Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.097
Filter
1.
Clin Transl Sci ; 17(5): e13808, 2024 May.
Article in English | MEDLINE | ID: mdl-38700272

ABSTRACT

Sitravatinib (MGCD516) is an orally available, small molecule, tyrosine kinase inhibitor that has been evaluated in patients with advanced solid tumors. Concentration-corrected QT interval (QTc; C-QTc) modeling was undertaken, using 767 matched concentration-ECG observations from 187 patients across two clinical studies in patients with advanced solid malignancies, across a dose range of 10-200 mg, via a linear mixed-effects (LME) model. The effect on heart rate (HR)-corrected QT interval via Fridericia's correction method (QTcF) at the steady-state maximum concentration (Cmax,ss) for the sitravatinib proposed therapeutic dosing regimen (100 mg malate once daily [q.d.]) without and with relevant intrinsic and extrinsic factors were predicted. No significant changes in HR from baseline were observed. Hysteresis between sitravatinib plasma concentration and change in QTcF from baseline (ΔQTcF) was not observed. There was no significant relationship between sitravatinib plasma concentration and ΔQTcF. The final C-QTc model predicted a mean (90% confidence interval [CI]) ΔQTcF of 3.92 (1.95-5.89) ms and 2.94 (0.23-6.10) ms at the proposed therapeutic dosing regimen in patients with normal organ function (best case scenario) and patients with hepatic impairment (worst-case scenario), respectively. The upper bounds of the 90% CIs were below the regulatory threshold of concern of 10 ms. The results of the described C-QTc analysis, along with corroborating results from nonclinical safety pharmacology studies, indicate that sitravatinib has a low risk of QTc interval prolongation at the proposed therapeutic dose of 100 mg malate q.d.


Subject(s)
Electrocardiography , Heart Rate , Neoplasms , Humans , Neoplasms/drug therapy , Heart Rate/drug effects , Male , Female , Middle Aged , Aged , Adult , Dose-Response Relationship, Drug , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Models, Biological , Aged, 80 and over , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Young Adult , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics
2.
J Med Chem ; 67(8): 6253-6267, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38587857

ABSTRACT

In this work, a novel series of heterotricyclic DNA-PK inhibitors were rationally designed, synthesized, and assessed for their biological activity. In the DNA-PK biochemical assay, most compounds displayed potent enzymatic activity, with IC50 values between 0.11 and 71.5 nM. Among them, SK10 exhibited the most potent DNA-PK-inhibitory activity (IC50 = 0.11 nM). Studies of the mechanism of action indicated that SK10 could lower γH2A.X expression levels and demonstrate optimal synergistic antiproliferative activity against Jurkat cells (IC50 = 25 nM) when combined with doxorubicin. Importantly, in CT26 and B16-F10 tumor-bearing mouse models, the combination therapies of SK10 with chemotherapeutic drug doxorubicin, a PD-L1 antibody, and SWS1 (a potent PD-L1 small-molecule inhibitor) demonstrated superior synergistic anticancer and potential immunomodulatory effects. Furthermore, SK10 possessed favorable in vivo pharmacokinetic properties [e.g., oral bioavailability (F) = 31.8%]. Taken together, SK10 represents a novel heterotricyclic DNA-PK inhibitor with antitumor immune effects and favorable pharmacokinetics.


Subject(s)
Antineoplastic Agents , Biological Availability , DNA-Activated Protein Kinase , Protein Kinase Inhibitors , Humans , Animals , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Administration, Oral , Immunotherapy/methods , Doxorubicin/pharmacology , Structure-Activity Relationship , Cell Proliferation/drug effects , Mice, Inbred BALB C , Drug Discovery , Mice, Inbred C57BL , Cell Line, Tumor , Drug Synergism , Female
3.
J Med Chem ; 67(8): 6638-6657, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38577724

ABSTRACT

PI3Kδ is an essential target correlated to the occurrence and development of acute myeloid leukemia (AML). Herein, we investigated the pyrazolo[3,4-d]pyrimidine derivatives as potent and selective PI3Kδ inhibitors with high therapeutic efficacy toward AML. There were 44 compounds designed and prepared in a four-round optimization, and the biological evaluation showed that (S)-36 exhibited potent PI3Kδ inhibitory activity, high selectivity, and high antiproliferative activities against MV-4-11 and MOLM-13 cells, coupled with high oral bioavailability (F = 59.6%). In the MOLM-13 subcutaneous xenograft model, (S)-36 could significantly suppress the tumor progression with a TGI of 67.81% at an oral administration dosage of 10 mg/kg without exhibiting obvious toxicity. Mechanistically, (S)-36 could robustly inhibit the PI3K/AKT pathway for significant suppression of cell proliferation and remarkable induction of apoptosis both in vitro and in vivo. Thus, compound (S)-36 represents a promising PI3Kδ inhibitor for the treatment of acute myeloid leukemia with high efficacy.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Class I Phosphatidylinositol 3-Kinases , Leukemia, Myeloid, Acute , Phosphoinositide-3 Kinase Inhibitors , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Animals , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors/chemistry , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Cell Proliferation/drug effects , Mice , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/metabolism , Structure-Activity Relationship , Apoptosis/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Xenograft Model Antitumor Assays , Drug Discovery , Mice, Nude , Molecular Docking Simulation , Male
4.
J Med Chem ; 67(9): 7197-7223, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38655686

