Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.774
Filter
1.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38767572

ABSTRACT

Proteasome activity is crucial for cellular integrity, but how tissues adjust proteasome content in response to catabolic stimuli is uncertain. Here, we demonstrate that transcriptional coordination by multiple transcription factors is required to increase proteasome content and activate proteolysis in catabolic states. Using denervated mouse muscle as a model system for accelerated proteolysis in vivo, we reveal that a two-phase transcriptional program activates genes encoding proteasome subunits and assembly chaperones to boost an increase in proteasome content. Initially, gene induction is necessary to maintain basal proteasome levels, and in a more delayed phase (7-10 days after denervation), it stimulates proteasome assembly to meet cellular demand for excessive proteolysis. Intriguingly, the transcription factors PAX4 and α-PALNRF-1 control the expression of proteasome among other genes in a combinatorial manner, driving cellular adaptation to muscle denervation. Consequently, PAX4 and α-PALNRF-1 represent new therapeutic targets to inhibit proteolysis in catabolic diseases (e.g., type-2 diabetes, cancer).


Subject(s)
Proteasome Endopeptidase Complex , Proteolysis , Animals , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Mice , Paired Box Transcription Factors/metabolism , Paired Box Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Mice, Inbred C57BL , Gene Expression Regulation , Muscle, Skeletal/metabolism , Male , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics
2.
Nat Commun ; 15(1): 4026, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740822

ABSTRACT

Unstable proteins are prone to form non-native interactions with other proteins and thereby may become toxic. To mitigate this, destabilized proteins are targeted by the protein quality control network. Here we present systematic studies of the cytosolic aspartoacylase, ASPA, where variants are linked to Canavan disease, a lethal neurological disorder. We determine the abundance of 6152 of the 6260 ( ~ 98%) possible single amino acid substitutions and nonsense ASPA variants in human cells. Most low abundance variants are degraded through the ubiquitin-proteasome pathway and become toxic upon prolonged expression. The data correlates with predicted changes in thermodynamic stability, evolutionary conservation, and separate disease-linked variants from benign variants. Mapping of degradation signals (degrons) shows that these are often buried and the C-terminal region functions as a degron. The data can be used to interpret Canavan disease variants and provide insight into the relationship between protein stability, degradation and cell fitness.


Subject(s)
Amidohydrolases , Canavan Disease , Proteolysis , Humans , Amidohydrolases/genetics , Amidohydrolases/metabolism , Canavan Disease/genetics , Canavan Disease/metabolism , HEK293 Cells , Amino Acid Substitution , Mutation , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Protein Stability , Ubiquitin/metabolism , Thermodynamics
3.
J Clin Immunol ; 44(4): 88, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578475

ABSTRACT

The ubiquitin-proteasome system (UPS) has a critical role in post-translational protein modification that is essential for the maintenance of all cellular functions, including immune responses. The proteasome complex is ubiquitously expressed and is responsible for degradation of short-lived structurally abnormal, misfolded and not-needed proteins that are targeted for degradation via ubiquitin conjugation. Over the last 14 years, an increasing number of human diseases have been linked to pathogenic variants in proteasome subunits and UPS regulators. Defects of the proteasome complex or its chaperons - which have a regulatory role in the assembly of the proteasome - disrupt protein clearance and cellular homeostasis, leading to immune dysregulation, severe inflammation, and neurodevelopmental disorders in humans. Proteasome-associated diseases have complex inheritance, including monogenic, digenic and oligogenic disorders and can be dominantly or recessively inherited. In this review, we summarize the current known genetic causes of proteasomal disease, and discuss the molecular pathogenesis of these conditions based on the function and cellular expression of mutated proteins in the proteasome complex.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Humans , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Syndrome , Ubiquitin/metabolism
4.
Cancer Res Commun ; 4(4): 1082-1099, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625038

ABSTRACT

The 26S proteasome is the major protein degradation machinery in cells. Cancer cells use the proteasome to modulate gene expression networks that promote tumor growth. Proteasome inhibitors have emerged as effective cancer therapeutics, but how they work mechanistically remains unclear. Here, using integrative genomic analysis, we discovered unexpected reprogramming of the chromatin landscape and RNA polymerase II (RNAPII) transcription initiation in breast cancer cells treated with the proteasome inhibitor MG132. The cells acquired dynamic changes in chromatin accessibility at specific genomic loci termed differentially open chromatin regions (DOCR). DOCRs with decreased accessibility were promoter proximal and exhibited unique chromatin architecture associated with divergent RNAPII transcription. Conversely, DOCRs with increased accessibility were primarily distal to transcription start sites and enriched in oncogenic superenhancers predominantly accessible in non-basal breast tumor subtypes. These findings describe the mechanisms by which the proteasome modulates the expression of gene networks intrinsic to breast cancer biology. SIGNIFICANCE: Our study provides a strong basis for understanding the mechanisms by which proteasome inhibitors exert anticancer effects. We find open chromatin regions that change during proteasome inhibition, are typically accessible in non-basal breast cancers.


Subject(s)
Chromatin , Neoplasms , Chromatin/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Inhibitors/pharmacology , Proteolysis , Genomics
5.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38656405

ABSTRACT

Cells exposed to proteotoxic stress invoke adaptive responses aimed at restoring proteostasis. Our previous studies have established a firm role for the transcription factor Nuclear factor-erythroid derived-2-related factor-1 (Nrf1) in responding to proteotoxic stress elicited by inhibition of cellular proteasome. Following proteasome inhibition, Nrf1 mediates new proteasome synthesis, thus enabling the cells to mitigate the proteotoxic stress. Here, we report that under similar circumstances, multiple components of the autophagy-lysosomal pathway (ALP) were transcriptionally upregulated in an Nrf1-dependent fashion, thus providing the cells with an additional route to cope with proteasome insufficiency. In response to proteasome inhibitors, Nrf1-deficient cells displayed profound defects in invoking autophagy and clearance of aggresomes. This phenomenon was also recapitulated in NGLY1 knockout cells, where Nrf1 is known to be non-functional. Conversely, overexpression of Nrf1 induced ALP genes and endowed the cells with an increased capacity to clear aggresomes. Overall, our results significantly expand the role of Nrf1 in shaping the cellular response to proteotoxic stress.


Subject(s)
Autophagy , NF-E2-Related Factor 1 , Proteotoxic Stress , Animals , Humans , Mice , Autophagy/genetics , Lysosomes/metabolism , NF-E2-Related Factor 1/metabolism , NF-E2-Related Factor 1/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Inhibitors/pharmacology , Proteostasis , Stress, Physiological
6.
Free Radic Biol Med ; 219: 31-48, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614226

ABSTRACT

Hepatocellular carcinoma (HCC) is the predominant form of liver cancer, characterized by high morbidity and mortality rates, as well as unfavorable treatment outcomes. Tripartite motif-containing protein 47 (TRIM47) has been implicated in various diseases including tumor progression with the activity of E3 ubiquitin ligase. However, the precise regulatory mechanisms underlying the involvement of TRIM47 in HCC remain largely unexplored. Here, we provide evidence that TRIM47 exhibits heightened expression in tumor tissues, and its expression is in intimate association with clinical staging and patient prognosis. TRIM47 promotes HCC proliferation, migration, and invasion as an oncogene by in vitro gain- and loss-of-function experiments. TRIM47 knockdown results in HCC ferroptosis induction, primarily through CDO1 involvement to regulate GSH synthesis. Subsequent experiments confirm the interaction between TRIM47 and CDO1 dependent on B30.2 domain, wherein TRIM47 facilitates K48-linked ubiquitination, leading to a decrease in CDO1 protein abundance in HCC. Furthermore, CDO1 is able to counteract the promotional effect of TRIM47 on HCC biological functions. Overall, our research provides novel insight into the mechanism of TRIM47 in CDO1-mediated ferroptosis in HCC cells, highlighting its value as a potential target candidate for HCC therapeutic approaches.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Ferroptosis , Liver Neoplasms , Proteasome Endopeptidase Complex , Humans , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Ferroptosis/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Gene Expression Regulation, Neoplastic , Ubiquitination , Disease Progression , Ubiquitin/metabolism , Cell Line, Tumor , Animals , Mice , Cell Movement/genetics , Prognosis , Tripartite Motif Proteins , Neoplasm Proteins , Nuclear Proteins
7.
Nat Cell Biol ; 26(5): 784-796, 2024 May.
Article in English | MEDLINE | ID: mdl-38600234

ABSTRACT

DNA-protein crosslinks (DPCs) induced by aldehydes interfere with replication and transcription. Hereditary deficiencies in DPC repair and aldehyde clearance processes cause progeria, including Ruijs-Aalfs syndrome (RJALS) and AMeD syndrome (AMeDS) in humans. Although the elimination of DPC during replication has been well established, how cells overcome DPC lesions in transcription remains elusive. Here we show that endogenous aldehyde-induced DPC roadblocks are efficiently resolved by transcription-coupled repair (TCR). We develop a high-throughput sequencing technique to measure the genome-wide distribution of DPCs (DPC-seq). Using proteomics and DPC-seq, we demonstrate that the conventional TCR complex as well as VCP/p97 and the proteasome are required for the removal of formaldehyde-induced DPCs. TFIIS-dependent cleavage of RNAPII transcripts protects against transcription obstacles. Finally, a mouse model lacking both aldehyde clearance and TCR confirms endogenous DPC accumulation in actively transcribed regions. Collectively, our data provide evidence that transcription-coupled DPC repair (TC-DPCR) as well as aldehyde clearance are crucial for protecting against metabolic genotoxin, thus explaining the molecular pathogenesis of AMeDS and other disorders associated with defects in TCR, such as Cockayne syndrome.


Subject(s)
Aldehydes , DNA Repair , Transcription, Genetic , Animals , Humans , Aldehydes/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Mice , DNA/metabolism , DNA/genetics , DNA Damage , Mice, Knockout , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Mice, Inbred C57BL , Formaldehyde/toxicity , Formaldehyde/pharmacology , Excision Repair
8.
Sci Rep ; 14(1): 5861, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467767

ABSTRACT

There has been an upward trend in the incidence of glioma, with high recurrence and high mortality. The beta subunits of the 20S proteasome are encoded by the proteasome beta (PSMB) genes and may affect the proteasome's function in glioma, assembly and inhibitor binding. This study attempted to reveal the function of the proliferation and invasion of glioma cells, which is affected by proteasome 20S subunit beta 2 (PSMB2). We subjected the data downloaded from the TCGA database to ROC, survival, and enrichment analyses. After establishing the stable PSMB2 knockdown glioma cell line. We detect the changes in the proliferation, invasion and migration of glioma cells by plate colony formation assay, transwell assay, wound healing assay and flow cytometry and PSMB2 expression was verified by quantitative PCR and Western blotting to identify the mRNA and protein levels. PSMB2 expression was higher in glioma tissues, and its expression positively correlated with poor prognosis and high tumor grade and after PSMB2 knockdown, the proliferation, invasion and migration of glioma cells were weakened.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/pathology , Proteasome Endopeptidase Complex/genetics , Cell Proliferation/genetics , Glioma/pathology , Cell Line, Tumor , Cell Movement/genetics , Tumor Microenvironment/genetics
9.
Am J Hum Genet ; 111(4): 791-804, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38503300

ABSTRACT

Mutations in proteasome ß-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome ß2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash. Remaining T cells had limited T cell receptor repertoires, a skewed memory phenotype, and an elevated CD4/CD8 ratio. Bone marrow examination indicated severely impaired B cell maturation with limited V(D)J recombination. All infants received an allogeneic stem cell transplant and exhibited a variety of severe inflammatory complications thereafter, with 2 peri-transplant and 2 delayed deaths. The single long-term transplant survivor showed evidence for genetic rescue through revertant mosaicism overlapping the affected PSMB10 locus. The identified variants (c.166G>C [p.Asp56His] and c.601G>A/c.601G>C [p.Gly201Arg]) were predicted in silico to profoundly disrupt 20S immunoproteasome structure through impaired ß-ring/ß-ring interaction. Our identification of PSMB10 mutations as a cause of SCID-Omenn syndrome reinforces the connection between PRAAS-related diseases and SCID.


Subject(s)
Severe Combined Immunodeficiency , Infant , Humans , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Mutation/genetics , T-Lymphocytes/metabolism , Mutation, Missense/genetics
10.
Nat Commun ; 15(1): 2399, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493158

ABSTRACT

MicroRNAs (miRNAs) play a key role in regulating gene expression and their biogenesis is precisely controlled through modulating the activity of microprocessor. Here, we report that CWC15, a spliceosome-associated protein, acts as a positive regulator of miRNA biogenesis. CWC15 binds the promoters of genes encoding miRNAs (MIRs), promotes their activity, and increases the occupancy of DNA-dependent RNA polymerases at MIR promoters, suggesting that CWC15 positively regulates the transcription of primary miRNA transcripts (pri-miRNAs). In addition, CWC15 interacts with Serrate (SE) and HYL1, two key components of microprocessor, and is required for efficient pri-miRNA processing and the HYL1-pri-miRNA interaction. Moreover, CWC15 interacts with the 20 S proteasome and PRP4KA, facilitating SE phosphorylation by PRP4KA, and subsequent non-functional SE degradation by the 20 S proteasome. These data reveal that CWC15 ensures optimal miRNA biogenesis by maintaining proper SE levels and by modulating pri-miRNA levels. Taken together, this study uncovers the role of a conserved splicing-related protein in miRNA biogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , MicroRNAs , Arabidopsis/genetics , Arabidopsis/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , RNA Processing, Post-Transcriptional , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , MicroRNAs/metabolism , Gene Expression Regulation, Plant
11.
Vet Microbiol ; 292: 110036, 2024 May.
Article in English | MEDLINE | ID: mdl-38458048

ABSTRACT

Group A Rotavirus (RVA) is a major cause of diarrhea in infants and piglets. ß2-microglobulin (ß2 M), encoded by the B2M gene, serves as a crucial subunit of the major histocompatibility complex class I (MHC-I) molecules. ß2 M is indispensable for the transport of MHC-I to the cell membrane. MHC-I, also known as swine leukocyte antigen class I (SLA-I) in pigs, presents viral antigens to the cell surface. In this study, RVA infection down-regulated ß2 M expression in both porcine intestinal epithelial cells-J2 (IPEC-J2) and MA-104 cells. RVA infection did not down-regulate the mRNA level of the B2M gene, indicating that the down-regulation of ß2 M occurred on the protein level. Mechanismly, RVA infection triggered ß2 M aggregation in the endoplasmic reticulum (ER) and enhanced the Lys48 (K48)-linked ubiquitination of ß2 M, leading to the degradation of ß2 M through ERAD-proteasome pathway. Furthermore, we found that RVA infection significantly impeded the level of SLA-I on the surface, and the overexpression of ß2 M could recover its expression. In this study, our study demonstrated that RVA infection degrades ß2 M via ERAD-proteasome pathway, consequently hampering SLA-I expression on the cell surface. This study would enhance the understanding of the mechanism of how RVA infection induces immune escape.


Subject(s)
Rotavirus Infections , Swine Diseases , Animals , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Cell Membrane , Endoplasmic Reticulum-Associated Degradation , Histocompatibility Antigens Class I/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Rotavirus Infections/veterinary , Swine , Swine Diseases/metabolism
12.
Front Biosci (Landmark Ed) ; 29(3): 106, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38538281

ABSTRACT

BACKGROUND: Bortezomib (BTZ) is a powerful proteasome inhibitor that has been approved for the treatment of haematologic malignancies. Its effectiveness has been assessed against different types of solid tumours. BTZ is ineffective in most solid tumours because of drug resistance, including cholangiocarcinoma, which is associated with a proteasome bounce-back effect. However, the mechanism through which proteasome inhibitors induce the proteasome bounce-back effect remains largely unknown. METHODS: Cholangiocarcinoma cells were treated with BTZ, cisplatin, or a combination of both. The mRNA levels of Nfe2l1 and proteasome subunit genes (PSMA1, PSMB7, PSMD1, PSMD11, PSMD14, and PSME4) were determined using quantitative real time polymerase chain reaction (qPCR). The protein levels of nuclear factor-erythroid 2-related factor 1 (Nfe2l1) and proteasome enzyme activity were evaluated using western blotting and proteasome activity assays, respectively. Transcriptome sequencing was performed to screen for potential transcription factors that regulate Nfe2l1 expression. The effect of zinc finger E-box-binding homeobox 1 (ZEB1) on the expression of Nfe2l1 and proteasome subunit genes, as well as proteasome enzyme activity, was evaluated after the knockdown of ZEB1 expression with siRNA before treatment with BTZ. The transcriptional activity of ZEB1 on the Nfe2l1 promoter was detected using dual-luciferase reporter gene and chromatin immunoprecipitation assays. Cell viability was measured using the cell counting kit-8 (CCK-8) assay and cell apoptosis was assessed using western blotting and flow cytometry. RESULTS: Cisplatin treatment of BTZ-treated human cholangiocarcinoma cell line (RBE) suppressed proteasome subunit gene expression (proteasome bounce-back) and proteasomal enzyme activity. This effect was achieved by reducing the levels of Nfe2l1 mRNA and protein. Our study utilised transcriptome sequencing to identify ZEB1 as an upstream transcription factor of Nfe2l1, which was confirmed using dual-luciferase reporter gene and chromatin immunoprecipitation assays. Notably, ZEB1 knockdown using siRNA (si-ZEB1) hindered the expression of proteasome subunit genes under both basal and BTZ-induced conditions, leading to the inhibition of proteasomal enzyme activity. Furthermore, the combination treatment with BTZ, cisplatin, and si-ZEB1 significantly reduced the viability of RBE cells. CONCLUSIONS: Our study uncovered a novel mechanism through which cisplatin disrupts the BTZ-induced proteasome bounce-back effect by suppressing the ZEB1/Nfe2l1 axis in cholangiocarcinoma. This finding provides a theoretical basis for developing proteasome inhibitor-based strategies for the clinical treatment of cholangiocarcinoma and other tumours.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Cisplatin/pharmacology , Bortezomib/pharmacology , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , RNA, Small Interfering , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Luciferases , RNA, Messenger , Cell Line, Tumor , Zinc Finger E-box-Binding Homeobox 1/genetics , Trans-Activators
13.
J Biol Chem ; 300(4): 107135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447796

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of the coronavirus family and caused severe economic losses to the global swine industry. Previous studies have established that p53 is a host restriction factor for PEDV infection, and p53 degradation occurs in PEDV-infected cells. However, the underlying molecular mechanisms through which PEDV viral proteins regulate p53 degradation remain unclear. In this study, we found that PEDV infection or expression of the nucleocapsid protein downregulates p53 through a post-translational mechanism: increasing the ubiquitination of p53 and preventing its nuclear translocation. We also show that the PEDV N protein functions by recruiting the E3 ubiquitin ligase COP1 and suppressing COP1 self-ubiquitination and protein degradation, thereby augmenting COP1-mediated degradation of p53. Additionally, COP1 knockdown compromises N-mediated p53 degradation. Functional mapping using truncation analysis showed that the N-terminal domains of N protein were responsible for interacting with COP1 and critical for COP1 stability and p53 degradation. The results presented here suggest the COP1-dependent mechanism for PEDV N protein to abolish p53 activity. This study significantly increases our understanding of PEDV in antagonizing the host antiviral factor p53 and will help initiate novel antiviral strategies against PEDV.


Subject(s)
Nucleocapsid Proteins , Porcine epidemic diarrhea virus , Proteolysis , Tumor Suppressor Protein p53 , Ubiquitin-Protein Ligases , Ubiquitination , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Porcine epidemic diarrhea virus/metabolism , Animals , Humans , Nucleocapsid Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Chlorocebus aethiops , HEK293 Cells , Swine , Vero Cells
14.
J Biol Chem ; 300(4): 107198, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508312

ABSTRACT

Understanding the mechanisms that govern the stability of functionally crucial proteins is essential for various cellular processes, development, and overall cell viability. Disturbances in protein homeostasis are linked to the pathogenesis of neurodegenerative diseases. PTEN-induced kinase 1 (PINK1), a protein kinase, plays a significant role in mitochondrial quality control and cellular stress response, and its mutated forms lead to early-onset Parkinson's disease. Despite its importance, the specific mechanisms regulating PINK1 protein stability have remained unclear. This study reveals a cytoplasmic interaction between PINK1 and F-box and WD repeat domain-containing 7ß (FBW7ß) in mammalian cells. FBW7ß, a component of the Skp1-Cullin-1-F-box protein complex-type ubiquitin ligase, is instrumental in recognizing substrates. Our findings demonstrate that FBW7ß regulates PINK1 stability through the Skp1-Cullin-1-F-box protein complex and the proteasome pathway. It facilitates the K48-linked polyubiquitination of PINK1, marking it for degradation. When FBW7 is absent, PINK1 accumulates, leading to heightened mitophagy triggered by carbonyl cyanide 3-chlorophenylhydrazone treatment. Moreover, exposure to the toxic compound staurosporine accelerates PINK1 degradation via FBW7ß, correlating with increased cell death. This study unravels the intricate mechanisms controlling PINK1 protein stability and sheds light on the novel role of FBW7ß. These findings deepen our understanding of PINK1-related pathologies and potentially pave the way for therapeutic interventions.


Subject(s)
F-Box-WD Repeat-Containing Protein 7 , Protein Kinases , Proteolysis , Ubiquitination , Humans , Protein Kinases/metabolism , Protein Kinases/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , HEK293 Cells , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Mitophagy
15.
Microbiol Spectr ; 12(3): e0365823, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38323828

ABSTRACT

The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE: The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.


Subject(s)
Foot-and-Mouth Disease Virus , Animals , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , RNA-Binding Proteins/genetics , Ribosomes/genetics , Endopeptidases/metabolism , Internal Ribosome Entry Sites , 3C Viral Proteases , Ubiquitins/genetics , Ubiquitins/metabolism
16.
J Exp Clin Cancer Res ; 43(1): 52, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383479

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is one of most commonly diagnosed bone cancer. Circular RNAs (circRNAs) are a class of highly stable non-coding RNA, the majority of which have not been characterized functionally. The underlying function and molecular mechanisms of circRNAs in OS have not been fully demonstrated. METHOD: Microarray analysis was performed to identify circRNAs that are differentially-expressed between OS and corresponding normal tissues. The biological function of circKEAP1 was confirmed in vitro and in vivo. Mass spectrometry and western blot assays were used to identify the circKEAP1-encoded protein KEAP1-259aa. The molecular mechanism of circKEAP1 was investigated by RNA sequencing and RNA immunoprecipitation analyses. RESULTS: Here, we identified a tumor suppressor circKEAP1, originating from the back-splicing of exon2 of the KEAP1 gene. Clinically, circKEAP1 is downregulated in OS tumors and associated with better survival in cancer patients. N6-methyladenosine (m6A) at a specific adenosine leads to low expression of circKEAP1. Further analysis revealed that circKEAP1 contained a 777 nt long ORF and encoded a truncated protein KEAP1-259aa that reduces cell proliferation, invasion and tumorsphere formation of OS cells. Mechanistically, KEAP1-259aa bound to vimentin in the cytoplasm to promote vimentin proteasome degradation by interacting with the E3 ligase ARIH1. Moreover, circKEAP1 interacted with RIG-I to activate anti-tumor immunity via the IFN-γ pathway. CONCLUSION: Taken together, our findings characterize a tumor suppressor circKEAP1 as a key tumor suppressor regulating of OS cell stemness, proliferation and migration, providing potential therapeutic targets for treatment of OS.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , MicroRNAs/genetics , NF-E2-Related Factor 2/metabolism , Osteosarcoma/pathology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , RNA, Circular/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Vimentin/metabolism
17.
Proc Natl Acad Sci U S A ; 121(10): e2310756121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408252

ABSTRACT

Stress conditions can cause the relocalization of proteasomes to condensates in yeast and mammalian cells. The interactions that facilitate the formation of proteasome condensates, however, are unclear. Here, we show that the formation of proteasome condensates in yeast depends on ubiquitin chains together with the proteasome shuttle factors Rad23 and Dsk2. These shuttle factors colocalize to these condensates. Strains deleted for the third shuttle factor gene, DDI1, show proteasome condensates in the absence of cellular stress, consistent with the accumulation of substrates with long K48-linked ubiquitin chains that accumulate in this mutant. We propose a model where the long K48-linked ubiquitin chains function as a scaffold for the ubiquitin-binding domains of the shuttle factors and the proteasome, allowing for the multivalent interactions that further drive condensate formation. Indeed, we determined different intrinsic ubiquitin receptors of the proteasome-Rpn1, Rpn10, and Rpn13-and the Ubl domains of Rad23 and Dsk2 are critical under different condensate-inducing conditions. In all, our data support a model where the cellular accumulation of substrates with long ubiquitin chains, potentially due to reduced cellular energy, allows for proteasome condensate formation. This suggests that proteasome condensates are not simply for proteasome storage, but function to sequester soluble ubiquitinated substrates together with inactive proteasomes.


Subject(s)
Saccharomyces cerevisiae Proteins , Ubiquitin , Animals , Ubiquitin/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/chemistry , Saccharomyces cerevisiae/genetics , Ubiquitins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Mammals
18.
Front Cell Infect Microbiol ; 14: 1342856, 2024.
Article in English | MEDLINE | ID: mdl-38404287

ABSTRACT

Introduction: Malaria parasites increasingly develop resistance to all drugs available in the market, hampering the goal of reducing malaria burden. Methods: Herein, we evaluated the impact of a single-nucleotide variant, E738K, present in the 26S proteasome regulatory subunit rpn2 gene, identified in Plasmodium chabaudi resistant parasites. Plasmids carrying a functional rpn2 interspecies chimeric gene with 5' recombination region from P. falciparum and 3' from P. chabaudi were constructed and transfected into Dd2 P. falciparum parasites. Results and discussion: The 738K variant parasite line presented increased parasite survival when subjected to dihydroartemisinin (DHA), as well as increased chymotrypsin-like activity and decreased accumulation of polyubiquitinated proteins. We thus conclude that the ubiquitin-proteasome pathway, including the 738K variant, play an important role in parasite response to DHA, being the first report of a mutation in a potential DHA drug target enhancing parasite survival and contributing to a significant advance in the understanding the biology of artemisinin resistance.


Subject(s)
Antimalarials , Artemisinins , Plasmodium falciparum , Antimalarials/pharmacology , Artemisinins/pharmacology , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
19.
PLoS One ; 19(2): e0296959, 2024.
Article in English | MEDLINE | ID: mdl-38324617

ABSTRACT

A variety of Alzheimer's disease (AD) mouse models has been established and characterized within the last decades. To get an integrative view of the sophisticated etiopathogenesis of AD, whole genome transcriptome studies turned out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex and hippocampus of age-matched, eight months old male and female APP/PS1 AD mice and control animals to perform sex- and brain region specific analysis of transcriptome profiles. The results of our studies reveal novel, detailed insight into differentially expressed signature genes and related fold changes in the individual APP/PS1 subgroups. Gene ontology and Venn analysis unmasked that intersectional, upregulated genes were predominantly involved in, e.g., activation of microglial, astrocytic and neutrophilic cells, innate immune response/immune effector response, neuroinflammation, phagosome/proteasome activation, and synaptic transmission. The number of (intersectional) downregulated genes was substantially less in the different subgroups and related GO categories included, e.g., the synaptic vesicle docking/fusion machinery, synaptic transmission, rRNA processing, ubiquitination, proteasome degradation, histone modification and cellular senescence. Importantly, this is the first study to systematically unravel sex- and brain region-specific transcriptome fingerprints/signature genes in APP/PS1 mice. The latter will be of central relevance in future preclinical and clinical AD related studies, biomarker characterization and personalized medicinal approaches.


Subject(s)
Alzheimer Disease , Mice , Male , Female , Animals , Alzheimer Disease/pathology , Transcriptome , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Mice, Transgenic , Hippocampus/metabolism , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Amyloid beta-Peptides/metabolism
20.
Hum Mol Genet ; 33(10): 860-871, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38324746

ABSTRACT

Neuromuscular disorders caused by dysfunction of the mitochondrial respiratory chain are common, severe and untreatable. We recovered a number of mitochondrial genes, including electron transport chain components, in a large forward genetic screen for mutations causing age-related neurodegeneration in the context of proteostasis dysfunction. We created a model of complex I deficiency in the Drosophila retina to probe the role of protein degradation abnormalities in mitochondrial encephalomyopathies. Using our genetic model, we found that complex I deficiency regulates both the ubiquitin/proteasome and autophagy/lysosome arms of the proteostasis machinery. We further performed an in vivo kinome screen to uncover new and potentially druggable mechanisms contributing to complex I related neurodegeneration and proteostasis failure. Reduction of RIOK kinases and the innate immune signaling kinase pelle prevented neurodegeneration in complex I deficiency animals. Genetically targeting oxidative stress, but not RIOK1 or pelle knockdown, normalized proteostasis markers. Our findings outline distinct pathways controlling neurodegeneration and protein degradation in complex I deficiency and introduce an experimentally facile model in which to study these debilitating and currently treatment-refractory disorders.


Subject(s)
Disease Models, Animal , Drosophila Proteins , Electron Transport Complex I , Electron Transport Complex I/deficiency , Mitochondria , Mitochondrial Diseases , Proteostasis , Animals , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/deficiency , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Humans , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Autophagy/genetics , Oxidative Stress/genetics , Drosophila melanogaster/genetics , Mutation , Lysosomes/metabolism , Lysosomes/genetics , Drosophila/genetics , Drosophila/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...