Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.876
Filter
1.
Nat Commun ; 13(1): 749, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136069

ABSTRACT

Tousled-like kinases (TLKs) are nuclear serine-threonine kinases essential for genome maintenance and proper cell division in animals and plants. A major function of TLKs is to phosphorylate the histone chaperone proteins ASF1a and ASF1b to facilitate DNA replication-coupled nucleosome assembly, but how TLKs selectively target these critical substrates is unknown. Here, we show that TLK2 selectivity towards ASF1 substrates is achieved in two ways. First, the TLK2 catalytic domain recognizes consensus phosphorylation site motifs in the ASF1 C-terminal tail. Second, a short sequence at the TLK2 N-terminus docks onto the ASF1a globular N-terminal domain in a manner that mimics its histone H3 client. Disrupting either catalytic or non-catalytic interactions through mutagenesis hampers ASF1 phosphorylation by TLK2 and cell growth. Our results suggest that the stringent selectivity of TLKs for ASF1 is enforced by an unusual interaction mode involving mutual recognition of a short sequence motifs by both kinase and substrate.


Subject(s)
Cell Cycle Proteins/metabolism , Molecular Chaperones/metabolism , Molecular Mimicry , Protein Kinases/metabolism , Amino Acid Motifs/genetics , Amino Acid Sequence , Catalytic Domain/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/isolation & purification , Cell Cycle Proteins/ultrastructure , Conserved Sequence , Crystallography, X-Ray , Histones/metabolism , Humans , Molecular Chaperones/genetics , Molecular Chaperones/isolation & purification , Molecular Chaperones/ultrastructure , Molecular Docking Simulation , Mutagenesis , Peptide Library , Phosphorylation , Protein Kinases/genetics , Protein Kinases/isolation & purification , Protein Kinases/ultrastructure , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Substrate Specificity
2.
Protein Expr Purif ; 179: 105780, 2021 03.
Article in English | MEDLINE | ID: mdl-33115654

ABSTRACT

BACKGROUND: The heterologous expression of human kinases in good purity and in a monomeric, soluble and active form can be challenging. Most of the reported successful attempts are carried out in insect cells as a host. The use of E. coli for expression is limited to a few kinases and usually is facilitated by large solubility tags that can limit biophysical studies and affect protein-protein interactions. In this report, we evaluate the methylotrophic yeast Pichia pastoris (P. pastoris) as a general-purpose host for expression of human kinases. METHODS: Six diverse kinases were chosen due to their therapeutic importance in human cancers. Tested proteins include serine/threonine kinases cyclin-dependent kinases 4 and 6 (CDK4 and 6) and aurora kinase A (AurKA), receptor tyrosine kinase erbB-2 (HER2), and dual specificity kinase mitogen-activated protein kinase kinase 3 (MKK3b). Noting that positively charged kinases expressed with higher yield, we sought to improve expression of two challenging targets, CDK6 and HER2, by fusing the highly basic, N-terminal domain of the secreted tyrosine-protein kinase VLK. The standard expression procedure for P. pastoris was adopted, followed by purification using affinity chromatography. Purity and activity of the proteins were confirmed and compared to published values. RESULTS: Some kinases were purified with good yield and purity and with comparable activity to commercially available versions. Addition of the VLK domain improved expression and decreased aggregation of CDK6 and HER2.


Subject(s)
Protein Kinases , Recombinant Fusion Proteins , Saccharomycetales , Animals , Chromatography, Affinity , Humans , Protein Domains/genetics , Protein Kinases/genetics , Protein Kinases/isolation & purification , Protein Kinases/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Sf9 Cells , Solubility
3.
Protein J ; 39(5): 461-471, 2020 10.
Article in English | MEDLINE | ID: mdl-33104960

ABSTRACT

An abundance of protein structures has been solved in the last six decades that are paramount in defining the function of such proteins. For unsolved protein structures, however, predictions based on sequence and phylogenetic similarity can be useful for identifying key domains of interaction. Here, we describe expression and purification of a recombinant plant LRR-RLK ectodomain MIK1 using a modified baculovirus-mediated expression system with subsequent N-linked glycosylation analysis using LC-MS/MS and computational sequence-based analyses. Though highly ubiquitous, glycosylation site specificity and the degree of glycosylation influenced by genetic and exogenous factors are still largely unknown. Our experimental analysis of N-glycans on MIK1 identified clusters of glycosylation that may explicate the regions involved in MIK1 ectodomain binding. Whether these glycans are necessary for function is yet to be determined. Phylogenetic comparison using multiple sequence alignment between MIK1 and other LRR-RLKs, namely TDR in Arabidopsis thaliana, revealed conserved structural motifs that are known to play functional roles in ligand and receptor binding.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression , Phylogeny , Protein Kinases , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/isolation & purification , Protein Kinases/biosynthesis , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
4.
Med Sci (Paris) ; 36 Hors série n° 1: 38-41, 2020 Oct.
Article in French | MEDLINE | ID: mdl-33052092

ABSTRACT

TITLE: Profilage in silico des inhibiteurs de protéine kinases. ABSTRACT: Les protéine kinases ont été rapidement identifiées comme favorisant l'apparition de cancers, à travers leur implication dans la régulation du développement et du cycle cellulaire. Il y a une vingtaine d'années, la mise sur le marché des premiers traitements par inhibiteur de protéine kinase, ouvrait la voie vers de nouvelles solutions médicamenteuses plus ciblées contre le cancer. Depuis, nombreuses sont les données structurales et fonctionnelles acquises sur ces cibles thérapeutiques. Les techniques informatiques ont elles aussi évolué, notamment les méthodes d'apprentissage automatique. En tirant parti de la grande quantité d'informations disponibles aujourd'hui, ces méthodes devraient permettre prochainement la prédiction fine de l'interaction d'un inhibiteur donné avec chaque protéine kinase humaine et donc, à terme, la construction d'outils de profilage de leurs inhibiteurs spécifiques. Cette approche intégrative devrait aider la découverte de solutions thérapeutiques anti-cancéreuses plus efficaces et plus sûres.


Subject(s)
Computational Biology/methods , Drug Evaluation, Preclinical/methods , Protein Kinase Inhibitors/isolation & purification , Protein Kinase Inhibitors/pharmacology , Computer Simulation , High-Throughput Screening Assays/methods , Humans , Protein Kinases/isolation & purification , Protein Kinases/metabolism , Protein Processing, Post-Translational/drug effects , Proteome/analysis , Proteome/drug effects , Proteome/metabolism
5.
PLoS One ; 15(3): e0221006, 2020.
Article in English | MEDLINE | ID: mdl-32187190

ABSTRACT

Homeodomain-interacting protein kinases (Hipks) have been previously associated with cell proliferation and cancer, however, their effects in the nervous system are less well understood. We have used Drosophila melanogaster to evaluate the effects of altered Hipk expression on the nervous system and muscle. Using genetic manipulation of Hipk expression we demonstrate that knockdown and over-expression of Hipk produces early adult lethality, possibly due to the effects on the nervous system and muscle involvement. We find that optimal levels of Hipk are critical for the function of dopaminergic neurons and glial cells in the nervous system, as well as muscle. Furthermore, manipulation of Hipk affects the structure of the larval neuromuscular junction (NMJ) by promoting its growth. Hipk regulates the phosphorylation of the synapse-associated cytoskeletal protein Hu-li tai shao (Hts; adducin in mammals) and modulates the expression of two important protein kinases, Calcium-calmodulin protein kinase II (CaMKII) and Partitioning-defective 1 (PAR-1), all of which may alter neuromuscular structure/function and influence lethality. Hipk also modifies the levels of an important nuclear protein, TBPH, the fly orthologue of TAR DNA-binding protein 43 (TDP-43), which may have relevance for understanding motor neuron diseases.


Subject(s)
Drosophila Proteins/isolation & purification , Drosophila melanogaster/enzymology , Drosophila melanogaster/physiology , Muscles/anatomy & histology , Muscles/metabolism , Nervous System/anatomy & histology , Nervous System/metabolism , Protein Kinases/isolation & purification , Animals , Body Patterning , Cell Nucleus/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/anatomy & histology , Eye/embryology , Larva/metabolism , Male , Muscles/cytology , Nervous System/cytology , Neuromuscular Junction/metabolism , Organ Size , Phosphorylation , Synapses/metabolism
6.
Genome Res ; 29(10): 1719-1732, 2019 10.
Article in English | MEDLINE | ID: mdl-31515286

ABSTRACT

One of the hallmarks of cancer is chromosome instability (CIN), which leads to aneuploidy, translocations, and other chromosome aberrations. However, in the vast majority of human tumors the molecular basis of CIN remains unknown, partly because not all genes controlling chromosome transmission have yet been identified. To address this question, we developed an experimental high-throughput imaging (HTI) siRNA assay that allows the identification of novel CIN genes. Our method uses a human artificial chromosome (HAC) expressing the GFP transgene. When this assay was applied to screen an siRNA library of protein kinases, we identified PINK1, TRIO, IRAK1, PNCK, and TAOK1 as potential novel genes whose knockdown induces various mitotic abnormalities and results in chromosome loss. The HAC-based assay can be applied for screening different siRNA libraries (cell cycle regulation, DNA damage response, epigenetics, and transcription factors) to identify additional genes involved in CIN. Identification of the complete spectrum of CIN genes will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.


Subject(s)
Chromosomal Instability/genetics , Chromosomes, Human/genetics , Protein Kinases/genetics , RNA, Small Interfering/genetics , Aneuploidy , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Cell Line, Tumor , Chromosomes, Artificial, Human/genetics , Guanine Nucleotide Exchange Factors/genetics , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Mitosis/genetics , Protein Kinases/isolation & purification , Protein Serine-Threonine Kinases/genetics , RNA, Double-Stranded/genetics , Transgenes , Translocation, Genetic/genetics
7.
J Biol Chem ; 294(40): 14814-14822, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31434714

ABSTRACT

Protein kinase signaling networks stringently regulate cellular processes, such as proliferation, motility, and cell survival. These networks are also central to the evolution and progression of cancer. Accordingly, genetically encoded fluorescent biosensors capable of directly illuminating the spatiotemporal dynamics of kinase signaling in live cells are being increasingly used to investigate kinase signaling in cancer cells and tumor tissue sections. These biosensors enable visualization of biological processes and events directly in situ, preserving the native biological context and providing detailed insight into their localization and dynamics in cells. Herein, we first review common design strategies for kinase activity biosensors, including signaling targets, biosensor components, and fluorescent proteins involved. Subsequently, we discuss applications of biosensors to study the biology and management of cancer. These versatile molecular tools have been deployed to study oncogenic kinase signaling in living cells and image kinase activities in tumors or to decipher the mechanisms of anticancer drugs. We anticipate that the diversity and precision of genetically encoded biosensors will expand their use to further unravel the dysregulation of kinase signaling in cancer and the modes of actions of cancer-targeting drugs.


Subject(s)
Biosensing Techniques , Neoplasms/genetics , Phosphotransferases/genetics , Protein Kinases/genetics , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/genetics , Humans , Neoplasms/enzymology , Phosphorylation , Phosphotransferases/isolation & purification , Protein Kinases/isolation & purification , Signal Transduction/genetics
8.
Cell Chem Biol ; 26(6): 863-877.e7, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31031142

ABSTRACT

Necroptosis is an inflammatory form of programmed cell death executed through plasma membrane rupture by the pseudokinase mixed lineage kinase domain-like (MLKL). We previously showed that MLKL activation requires metabolites of the inositol phosphate (IP) pathway. Here we reveal that I(1,3,4,6)P4, I(1,3,4,5,6)P5, and IP6 promote membrane permeabilization by MLKL through directly binding the N-terminal executioner domain (NED) and dissociating its auto-inhibitory region. We show that IP6 and inositol pentakisphosphate 2-kinase (IPPK) are required for necroptosis as IPPK deletion ablated IP6 production and inhibited necroptosis. The NED auto-inhibitory region is more extensive than originally described and single amino acid substitutions along this region induce spontaneous necroptosis by MLKL. Activating IPs bind three sites with affinity of 100-600 µM to destabilize contacts between the auto-inhibitory region and NED, thereby promoting MLKL activation. We therefore uncover MLKL's activating switch in NED triggered by a select repertoire of IP metabolites.


Subject(s)
Inositol Phosphates/metabolism , Protein Kinases/metabolism , Animals , Cell Survival , HT29 Cells , Humans , Protein Kinases/isolation & purification , Sf9 Cells , Spodoptera
9.
Protein Expr Purif ; 154: 112-117, 2019 02.
Article in English | MEDLINE | ID: mdl-30240633

ABSTRACT

Carboxyl-terminal repeat domain (CTD) of the largest subunit Rpb1 of RNA polymerace II is essential for transcription regulation. Heptapeptide repeat of CTD of Rpb1 is phosphorylated by carboxyl-terminal repeat domain kinase (CTDK-I), composed of CTK1, CTK2 and CTK3, in order to regulate transcription and transcription associated processes. The yeast specific protein CTK3 binds to cyclin CTK2 to form a heterodimer serving as a regulational factor to control CTK1 activity by binding to CTK1. Structural information of CTK2-CTK3 complex is yet to be elucidated. Here, we report the co-expression of CTK2-CTK3 complex from Saccharomyces cerevisiae with N-terminal His6-tag in CTK3 in Escherichia coli (E. coli), purification of the complex by four chromatographic steps and crystallization of the complex as well as the diffraction data collection and processing. This study provides some essential information and a guide for structural and functional study of CTK2-CTK3 complex and CTDK-I in the future.


Subject(s)
Protein Kinases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Crystallography, X-Ray , Protein Kinases/biosynthesis , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/isolation & purification
10.
Int J Parasitol ; 47(12): 811-821, 2017 10.
Article in English | MEDLINE | ID: mdl-28899692

ABSTRACT

Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a chronic and debilitating disease that causes systemic and skin manifestations and sterility in bulls. Neither treatments nor vaccines are currently available. In the search for therapeutic candidates, calcium-dependent protein kinases have arisen as promising drug targets in other apicomplexans (e.g. Neospora caninum, Toxoplasma gondii, Plasmodium spp. and Eimeria spp.) and are effectively targeted by bumped kinase inhibitors. In this study, we identified and cloned the gene coding for BbCDPK1. The impact of a library of nine bumped kinase inhibitor analogues on the activity of recombinant BbCDPK1 was assessed by luciferase assay. Afterwards, those were further screened for efficacy against Besnoitiabesnoiti tachyzoites grown in Marc-145 cells. Primary tests at 5µM revealed that eight compounds exhibited more than 90% inhibition of invasion and proliferation. The compounds BKI 1294, 1517, 1553 and 1571 were further characterised, and EC99 (1294: 2.38µM; 1517: 2.20µM; 1553: 3.34µM; 1571: 2.78µM) were determined by quantitative real-time polymerase chain reaction in 3-day proliferation assays. Exposure of infected cultures with EC99 concentrations of these drugs for up to 48h was not parasiticidal. The lack of parasiticidal action was confirmed by transmission electron microscopy, which showed that bumped kinase inhibitor treatment interfered with cell cycle regulation and non-disjunction of tachyzoites, resulting in the formation of large multi-nucleated complexes which co-existed with viable parasites within the parasitophorous vacuole. However, it is possible that, in the face of an active immune response, parasite clearance may occur. In summary, bumped kinase inhibitors may be effective drug candidates to control Besnoitiabesnoiti infection. Further in vivo experiments should be planned, as attainment and maintenance of therapeutic blood plasma levels in calves, without toxicity, has been demonstrated for BKIs 1294, 1517 and 1553.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein Kinases/isolation & purification , Sarcocystidae/drug effects , Amino Acid Sequence , Base Sequence , Cell Line , Cloning, Molecular , DNA, Protozoan/chemistry , DNA, Protozoan/isolation & purification , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Fibroblasts/cytology , Fibroblasts/parasitology , Fluorescent Antibody Technique , Humans , Male , Microscopy, Electron, Transmission , Protein Kinases/chemistry , Protein Kinases/drug effects , Protein Kinases/genetics , Real-Time Polymerase Chain Reaction , Sarcocystidae/genetics , Sarcocystidae/growth & development , Sarcocystidae/ultrastructure , Serial Passage
11.
Protein Expr Purif ; 131: 70-75, 2017 03.
Article in English | MEDLINE | ID: mdl-26390940

ABSTRACT

S-locus protein kinase (SRK) is a receptor kinase that plays a critical role in self-recognition in the Brassicaceae self-incompatibility (SI) response. SRK is activated by binding of its ligand S-locus protein 11 (SP11) and subsequently induced phosphorylation of the intracellular kinase domain. However, a detailed activation mechanism of SRK is still largely unknown because of the difficulty in stably expressing SRK recombinant proteins. Here, we performed modeling-based protein engineering of the SRK kinase domain for stable expression in Escherichia coli. The engineered SRK intracellular domain was expressed about 54-fold higher production than wild type SRK, without loss of the kinase activity, suggesting it could be useful for further biochemical and structural studies.


Subject(s)
Arabidopsis/genetics , Gene Expression , Models, Molecular , Plant Proteins , Protein Engineering , Protein Kinases , Plant Proteins/biosynthesis , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/isolation & purification , Protein Domains , Protein Kinases/biosynthesis , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
12.
Sensors (Basel) ; 16(8)2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27548185

ABSTRACT

We describe an approach to non-invasively map spatiotemporal biochemical and physiological changes in 3D cell culture using Forster Resonance Energy Transfer (FRET) biosensors expressed in tumour spheroids. In particular, we present an improved Adenosine Monophosphate (AMP) Activated Protein Kinase (AMPK) FRET biosensor, mTurquoise2 AMPK Activity Reporter (T2AMPKAR), for fluorescence lifetime imaging (FLIM) readouts that we have evaluated in 2D and 3D cultures. Our results in 2D cell culture indicate that replacing the FRET donor, enhanced Cyan Fluorescent Protein (ECFP), in the original FRET biosensor, AMPK activity reporter (AMPKAR), with mTurquoise2 (mTq2FP), increases the dynamic range of the response to activation of AMPK, as demonstrated using the direct AMPK activator, 991. We demonstrated 3D FLIM of this T2AMPKAR FRET biosensor expressed in tumour spheroids using two-photon excitation.


Subject(s)
Biosensing Techniques/methods , Cell Culture Techniques , Molecular Imaging/methods , Protein Kinases/isolation & purification , AMP-Activated Protein Kinase Kinases , Fluorescence Resonance Energy Transfer/methods , Green Fluorescent Proteins/chemistry , Humans , Optical Imaging/methods , Spheroids, Cellular/cytology
13.
Rapid Commun Mass Spectrom ; 30 Suppl 1: 185-9, 2016 08.
Article in English | MEDLINE | ID: mdl-27539436

ABSTRACT

RATIONALE: Protein kinases represent the key elements in phosphorylation-based signal transmission. Recent studies suggest that hydroxylation may mediate activities of protein kinases. This paper aims to examine the hydroxylation in protein kinases for improving our understanding of the protein modification. METHODS: We combined affinity-based protein purification with MS analysis for identification of novel hydroxylation at aromatic amino acid residues in yeast kinases. RESULTS: We identified 17 hydroxylation at aromatic amino acid residues (10 at Phe, 1 at Tyr and 6 at Trp) using MS analysis. We further characterized the localization and studied the potential significance of these modifications. CONCLUSIONS: This is a new report on the identification of hydroxylation at aromatic amino acid residues in yeast kinases. This study expands the catalog of hydroxylation in kinases and suggests the potential function of hydroxylation. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Amino Acids, Aromatic/metabolism , Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Tandem Mass Spectrometry/methods , Chromatography, Affinity/methods , Chromatography, High Pressure Liquid/methods , Hydroxylation , Protein Kinases/analysis , Protein Kinases/isolation & purification , Saccharomyces cerevisiae Proteins/analysis
14.
Protein Expr Purif ; 128: 67-72, 2016 12.
Article in English | MEDLINE | ID: mdl-27546451

ABSTRACT

PTEN-induced putative kinase 1 (PINK1) is a Ser/Thr kinase that specifically localizes on the mitochondrial membrane. It cooperates with Parkin to regulate mitochondrial quality control. Mutations in PINK1 protein which account for 8-15% of Parkinson's disease (PD), are the second most common cause of early-onset Autosomal Recessive Parkinson's disease (AR-PD). The lack of methods for PINK1 heterologous expression and purification has slowed progress in the AR-PD research field. To pave the way for direct structural study of this important protein, in this study, we developed an efficient expression system of recombinant PINK1 kinase domain (rPINK1) using Pichia pastoris (P. pastoris). Our results showed that rPINK1 is best expressed in P. pastoris at 25 °C induction. Additionally, we determined that the optimal induction time was 72 h and the optimal induction methanol concentration was 1% for the expression of rPINK1 in P. pastoris. Subsequent purification by Ni affinity chromatography (Ni-NTA) and cation-exchange chromatography (Mono S) produced the protein with purity higher than 95%. The pure rPINK1 was active to phosphorylate ubiquitin in a substrate phosphorylation assay. Overall, these studies provide the first effective method for heterologous expression and purification of the rPINK1 with a high purity. These findings can help contribute to further researches on the interactions study and biochemical characterization of PINK1.


Subject(s)
Gene Expression , Pichia/metabolism , Protein Kinases , Chromatography, Affinity/methods , Chromatography, Ion Exchange/methods , Humans , Pichia/genetics , Protein Domains , Protein Kinases/biosynthesis , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Kinases/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
15.
Methods Mol Biol ; 1306: 195-205, 2015.
Article in English | MEDLINE | ID: mdl-25930704

ABSTRACT

The protein phosphorylation catalyzed by protein kinases (PKs) plays an essential role in almost all biological progresses in plants. Thus, the identification of PKs and kinase-specific substrates is fundamental for understanding the regulatory mechanisms of protein phosphorylation especially in controlling plant growth and development. In this chapter, we describe the computational methods and protocols for the identification of PKs and kinase-specific substrates in plants, by using Vitis vinifera as an example. First, the proteome sequences and experimentally identified phosphorylation sites (p-sites) in Vitis vinifera were downloaded. The potential PKs were computationally identified based on preconstructed Hidden Markov Model (HMM) profiles and ortholog searches, whereas the kinase-specific p-sites, or site-specific kinase-substrate relations (ssKSRs) were initially predicted by the software package of Group-based Prediction System (GPS) and further processed by the iGPS algorithm (in vivo GPS) to filter potentially false positive hits. All primary data sets and prediction results of Vitis vinifera are available at: http://ekpd.biocuckoo.org/protocol.php.


Subject(s)
Computational Biology/methods , Plant Proteins/analysis , Protein Kinases/isolation & purification , Vitis/metabolism , Algorithms , Databases, Protein , Markov Chains , Phosphorylation , Plant Proteins/isolation & purification , Protein Kinases/analysis , Software , Substrate Specificity
16.
Folia Microbiol (Praha) ; 60(4): 279-87, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25821125

ABSTRACT

Two-component systems (TCSs) are an important signaling transduction pathway that adapt to changing environments. Commonly, a TCS comprises a sensor kinase that is usually an integral membrane histidine sensor kinase and a response regulator that mediates the cellular responses. Presently, however, we cloned a novel sensor kinase gene (tcsK) that is not adjacent to its cognate response regulator from Streptomyces acidiscabies that produces two secondary metabolites, thaxtomin A and WS5995B, and identified its functional involvement in the production of secondary metabolites and morphological differentiation. The elevated expression and disruption of the tcsK gene enhanced 7.1-fold and almost abolished WS5995B production in S. acidiscabies, respectively, but did not affect the production of thaxtomin A. In addition, spore formation of S. acidiscabies was decreased 120-fold by the disruption of tcsK, and the actinorhodin production of Streptomyces lividans TK24 was increased 5.7-fold by the high expression of tcsK. These results indicate that the novel unpaired tcsK gene may be related to the control of secondary metabolite production and spore formation in actinomycetes.


Subject(s)
Gene Expression Regulation, Bacterial , Protein Kinases/isolation & purification , Secondary Metabolism , Signal Transduction , Streptomyces/cytology , Streptomyces/metabolism , Biological Products/metabolism , Cloning, Molecular , Gene Expression , Gene Knockout Techniques , Histidine Kinase , Indoles/metabolism , Piperazines/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Spores, Bacterial/growth & development , Streptomyces/enzymology , Streptomyces/genetics
17.
Methods Mol Biol ; 1298: 117-25, 2015.
Article in English | MEDLINE | ID: mdl-25800837

ABSTRACT

Rab GTPases are key regulators of membrane traffic. The Rab GTPase Ypt1 is essential for endoplasmic reticulum (ER)-Golgi traffic, intra-Golgi traffic, and the macroautophagy pathway. To identify effectors on the macroautophagy pathway, known autophagy-related genes (Atg genes) required for macroautophagy were tagged with GFP and screened for mislocalization in the ypt1-2 mutant. At the pre-autophagosomal structure (PAS), the localization of the serine/threonine kinase Atg1 was affected in the ypt1-2 mutant. We then used an in vitro binding assay to determine if Atg1 and Ypt1 physically interact with each other and co-immunoprecipitation experiments were performed to address if Atg1 preferentially interacts with the GTP-bound form of Ypt1.


Subject(s)
Autophagy , Protein Interaction Mapping/methods , rab GTP-Binding Proteins/metabolism , Autophagy-Related Proteins , Glutathione/chemistry , Guanosine Triphosphate/metabolism , Immunoprecipitation , Microscopy, Fluorescence , Mutation , Phagosomes/metabolism , Protein Kinases/isolation & purification , Protein Kinases/metabolism , Protein Transport , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/isolation & purification , Saccharomyces cerevisiae Proteins/metabolism , Sepharose/chemistry , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/isolation & purification
18.
J Biochem ; 158(1): 49-60, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25681612

ABSTRACT

We used a proteomics approach to identify the binding partners of Trypanosoma brucei 14-3-3 (Tb14-3-3) which led to the identification of a novel kinase, AKB1. The binding between these two proteins was mediated by an amphipathic groove structure in Tb14-3-3 and 1-438 amino acid sequence of AKB1. Recombinant AKB1 but not its ATP-binding-deficient mutant (DFG to NFG) possessed an auto-phosphorylation activity as well as a kinase activity towards a peptide substrate in vitro. However, the autophosphorylation was not required for the binding of AKB1 to Tb14-3-3. Interestingly, the kinase activity of AKB1 was inhibited by calcium, and the kinase was found to utilize GTP, and dATP in addition to ATP as phospho-donors. AKB1 formed homodimers through a leucine-zipper structure. Either knockdown of AKB1 or overexpression of AKB1, but not kinase-dead AKB1 mutant, deregulated cytokinesis and cell division, suggesting that kinase activity of AKB1 is crucial for its function. Furthermore, we showed that AKB1 exists in a detergent insoluble fraction. Laser confocal microscopy revealed that the majority of AKB1 is co-localized with α-tubulin. Taken together, these findings suggest that AKB1 might regulate cytokinesis and cell division by phosphorylating cytoskeleton-associated proteins.


Subject(s)
14-3-3 Proteins/metabolism , Protein Kinases/metabolism , Proteomics , Trypanosoma brucei brucei/enzymology , Calcium/metabolism , Cell Division , Protein Kinases/genetics , Protein Kinases/isolation & purification , Trypanosoma brucei brucei/metabolism
19.
Biosens Bioelectron ; 68: 771-776, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25682506

ABSTRACT

A novel electrogenerated chemiluminescence (ECL) biosensor was built for the detection of kinase activity based on multiple signal amplification nanoprobes. In this strategy, the Xanthine oxidase (XOD) and 5'-phosphate group end DNA conjugated AuNPs was integrated with the phosphorylated peptide by Zr(4+). The XOD on gold nanoparticles can catalyze dissolved oxygen to produce H2O2 in the presence of hypoxanthine (HA) which acts as a coreactor for luminol ECL reaction. In addition, due to the excellent catalytic activity of gold nanoparticle toward luminol ECL reaction and its large surface area that can accommodate large number of XOD and DNA on the surface, the ECL signal of luminol was significantly amplified, affording a highly sensitive ECL analysis of kinase activity. The as-proposed biosensor presents a low detection limit of 0.09 U mL(-1) for protein kinase A (PKA) activity, wide linear range (from 0.1 to 10 U mL(-1)) and excellent stability even in serum samples. This biosensor can also be applied for quantitative kinase inhibitor evaluation. The robust ECL biosensor provides a valuable tool for the high throughput assay in the applications of clinic diagnostic and therapeutic.


Subject(s)
Biosensing Techniques , Metal Nanoparticles/chemistry , Protein Kinases/isolation & purification , DNA/chemistry , Gold , Humans , Hydrogen Peroxide/chemistry , Hypoxanthine/chemistry , Limit of Detection , Luminol/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Xanthine Oxidase/chemistry
20.
Mol Cell Proteomics ; 14(3): 646-57, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25573744

ABSTRACT

The Syrian golden hamster has been increasingly used to study viral hemorrhagic fever (VHF) pathogenesis and countermeasure efficacy. As VHFs are a global health concern, well-characterized animal models are essential for both the development of therapeutics and vaccines as well as for increasing our understanding of the molecular events that underlie viral pathogenesis. However, the paucity of reagents or platforms that are available for studying hamsters at a molecular level limits the ability to extract biological information from this important animal model. As such, there is a need to develop platforms/technologies for characterizing host responses of hamsters at a molecular level. To this end, we developed hamster-specific kinome peptide arrays to characterize the molecular host response of the Syrian golden hamster. After validating the functionality of the arrays using immune agonists of defined signaling mechanisms (lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α), we characterized the host response in a hamster model of VHF based on Pichinde virus (PICV(1)) infection by performing temporal kinome analysis of lung tissue. Our analysis revealed key roles for vascular endothelial growth factor (VEGF), interleukin (IL) responses, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, and Toll-like receptor (TLR) signaling in the response to PICV infection. These findings were validated through phosphorylation-specific Western blot analysis. Overall, we have demonstrated that hamster-specific kinome arrays are a robust tool for characterizing the species-specific molecular host response in a VHF model. Further, our results provide key insights into the hamster host response to PICV infection and will inform future studies with high-consequence VHF pathogens.


Subject(s)
Hemorrhagic Fever, American/virology , Lung/enzymology , Pichinde virus/physiology , Protein Kinases/isolation & purification , Proteome/analysis , Animals , Disease Models, Animal , Female , Hemorrhagic Fever, American/enzymology , Interleukins/isolation & purification , Lung/virology , Mesocricetus , NF-kappa B/isolation & purification , Phosphorylation , Signal Transduction , Species Specificity , Toll-Like Receptors/isolation & purification , Vascular Endothelial Growth Factor A/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...