ABSTRACT

Fms-like tyrosine receptor kinase 3 (FLT3) proteolysis-targeting chimeras (PROTACs) represent a promising approach to eliminate the resistance of FLT3 inhibitors. However, due to the poor druggability of PROTACs, the development of orally bioavailable FLT3-PROTACs faces great challenges. Herein, a novel orally bioavailable FLT3-ITD degrader A20 with excellent pharmacokinetic properties was discovered through reasonable design. A20 selectively inhibited the proliferation of FLT3-ITD mutant acute myeloid leukemia (AML) cells and potently induced FLT3-ITD degradation through the ubiquitin-proteasome system. Notably, oral administration of A20 resulted in complete tumor regression on subcutaneous AML xenograft models. Furthermore, on systemic AML xenograft models, A20 could completely eliminate the CD45+CD33+ human leukemic cells in murine and significantly prolonged the survival time of mice. Most importantly, A20 exerted significantly improved antiproliferative activity against drug-resistant AML cells compared to existing FLT3 inhibitors. These findings suggested that A20 could serve as a promising drug candidate for relapsed or refractory AML.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , fms-Like Tyrosine Kinase 3 , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Humans , Animals , Drug Resistance, Neoplasm/drug effects , Administration, Oral , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Line, Tumor , Proteolysis/drug effects , Drug Discovery , Xenograft Model Antitumor Assays , Biological Availability , Structure-Activity Relationship
5.
J Med Chem ; 67(9): 7330-7358, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38661655

ABSTRACT

The aberrant activation of the PI3K/mTOR signaling pathway is implicated in various human cancers. Thus, the development of inhibitors targeting mTOR has attracted considerable attention. In this study, we used a structure-based drug design strategy to discover a highly potent and kinase-selective mTOR inhibitor 24 (PT-88), which demonstrated an mTOR inhibitory IC50 value of 1.2 nM without obvious inhibition against another 195 kinases from the kinase profiling screening. PT-88 displayed selective inhibition against MCF-7 cells (IC50: 0.74 µM) with high biosafety against normal cells, in which autophagy induced by mTOR inhibition was implicated. After successful encapsulation in a lipodisc formulation, PT-88 demonstrated favorable pharmacokinetic and biosafety profiles and exerted a large antitumor effect in an MCF-7 subcutaneous bearing nude mice model. Our study shows the discovery of a highly selective mTOR inhibitor using a structure-based drug discovery strategy and provides a promising antitumor candidate for future study and development.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Drug Design , MTOR Inhibitors , Mice, Nude , TOR Serine-Threonine Kinases , Triazines , Humans , Animals , Triazines/chemical synthesis , Triazines/pharmacology , Triazines/chemistry , Triazines/pharmacokinetics , Triazines/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Mice , MTOR Inhibitors/pharmacology , MTOR Inhibitors/chemical synthesis , MTOR Inhibitors/therapeutic use , MTOR Inhibitors/chemistry , Structure-Activity Relationship , MCF-7 Cells , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Mice, Inbred BALB C , Autophagy/drug effects
6.
J Med Chem ; 67(9): 7647-7662, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38684226

ABSTRACT

The elevated activity of leucine-rich repeat kinase 2 (LRRK2) is implicated in the pathogenesis of Parkinson's disease (PD). The quest for effective LRRK2 inhibitors has been impeded by the formidable challenge of crossing the blood-brain barrier (BBB). We leveraged structure-based de novo design and developed robust three-dimensional quantitative structure-activity relationship (3D-QSAR) models to predict BBB permeability, enhancing the likelihood of the inhibitor's brain accessibility. Our strategy involved the synthesis of macrocyclic molecules by linking the two terminal nitrogen atoms of HG-10-102-01 with an alkyl chain ranging from 2 to 4 units, laying the groundwork for innovative LRRK2 inhibitor designs. Through meticulous computational and synthetic optimization of both biochemical efficacy and BBB permeability, 9 out of 14 synthesized candidates demonstrated potent low-nanomolar inhibition and significant BBB penetration. Further assessments of in vitro and in vivo effectiveness, coupled with pharmacological profiling, highlighted 8 as the promising new lead compound for PD therapeutics.


Subject(s)
Blood-Brain Barrier , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Protein Kinase Inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Blood-Brain Barrier/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Animals , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Mice , Quantitative Structure-Activity Relationship , Permeability , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacokinetics , Male
7.
Expert Opin Drug Metab Toxicol ; 20(4): 225-233, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600865

ABSTRACT

INTRODUCTION: Cyclin-dependent kinase (CDK) 4/6 inhibitors are cornerstones in the treatment of Hormone Receptor (HR) positive and Human Epidermal Growth factor (HER2) negative metastatic breast cancer. Given their widespread use in the metastatic setting and emerging use in the adjuvant setting, studying drug-drug interactions (DDI) of these medications is of utmost importance. AREAS COVERED: This review provides key background information on the CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib. We discuss drug-drug interactions including those with proton pump inhibitors as well as CYP3A substrates, inhibitors, and inducers. We describe the effect of these drugs on membrane transporters and their substrates as well as those drugs that increase risk of CDK4/6 toxicities. Finally, we explore future directions for strategies to minimize drug-drug interactions. EXPERT OPINION: It is crucial to be mindful of medications that may interfere with drug absorption, such as proton pump inhibitors, as well as those that interfere with drug metabolism, such as CYP3A4 inhibitors and inducers. Additionally, special consideration should be given to populations at higher risk for polypharmacy, such as older patients with greater comorbidities. These interactions and patient characteristics should be considered when developing individual treatment plans with CDK4/6 inhibitors.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Drug Interactions , Protein Kinase Inhibitors , Humans , Breast Neoplasms/drug therapy , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Female , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Proton Pump Inhibitors/administration & dosage , Proton Pump Inhibitors/pharmacology , Proton Pump Inhibitors/adverse effects , Aminopyridines/administration & dosage , Aminopyridines/adverse effects , Aminopyridines/pharmacology , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacology , Benzimidazoles/adverse effects , Pyridines/administration & dosage , Pyridines/adverse effects , Pyridines/pharmacology , Pyridines/pharmacokinetics
8.
Lancet Oncol ; 25(5): 649-657, 2024 May.
Article in English | MEDLINE | ID: mdl-38608694

ABSTRACT

BACKGROUND: Adrenocortical carcinoma is a rare malignancy with poor response to systemic chemotherapy. Mitotane is the only approved therapy for adrenocortical carcinoma. Cabozantinib is a multikinase inhibitor approved in multiple malignancies. This is the first prospective trial to explore the anti-tumour activity, safety, and pharmacokinetic profile of cabozantinib in patients with advanced adrenocortical carcinoma. METHODS: This investigator-initiated, single-arm, phase 2 trial in adult patients (aged ≥18 years) with advanced adrenocortical carcinoma was done at the University of Texas MD Anderson Cancer Center (Houston, TX, USA). Eligible patients had histologically confirmed adrenocortical carcinoma, were not candidates for surgery with curative intent, had measurable disease, had an estimated life expectancy of at least 3 months, and an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2 with adequate organ function. Patients who had used mitotane within 6 months of study participation were required to have a serum mitotane level of less than 2 mg/L. Patients were given oral cabozantinib 60 mg daily with the option of dose reduction to manage adverse events. The primary endpoint was progression-free survival at 4 months, assessed in all patients who received at least one dose of study drug per protocol. This study is registered with ClinicalTrials.gov, NCT03370718, and is now complete. FINDINGS: Between March 1, 2018, and May 31, 2021, we enrolled 18 patients (ten males and eight females), all of whom received at least one dose of study treatment. Of the 18 patients, eight (44%) had an ECOG performance status of 0, nine (50%) patients had a performance status of 1, and one (6%) patient had a performance status of 2. Median follow-up was 36·8 months (IQR 30·2-50·3). At 4 months, 13 (72·2%; 95% CI 46·5-90·3) of 18 patients had progression-free survival and median progression-free survival was 6 months (95% CI 4·3 to not reached). One patient remains on treatment. Treatment-related adverse events of grade 3 or worse occurred in 11 (61%) of 18 patients. The most common grade 3 adverse events were lipase elevation (three [17%] of 18 patients), elevated γ-glutamyl transferase concentrations (two [11%] patients), elevated alanine aminotransferase concentrations (two [11%] patients), hypophosphatemia (two [11%] patients), and hypertension (two [11%] patients). One (6%) of 18 patients had grade 4 hypertension. No treatment related deaths occurred on study. INTERPRETATION: Cabozantinib in advanced adrenocortical carcinoma showed promising efficacy with a manageable and anticipated safety profile. Further prospective studies with cabozantinib alone and in combination with immune checkpoint therapy are ongoing. FUNDING: Exelixis.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Anilides , Pyridines , Humans , Anilides/therapeutic use , Anilides/administration & dosage , Anilides/adverse effects , Anilides/pharmacokinetics , Pyridines/therapeutic use , Pyridines/administration & dosage , Pyridines/adverse effects , Female , Male , Middle Aged , Adrenocortical Carcinoma/drug therapy , Adrenocortical Carcinoma/pathology , Adrenocortical Carcinoma/mortality , Adult , Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/pathology , Adrenal Cortex Neoplasms/mortality , Aged , Prospective Studies , Progression-Free Survival , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics
9.
Cancer Res Commun ; 4(4): 1165-1173, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38602417

ABSTRACT

PURPOSE: Despite efficacy of approved FGFR inhibitors, emergence of polyclonal secondary mutations in the FGFR kinase domain leads to acquired resistance. KIN-3248 is a selective, irreversible, orally bioavailable, small-molecule inhibitor of FGFR1-4 that blocks both primary oncogenic and secondary kinase domain resistance FGFR alterations. EXPERIMENTAL DESIGN: A first-in-human, phase I study of KIN-3248 was conducted in patients with advanced solid tumors harboring FGFR2 and/or FGFR3 gene alterations (NCT05242822). The primary objective was determination of MTD/recommended phase II dose (RP2D). Secondary and exploratory objectives included antitumor activity, pharmacokinetics, pharmacodynamics, and molecular response by circulating tumor DNA (ctDNA) clearance. RESULTS: Fifty-four patients received doses ranging from 5 to 50 mg orally daily across six cohorts. Intrahepatic cholangiocarcinoma (48.1%), gastric (9.3%), and urothelial (7.4%) were the most common tumors. Tumors harbored FGFR2 (68.5%) or FGFR3 (31.5%) alterations-23 (42.6%) received prior FGFR inhibitors. One dose-limiting toxicity (hypersensitivity) occurred in cohort 1 (5 mg). Treatment-related, adverse events included hyperphosphatemia, diarrhea, and stomatitis. The MTD/RP2D was not established. Exposure was dose proportional and concordant with hyperphosphatemia. Five partial responses were observed; 4 in FGFR inhibitor naïve and 1 in FGFR pretreated patients. Pretreatment ctDNA profiling confirmed FGFR2/3 alterations in 63.3% of cases and clearance at cycle 2 associated with radiographic response. CONCLUSION: The trial was terminated early for commercial considerations; therefore, RP2D was not established. Preliminary clinical data suggest that KIN-3248 is a safe, oral FGFR1-4 inhibitor with favorable pharmacokinetic parameters, though further dose escalation was required to nominate the MTD/RP2D. SIGNIFICANCE: KIN-3248 was a rationally designed, next generation selective FGFR inhibitor, that was effective in interfering with both FGFR wild-type and mutant signaling. Clinical data indicate that KIN-3248 is safe with a signal of antitumor activity. Translational science support the mechanism of action in that serum phosphate was proportional with exposure, paired biopsies suggested phospho-ERK inhibition (a downstream target of FGFR2/3), and ctDNA clearance may act as a RECIST response surrogate.


Subject(s)
Neoplasms , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Female , Male , Middle Aged , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Aged , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Adult , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/administration & dosage , Maximum Tolerated Dose , Mutation , Aged, 80 and over , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics
10.
Med ; 5(5): 445-458.e3, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38521070

ABSTRACT

BACKGROUND: BEBT-109 is an oral pan-mutant-selective inhibitor of epidermal growth factor receptor (EGFR) that demonstrated promising antitumor potency in preclinical models. METHODS: This first-in-human study was a single-arm, open-label, two-stage study. Phase Ia dose-escalation study evaluated the safety and pharmacokinetics of BEBT-109 in 11 patients with EGFR T790M-mutated advanced non-small cell lung cancer (aNSCLC). Phase Ib dose-expansion study evaluated the safety and efficacy of BEBT-109 in 18 patients with EGFR exon 20 insertion (ex20ins)-mutated treatment-refractory aNSCLC. The primary outcomes were adverse events and antitumor activity. Clinical trial registration number CTR20192575. FINDINGS: The phase Ia study demonstrated no dose-limiting toxicity, no observation of the maximum tolerated dose, and no new safety signals with BEBT-109 in the dose range of 20-180 mg/d, suggesting that BEBT-109 had an acceptable safety profile among patients with EGFR T790M-mutated aNSCLC. Plasma pharmacokinetics of BEBT-109 showed a dose-proportional increase in the area under the curve and maximal concentration, with no significant drug accumulation. The dose-expansion study demonstrated that BEBT-109 treatment was tolerable across the three dose levels. The three most common treatment-related adverse events were diarrhea (100%; 22.2% ≥Grade 3), rash (66.7%; 5.6% ≥Grade 3), and anemia (61.1%; 0% ≥Grade 3). The objective response rate was 44.4% (8 of 18). Median progression-free survival was 8.0 months (95% confidence intervals, 1.33-14.67). CONCLUSION: Preliminary findings showed that BEBT-109 had an acceptable safety profile and favorable antitumor activity in patients with refractory EGFR ex20ins-mutated aNSCLC. FUNDING: National Natural Science Foundation of China.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Exons , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Male , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Middle Aged , Female , Aged , Exons/genetics , Mutation , Maximum Tolerated Dose , Adult , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects
11.
Expert Opin Drug Metab Toxicol ; 20(4): 197-205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38497279

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) is the third most diagnosed cancer globally and despite therapeutic strides, the prognosis for patients with metastatic disease (mCRC) remains poor. Fruquintinib is an oral vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI) targeting VEGFR -1, -2, and -3, and has recently received approval by the U.S. Food and Drug Administration for treatment of mCRC refractory to standard chemotherapy, anti-VEGF therapy, and anti-epidermal growth factor receptor (EGFR) therapy. AREAS COVERED: This article provides an overview of the pre-clinical data, pharmacokinetics, clinical efficacy, and safety profile of fruquintinib, as well as the management of clinical toxicities associated with fruquintinib. EXPERT OPINION: Fruquintinib is a valuable additional treatment option for patients with refractory mCRC. The pivotal role of vigilant toxicity management cannot be understated. While fruquintinib offers a convenient and overall, well-tolerated treatment option, ongoing research is essential to determine its efficacy in different patient subsets, evaluate it in combination with chemotherapy and immunotherapy, and determine its role in earlier lines of therapy.


Subject(s)
Antineoplastic Agents , Benzofurans , Colorectal Neoplasms , Neoplasm Metastasis , Protein Kinase Inhibitors , Quinazolines , Receptors, Vascular Endothelial Growth Factor , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Benzofurans/administration & dosage , Benzofurans/adverse effects , Benzofurans/pharmacology , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Animals , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Quinazolines/adverse effects , Quinazolines/administration & dosage , Quinazolines/pharmacokinetics , Quinazolines/pharmacology , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Prognosis
12.
Toxicol Appl Pharmacol ; 485: 116911, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38527694

ABSTRACT

The highly selective Spleen Tyrosine Kinase (SYK) inhibitors entospletinib and lanraplenib disrupt kinase activity and inhibit immune cell functions. They are developed for treatment of B-cell malignancies and autoimmunity diseases. The impact of P-gp/ABCB1 and BCRP/ABCG2 efflux transporters, OATP1a/1b uptake transporters and CYP3A drug-metabolizing enzymes on the oral pharmacokinetics of these drugs was assessed using mouse models. Entospletinib and lanraplenib were orally administered simultaneously at moderate dosages (10 mg/kg each) to female mice to assess the possibility of examining two structurally and mechanistically similar drugs at the same time, while reducing the number of experimental animals and sample-processing workload. The plasma pharmacokinetics of both drugs were not substantially restricted by Abcb1 or Abcg2. The brain-to-plasma ratios of entospletinib in Abcb1a/b-/-, Abcg2-/- and Abcb1a/b;Abcg2-/- mice were 1.7-, 1.8- and 2.9-fold higher, respectively, compared to those in wild-type mice. For lanraplenib these brain-to-plasma ratios were 3.0-, 1.3- and 10.4-fold higher, respectively. This transporter-mediated restriction of brain penetration for both drugs could be almost fully inhibited by coadministration of the dual ABCB1/ABCG2 inhibitor elacridar, without signs of acute toxicity. Oatp1a/b and human CYP3A4 did not seem to affect the pharmacokinetics of entospletinib and lanraplenib, but mouse Cyp3a may limit lanraplenib plasma exposure. Unexpectedly, entospletinib and lanraplenib increased each other's plasma exposure by 2.6- to 2.9-fold, indicating a significant drug-drug interaction. This interaction was, however, unlikely to be mediated through any of the studied transporters or CYP3A. The obtained insights may perhaps help to further improve the safety and efficacy of entospletinib and lanraplenib.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Brain , Indazoles , Morpholines , Protein Kinase Inhibitors , Pyrazines , Animals , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Female , Mice , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Brain/metabolism , Brain/drug effects , Syk Kinase/antagonists & inhibitors , Syk Kinase/metabolism , Mice, Knockout , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Mice, Inbred C57BL , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Administration, Oral
13.
Eur J Haematol ; 112(6): 879-888, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38297484

ABSTRACT

OBJECTIVES: Midostaurin is an oral multitargeted tyrosine kinase inhibitor for the treatment of acute myeloid leukemia (AML). Therapeutic drug monitoring of midostaurin may support its safe use when suspecting toxicity or combined with strong CYP3A4 inhibitors. METHODS: A stable isotope dilution liquid chromatography-tandem mass spectrometry method was developed and validated for the determination and quantification of midostaurin in human plasma and serum. Midostaurin serum concentrations were analyzed in 12 patients with FMS-like tyrosine kinase 3 (FLT3)-mutated AML during induction chemotherapy with cytarabine, daunorubicin, and midostaurin. Posaconazole was used as prophylaxis of invasive fungal infections. RESULTS: Linear quantification of midostaurin was demonstrated across a concentration range of 0.01-8.00 mg/L. Inter- and intraday imprecisions of the proposed method were well within ±10%. Venous blood samples were taken in nine and three patients in the first and second cycle of induction chemotherapy. Median (range) midostaurin serum concentration was 7.9 mg/L (1.5-26.1 mg/L) as determined in 37 independent serum specimens. CONCLUSION: In a real-life cohort of AML patients, interindividual variability in midostaurin serum concentrations was high, highlighting issues concerning optimal drug dosing in AML patients. A personalized dosage approach may maximize the safety of midostaurin. Prospective studies and standardization of analytical methods to support such an approach are needed.


Subject(s)
Leukemia, Myeloid, Acute , Staurosporine , Staurosporine/analogs & derivatives , Tandem Mass Spectrometry , Humans , Staurosporine/therapeutic use , Staurosporine/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/blood , Male , Female , Middle Aged , Aged , Chromatography, Liquid/methods , Adult , Drug Monitoring/methods , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/blood , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/pharmacokinetics , Reproducibility of Results , Cohort Studies
14.
Clin Pharmacol Drug Dev ; 13(5): 491-498, 2024 May.
Article in English | MEDLINE | ID: mdl-38345529

ABSTRACT

Belumosudil is a selective rho-associated coiled-coil-containing protein kinase 2 inhibitor in clinical use for the treatment of chronic graft-versus-host disease. The current tablet formulation may be inappropriate for children or adults with dysphagia and/or upper gastrointestinal manifestations of chronic graft-versus-host disease. This study (NCT04735822) assessed the taste and palatability of oral suspensions of belumosudil, evaluated the relative bioavailability of an oral suspension versus the tablet formulation, and characterized the effect of food on the pharmacokinetics of an oral suspension. Addition of sweetener and/or flavor vehicle improved the taste. Relative bioavailability of 200-mg doses of the oral suspension and tablet in the fed state was similar for belumosudil and its metabolites (KD025m1 and KD025m2), but absorption was faster with the oral suspension (median time to maximum concentration: 2 vs 3 hours). Administration of the oral suspension with food increased exposure compared with fasted administration, with maximum observed concentration being increased by 16% and area under the concentration-time curve from time 0 to the last measurable concentration (AUC0-last) by 19%. Safety and tolerability were consistent with the known safety profile of belumosudil. These results may support administration of a 200-mg belumosudil oral suspension with or without food.


Subject(s)
Biological Availability , Cross-Over Studies , Food-Drug Interactions , Healthy Volunteers , Suspensions , Tablets , Taste , Humans , Male , Administration, Oral , Adult , Young Adult , Area Under Curve , Middle Aged , Double-Blind Method , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects
15.
Clin Cancer Res ; 30(10): 2057-2067, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38407317

ABSTRACT

PURPOSE: Tuvusertib (M1774) is a potent, selective, orally administered ataxia telangiectasia and Rad3-related (ATR) protein kinase inhibitor. This first-in-human study (NCT04170153) evaluated safety, tolerability, maximum tolerated dose (MTD), recommended dose for expansion (RDE), pharmacokinetics (PK), pharmacodynamics (PD), and preliminary efficacy of tuvusertib monotherapy. PATIENTS AND METHODS: Ascending tuvusertib doses were evaluated in 55 patients with metastatic or locally advanced unresectable solid tumors. A safety monitoring committee determined dose escalation based on PK, PD, and safety data guided by a Bayesian 2-parameter logistic regression model. Molecular responses (MR) were assessed in circulating tumor DNA samples. RESULTS: Most common grade ≥3 treatment-emergent adverse events were anemia (36%), neutropenia, and lymphopenia (both 7%). Eleven patients experienced dose-limiting toxicities, most commonly grade 2 (n = 2) or 3 (n = 8) anemia. No persistent effects on blood immune cell populations were observed. The RDE was 180 mg tuvusertib QD (once daily), 2 weeks on/1 week off treatment, which was better tolerated than the MTD (180 mg QD continuously). Tuvusertib median time to peak plasma concentration ranged from 0.5 to 3.5 hours and mean elimination half-life from 1.2 to 5.6 hours. Exposure-related PD analysis suggested maximum target engagement at ≥130 mg tuvusertib QD. Tuvusertib induced frequent MRs in the predicted efficacious dose range; MRs were enriched in patients with radiological disease stabilization, and complete MRs were detected for mutations in ARID1A, ATRX, and DAXX. One patient with platinum- and PARP inhibitor-resistant BRCA wild-type ovarian cancer achieved an unconfirmed RECIST v1.1 partial response. CONCLUSIONS: Tuvusertib demonstrated manageable safety and exposure-related target engagement. Further clinical evaluation of tuvusertib is ongoing.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Maximum Tolerated Dose , Neoplasms , Protein Kinase Inhibitors , Humans , Female , Male , Neoplasms/drug therapy , Neoplasms/pathology , Middle Aged , Aged , Adult , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Aged, 80 and over , Treatment Outcome , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use
16.
Expert Opin Investig Drugs ; 33(1): 63-72, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38224050

ABSTRACT

BACKGROUND: Iruplinalkib is a novel anaplastic lymphoma kinase (ALK) inhibitor for the treatment of ALK-positive crizotinib-resistant NSCLC. RESEARCH DESIGN AND METHODS: A single oral dose of 120 mg/3.7 MBq [14C]iruplinalkib was administered to healthy subjects. Blood, urine and fecal samples were collected and analyzed for iruplinalkib and its metabolites. The safety of iruplinalkib was also assessed. RESULTS: Iruplinalkib was absorbed quickly and eliminated slowly from plasma, with a Tmax of 1.5 h and t1/2 of 28.6 h. About 88.85% of iruplinalkib was excreted at 312 h, including 20.23% in urine and 68.63% in feces. Seventeen metabolites of iruplinalkib were identified, and M3b (demethylation), M7 (cysteine conjugation), M11 (oxidative dehydrogenation and cysteine conjugation of M3b) and M12 (oxidative dehydrogenation and cysteine conjugation) were considered the prominent metabolites in humans. Iruplinalkib-related compounds were found to be covalently bound to proteins, accounting for 7.70% in plasma and 17.96% in feces, which suggested chemically reactive metabolites were formed. There were no serious adverse events observed in the study. CONCLUSIONS: Iruplinalkib was widely metabolized and excreted mainly through feces in humans. Unchanged iruplinalkib, cysteine conjugates and covalent protein binding products were the main drug-related compounds in circulation. Iruplinalkib was well tolerated at the study dose. TRIAL REGISTRATION: The trial is registered at ClinicalTrials.gov (Identifier: Anonymized).


Subject(s)
Cysteine , Protein Kinase Inhibitors , Humans , Administration, Oral , Cysteine/therapeutic use , Healthy Volunteers , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases
17.
Xenobiotica ; 54(2): 64-74, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38197324

ABSTRACT

Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults. Available treatments have not markedly improved patient survival in the last twenty years. However, genomic investigations have showed that the PI3K pathway is frequently altered in this glioma, making it a potential therapeutic target.Paxalisib is a brain penetrant PI3K/mTOR inhibitor (mouse Kp,uu 0.31) specifically developed for the treatment of GBM. We characterised the preclinical pharmacokinetics and efficacy of paxalisib and predicted its pharmacokinetics and efficacious dose in humans.Plasma protein binding of paxalisib was low, with the fraction unbound ranging from 0.25 to 0.43 across species. The hepatic clearance of paxalisib was predicted to be low in mice, rats, dogs and humans, and high in monkeys, from hepatocytes incubations. The plasma clearance was low in mice, moderate in rats and high in dogs and monkeys. Oral bioavailability ranged from 6% in monkeys to 76% in rats.The parameters estimated from the pharmacokinetic/pharmacodynamic modelling of the efficacy in the subcutaneous U87 xenograft model combined with the human pharmacokinetics profile predicted by PBPK modelling suggested that a dose of 56 mg may be efficacious in humans. Paxalisib is currently tested in Phase III clinical trials.


Subject(s)
Phosphatidylinositol 3-Kinases , Protein Kinase Inhibitors , Humans , Rats , Mice , Animals , Dogs , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Phosphoinositide-3 Kinase Inhibitors/metabolism , Brain/metabolism , TOR Serine-Threonine Kinases/metabolism
18.
Ther Drug Monit ; 46(3): 332-343, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38263583

ABSTRACT

BACKGROUND: Osimertinib is an oral small-molecule tyrosine kinase receptor inhibitor used to treat non-small cell lung cancer (NSCLC) with a sensitizing epidermal growth factor receptor mutation. Patients may experience drug toxicity and require dose deescalation. The study aimed to quantitate osimertinib and its 2 active metabolites, AZ5104 and AZ7550, in microsampled dried blood spots (DBS) collected from patients with NSCLC using a hemaPEN device and compare them with plasma drug levels. METHODS: A 6-min ultrahigh-performance liquid chromatography-tandem mass spectrometry method was developed and validated using plasma and DBS. The accuracy, selectivity, matrix effect, recovery, and stability were assessed using bioanalytical validation criteria. The hematocrit effect was investigated in DBS. Drug levels were measured in 15 patients with NSCLC, and the Bland-Altman method was used to compare measurements between plasma and DBS. RESULTS: The validated assay determined accurate and precise quantities, respectively, for osimertinib in both plasma (93.2%-99.3%; 0.2%-2.3%) and DBS (96.7%-99.6%; 0.5%-10.3%) over a concentration of 1-729 ng/mL. The osimertinib metabolites, AZ5104 and AZ7550, were similarly validated in accordance with bioanalytical guidelines. For 30%-60% patient hematocrit, no hematocrit bias was observed with DBS for all analytes. The Bland-Altman method showed high concordance between plasma and DBS analyte levels. Stability experiments revealed that osimertinib and its metabolites were poorly stable in plasma at room temperature, whereas all analytes were stable in DBS for 10 days at room temperature. CONCLUSIONS: The measurement of osimertinib, AZ5104, and AZ7550 from hemaPEN microsampled DBS is a convenient and reliable approach for therapeutic drug monitoring that produces measurements consistent with plasma drug levels.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Dried Blood Spot Testing , Lung Neoplasms , Tandem Mass Spectrometry , Humans , Aniline Compounds/blood , Dried Blood Spot Testing/methods , Acrylamides/blood , Tandem Mass Spectrometry/methods , Lung Neoplasms/drug therapy , Lung Neoplasms/blood , Chromatography, High Pressure Liquid/methods , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/blood , Drug Monitoring/methods , Reproducibility of Results , Antineoplastic Agents/blood , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacokinetics , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/pharmacokinetics , Indoles , Pyrimidines
19.
Mol Cancer Ther ; 23(5): 662-671, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38224566

ABSTRACT

Radioresistance of melanoma brain metastases limits the clinical utility of conventionally fractionated brain radiation in this disease, and strategies to improve radiation response could have significant clinical impact. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is critical for repair of radiation-induced DNA damage, and inhibitors of this kinase can have potent effects on radiation sensitivity. In this study, the radiosensitizing effects of the DNA-PKcs inhibitor peposertib were evaluated in patient-derived xenografts of melanoma brain metastases (M12, M15, M27). In clonogenic survival assays, peposertib augmented radiation-induced killing of M12 cells at concentrations ≥100 nmol/L, and a minimum of 16 hours exposure allowed maximal sensitization. This information was integrated with pharmacokinetic modeling to define an optimal dosing regimen for peposertib of 125 mpk dosed just prior to and 7 hours after irradiation. Using this drug dosing regimen in combination with 2.5 Gy × 5 fractions of radiation, significant prolongation in median survival was observed in M12-eGFP (104%; P = 0.0015) and M15 (50%; P = 0.03), while more limited effects were seen in M27 (16%, P = 0.04). These data support the concept of developing peposertib as a radiosensitizer for brain metastases and provide a paradigm for integrating in vitro and pharmacokinetic data to define an optimal radiosensitizing regimen for potent DNA repair inhibitors.


Subject(s)
Brain Neoplasms , DNA-Activated Protein Kinase , Melanoma , Radiation-Sensitizing Agents , Xenograft Model Antitumor Assays , Animals , Humans , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Mice , DNA-Activated Protein Kinase/antagonists & inhibitors , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/pharmacokinetics , Radiation-Sensitizing Agents/therapeutic use , Melanoma/drug therapy , Melanoma/pathology , Cell Line, Tumor , Sulfones/pharmacology , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use
20.
J Med Chem ; 67(2): 1168-1183, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38227770

ABSTRACT

Tropomyosin receptor kinase (TRK) fusion, an oncogenic form of kinase with pan-tumor occurrence, is a clinically validated important antitumor target. In this study, we screened our in-house kinase inhibitor library against TRK and identified a promising hit compound 4 with a novel pyridin-2(1H)-one scaffold. Through a combination of structure-based drug design and structure-activity relationship (SAR) study, compound 14q was identified as a potent TRK inhibitor with good kinase selectivity. It also blocked cellular TRK signaling, thereby inhibiting TRK-dependent cell viability. Additionally, 14q displayed acceptable pharmacokinetic properties with 37.8% oral bioavailability in mice. Strong in vivo tumor growth inhibition of 14q was observed in subcutaneous M091 and KM12 tumor xenograft models with TRK fusion, causing significant tumor inhibition or even complete tumor regression.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Receptor, trkA , Signal Transduction , Structure-Activity Relationship , Pyridones/chemistry , Pyridones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...