharmacology , Oxidation-Reduction/drug effects , Protease Inhibitors/pharmacology , Solvents/chemistry , Temperature
19.
Biomed Pharmacother ; 132: 110816, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33049583

ABSTRACT

After the first case of Coronavirus disease 2019 (COVID-19) was reported in Wuhan, COVID-19 has rapidly spread to almost all parts of world. Angiotensin converting enzyme 2 (ACE2) receptor can bind to spike protein of SARS-CoV-2. Then, the spike protein of SARS-CoV-2 can be cleaved and activated by transmembrane protease, serine 2 (TMPRSS2) of the host cells for SARS-CoV-2 infection. Therefore, ACE2 and TMPRSS2 are potential antiviral targets for treatment of prevention of SARS-CoV-2 infection. In this study, we discovered that 10-250 µg/mL of GB-2, from Tian Shang Sheng Mu of Chiayi Puzi Peitian Temple, can inhibit ACE2 mRNA expression and ACE2 and TMPRSS2 protein expression in HepG2 and 293 T cells without cytotoxicity. GB-2 treatment could decrease ACE2 and TMPRSS2 expression level of lung tissue and kidney tissue without adverse effects, including nephrotoxicity and hepatotoxicity, in animal model. In the compositions of GB-2, we discovered that 50 µg/mL of theaflavin could inhibit protein expression of ACE2 and TMPRSS2. Theaflavin could inhibit the mRNA expression of ACE2. In conclusion, our results suggest that GB-2 and theaflavin could act as potential compounds for ACE2 and TMPRSS2 inhibitors in the further clinical study.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , Drugs, Chinese Herbal/pharmacology , Serine Endopeptidases/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , COVID-19/epidemiology , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/therapeutic use , Gene Expression/drug effects , HEK293 Cells , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , SARS-CoV-2 , Serine Endopeptidases/genetics , COVID-19 Drug Treatment
20.
Molecules ; 25(17)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872217

ABSTRACT

A pandemic caused by the novel coronavirus (SARS-CoV-2 or COVID-19) began in December 2019 in Wuhan, China, and the number of newly reported cases continues to increase. More than 19.7 million cases have been reported globally and about 728,000 have died as of this writing (10 August 2020). Recently, it has been confirmed that the SARS-CoV-2 main protease (Mpro) enzyme is responsible not only for viral reproduction but also impedes host immune responses. The Mpro provides a highly favorable pharmacological target for the discovery and design of inhibitors. Currently, no specific therapies are available, and investigations into the treatment of COVID-19 are lacking. Therefore, herein, we analyzed the bioactive phytocompounds isolated by gas chromatography-mass spectroscopy (GC-MS) from Tinospora crispa as potential COVID-19 Mpro inhibitors, using molecular docking study. Our analyses unveiled that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules, with three of them exerting biological activity and warranting further optimization and drug development to combat COVID-19.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/chemistry , Phytochemicals/chemistry , Protease Inhibitors/chemistry , Tinospora/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/classification , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , COVID-19 , Catalytic Domain , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Drug Discovery , Gas Chromatography-Mass Spectrometry , Gene Expression , Humans , Kinetics , Molecular Docking Simulation , Pandemics , Phytochemicals/classification , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Pneumonia, Viral/drug therapy , Protease Inhibitors/classification , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , SARS-CoV-2 , Substrate Specificity , Thermodynamics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL