Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 709
Filter
1.
Biochemistry ; 63(7): 926-938, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38489495

ABSTRACT

Progesterone receptor membrane component 1 (PGRMC1) binds heme via a surface-exposed site and displays some structural resemblance to cytochrome b5 despite their different functions. In the case of PGRMC1, it is the protein interaction with drug-metabolizing cytochrome P450s and the epidermal growth factor receptor that has garnered the most attention. These interactions are thought to result in a compromised ability to metabolize common chemotherapy agents and to enhance cancer cell proliferation. X-ray crystallography and immunoprecipitation data have suggested that heme-mediated PGRMC1 dimers are important for facilitating these interactions. However, more recent studies have called into question the requirement of heme binding for PGRMC1 dimerization. Our study employs spectroscopic and computational methods to probe and define heme binding and its impact on PGRMC1 dimerization. Fluorescence, electron paramagnetic resonance and circular dichroism spectroscopies confirm heme binding to apo-PGRMC1 and were used to demonstrate the stabilizing effect of heme on the wild-type protein. We also utilized variants (C129S and Y113F) to precisely define the contributions of disulfide bonds and direct heme coordination to PGRMC1 dimerization. Understanding the key factors involved in these processes has important implications for downstream protein-protein interactions that may influence the metabolism of chemotherapeutic agents. This work opens avenues for deeper exploration into the physiological significance of the truncated-PGRMC1 model and developing design principles for potential therapeutics to target PGRMC1 dimerization and downstream interactions.


Subject(s)
Heme , Neoplasms , Receptors, Progesterone , Humans , Cell Proliferation , Heme/chemistry , Membrane Proteins/chemistry , Neoplasms/metabolism , Protein Multimerization/genetics , Receptors, Progesterone/chemistry , Receptors, Progesterone/metabolism
2.
J Mol Biol ; 436(6): 168487, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38341172

ABSTRACT

Synonymous mutations in messenger RNAs (mRNAs) can reduce protein-protein binding substantially without changing the protein's amino acid sequence. Here, we use coarse-grain simulations of protein synthesis, post-translational dynamics, and dimerization to understand how synonymous mutations can influence the dimerization of two E. coli homodimers, oligoribonuclease and ribonuclease T. We synthesize each protein from its wildtype, fastest- and slowest-translating synonymous mRNAs in silico and calculate the ensemble-averaged interaction energy between the resulting dimers. We find synonymous mutations alter oligoribonuclease's dimer properties. Relative to wildtype, the dimer interaction energy becomes 4% and 10% stronger, respectively, when translated from its fastest- and slowest-translating mRNAs. Ribonuclease T dimerization, however, is insensitive to synonymous mutations. The structural and kinetic origin of these changes are misfolded states containing non-covalent lasso-entanglements, many of which structurally perturb the dimer interface, and whose probability of occurrence depends on translation speed. These entangled states are kinetic traps that persist for long time scales. Entanglements cause altered dimerization energies for oligoribonuclease, as there is a large association (odds ratio: 52) between the co-occurrence of non-native self-entanglements and weak-binding dimer conformations. Simulated at all-atom resolution, these entangled structures persist for long timescales, indicating the conclusions are independent of model resolution. Finally, we show that regions of the protein we predict to have changes in entanglement are also structurally perturbed during refolding, as detected by limited-proteolysis mass spectrometry. Thus, non-native changes in entanglement at dimer interfaces is a mechanism through which oligomer structure and stability can be altered.


Subject(s)
Cell Membrane , Escherichia coli , Exoribonucleases , Protein Multimerization , Silent Mutation , Escherichia coli/enzymology , Exoribonucleases/chemistry , Exoribonucleases/genetics , Kinetics , Protein Folding , Protein Multimerization/genetics , Cell Membrane/enzymology
3.
J Biol Chem ; 300(1): 105452, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949218

ABSTRACT

Hepcidin, a peptide hormone that negatively regulates iron metabolism, is expressed by bone morphogenetic protein (BMP) signaling. Erythroferrone (ERFE) is an extracellular protein that binds and inhibits BMP ligands, thus positively regulating iron import by indirectly suppressing hepcidin. This allows for rapid erythrocyte regeneration after blood loss. ERFE belongs to the C1Q/TNF-related protein family and is suggested to adopt multiple oligomeric forms: a trimer, a hexamer, and a high molecular weight species. The molecular basis for how ERFE binds BMP ligands and how the different oligomeric states impact BMP inhibition are poorly understood. In this study, we demonstrated that ERFE activity is dependent on the presence of stable dimeric or trimeric ERFE and that larger species are dispensable for BMP inhibition. Additionally, we used an in silico approach to identify a helix, termed the ligand-binding domain, that was predicted to bind BMPs and occlude the type I receptor pocket. We provide evidence that the ligand-binding domain is crucial for activity through luciferase assays and surface plasmon resonance analysis. Our findings provide new insight into how ERFE oligomerization impacts BMP inhibition, while identifying critical molecular features of ERFE essential for binding BMP ligands.


Subject(s)
Bone Morphogenetic Proteins , Peptide Hormones , Bone Morphogenetic Proteins/antagonists & inhibitors , Bone Morphogenetic Proteins/metabolism , Ligands , Signal Transduction/drug effects , Cell Line , Peptide Hormones/genetics , Peptide Hormones/isolation & purification , Peptide Hormones/pharmacology , Protein Multimerization/genetics , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Protein Domains , Humans
4.
J Biol Chem ; 299(4): 104616, 2023 04.
Article in English | MEDLINE | ID: mdl-36931390

ABSTRACT

Huntington's disease is caused by a polyglutamine (polyQ) expansion in the huntingtin protein. Huntingtin exon 1 (Httex1), as well as other naturally occurring N-terminal huntingtin fragments with expanded polyQ are prone to aggregation, forming potentially cytotoxic oligomers and fibrils. Antibodies and other N-terminal huntingtin binders are widely explored as biomarkers and possible aggregation-inhibiting therapeutics. A monoclonal antibody, MW1, is known to preferentially bind to huntingtin fragments with expanded polyQ lengths, but the molecular basis of the polyQ length specificity remains poorly understood. Using solution NMR, electron paramagnetic resonance, and other biophysical methods, we investigated the structural features of the Httex1-MW1 interaction. Rather than recognizing residual α-helical structure, which is promoted by expanded Q-lengths, MW1 caused the formation of a new, non-native, conformation in which the entire polyQ is largely extended. This non-native polyQ structure allowed the formation of large mixed Httex1-MW1 multimers (600-2900 kD), when Httex1 with pathogenic Q-length (Q46) was used. We propose that these multivalent, entropically favored interactions, are available only to proteins with longer Q-lengths and represent a major factor governing the Q-length preference of MW1. The present study reveals that it is possible to target proteins with longer Q-lengths without having to stabilize a natively favored conformation. Such mechanisms could be exploited in the design of other Q-length specific binders.


Subject(s)
Antibodies, Monoclonal , Huntingtin Protein , Humans , Antibodies, Monoclonal/metabolism , Exons/genetics , Huntingtin Protein/chemistry , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Protein Conformation, alpha-Helical/genetics , Protein Binding , Magnetic Resonance Spectroscopy , Protein Multimerization/genetics
5.
Nature ; 616(7957): 606-614, 2023 04.
Article in English | MEDLINE | ID: mdl-36949202

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that regulates salt and fluid homeostasis across epithelial membranes1. Alterations in CFTR cause cystic fibrosis, a fatal disease without a cure2,3. Electrophysiological properties of CFTR have been analysed for decades4-6. The structure of CFTR, determined in two globally distinct conformations, underscores its evolutionary relationship with other ATP-binding cassette transporters. However, direct correlations between the essential functions of CFTR and extant structures are lacking at present. Here we combine ensemble functional measurements, single-molecule fluorescence resonance energy transfer, electrophysiology and kinetic simulations to show that the two nucleotide-binding domains (NBDs) of human CFTR dimerize before channel opening. CFTR exhibits an allosteric gating mechanism in which conformational changes within the NBD-dimerized channel, governed by ATP hydrolysis, regulate chloride conductance. The potentiators ivacaftor and GLPG1837 enhance channel activity by increasing pore opening while NBDs are dimerized. Disease-causing substitutions proximal (G551D) or distal (L927P) to the ATPase site both reduce the efficiency of NBD dimerization. These findings collectively enable the framing of a gating mechanism that informs on the search for more efficacious clinical therapies.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Allosteric Regulation , Chlorides/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Electric Conductivity , Electrophysiology , Fluorescence Resonance Energy Transfer , Ion Channel Gating , Protein Multimerization/genetics
6.
J Biol Chem ; 299(2): 102869, 2023 02.
Article in English | MEDLINE | ID: mdl-36621627

ABSTRACT

The CTLH (C-terminal to lissencephaly-1 homology motif) complex is a multisubunit RING E3 ligase with poorly defined substrate specificity and flexible subunit composition. Two key subunits, muskelin and Wdr26, specify two alternative CTLH complexes that differ in quaternary structure, thereby allowing the E3 ligase to presumably target different substrates. With the aid of different biophysical and biochemical techniques, we characterized CTLH complex assembly pathways, focusing not only on Wdr26 and muskelin but also on RanBP9, Twa1, and Armc8ß subunits, which are critical to establish the scaffold of this E3 ligase. We demonstrate that the ability of muskelin to tetramerize and the assembly of Wdr26 into dimers define mutually exclusive oligomerization modules that compete with nanomolar affinity for RanBP9 binding. The remaining scaffolding subunits, Armc8ß and Twa1, strongly interact with each other and with RanBP9, again with nanomolar affinity. Our data demonstrate that RanBP9 organizes subunit assembly and prevents higher order oligomerization of dimeric Wdr26 and the Armc8ß-Twa1 heterodimer through its tight binding. Combined, our studies define alternative assembly pathways of the CTLH complex and elucidate the role of RanBP9 in governing differential oligomeric assemblies, thereby advancing our mechanistic understanding of CTLH complex architectures.


Subject(s)
Protein Multimerization , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Protein Multimerization/genetics , Protein Structure, Quaternary , Polymerization , Protein Binding
7.
Life Sci Alliance ; 6(3)2023 03.
Article in English | MEDLINE | ID: mdl-36599624

ABSTRACT

Replication licensing, a prerequisite of DNA replication, helps to ensure once-per-cell-cycle genome duplication. Some DNA replication-initiation proteins are sequentially loaded onto replication origins to form pre-replicative complexes (pre-RCs). ORC and Noc3p bind replication origins throughout the cell cycle, providing a platform for pre-RC assembly. We previously reported that cell cycle-dependent ORC dimerization is essential for the chromatin loading of the symmetric MCM double-hexamers. Here, we used Saccharomyces cerevisiae separation-of-function NOC3 mutants to confirm the separable roles of Noc3p in DNA replication and ribosome biogenesis. We also show that an essential and cell cycle-dependent Noc3p dimerization cycle regulates the ORC dimerization cycle. Noc3p dimerizes at the M-to-G1 transition and de-dimerizes in S-phase. The Noc3p dimerization cycle coupled with the ORC dimerization cycle enables replication licensing, protects nascent sister replication origins after replication initiation, and prevents re-replication. This study has revealed a new mechanism of replication licensing and elucidated the molecular mechanism of Noc3p as a mediator of ORC dimerization in pre-RC formation.


Subject(s)
Protein Multimerization , Saccharomyces cerevisiae Proteins , Cell Cycle/genetics , Dimerization , DNA Replication/genetics , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Protein Multimerization/genetics , Protein Multimerization/physiology , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/physiology , Nuclear Proteins/genetics , Nuclear Proteins/physiology
8.
Molecules ; 27(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35209093

ABSTRACT

A wide variety of oligomeric structures are formed during the aggregation of proteins associated with neurodegenerative diseases. Such soluble oligomers are believed to be key toxic species in the related disorders; therefore, identification of the structural determinants of toxicity is of upmost importance. Here, we analysed toxic oligomers of α-synuclein and its pathological variants in order to identify structural features that could be related to toxicity and found a novel structural polymorphism within G51D oligomers. These G51D oligomers can adopt a variety of ß-sheet-rich structures with differing degrees of α-helical content, and the helical structural content of these oligomers correlates with the level of induced cellular dysfunction in SH-SY5Y cells. This structure-function relationship observed in α-synuclein oligomers thus presents the α-helical structure as another potential structural determinant that may be linked with cellular toxicity in amyloid-related proteins.


Subject(s)
Mutation , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Multimerization , alpha-Synuclein/chemistry , alpha-Synuclein/genetics , Humans , Neurodegenerative Diseases , Protein Aggregates , Protein Binding , Protein Multimerization/genetics , Spectrum Analysis , alpha-Synuclein/metabolism
9.
Biochem J ; 479(3): 289-304, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35037691

ABSTRACT

Ubiquitination and ADP-ribosylation are post-translational modifications that play major roles in pathways including the DNA damage response and viral infection. The enzymes responsible for these modifications are therefore potential targets for therapeutic intervention. DTX3L is an E3 Ubiquitin ligase that forms a heterodimer with PARP9. In addition to its ubiquitin ligase activity, DTX3L-PARP9 also acts as an ADP-ribosyl transferase for Gly76 on the C-terminus of ubiquitin. NAD+-dependent ADP-ribosylation of ubiquitin by DTX3L-PARP9 prevents ubiquitin from conjugating to protein substrates. To gain insight into how DTX3L-PARP9 generates these post-translational modifications, we produced recombinant forms of DTX3L and PARP9 and studied their physical interactions. We show the DTX3L D3 domain (230-510) mediates the interaction with PARP9 with nanomolar affinity and an apparent 1 : 1 stoichiometry. We also show that DTX3L and PARP9 assemble into a higher molecular weight oligomer, and that this is mediated by the DTX3L N-terminal region (1-200). Lastly, we show that ADP-ribosylation of ubiquitin at Gly76 is reversible in vitro by several Macrodomain-type hydrolases. Our study provides a framework to understand how DTX3L-PARP9 mediates ADP-ribosylation and ubiquitination through both intra- and inter-subunit interactions.


Subject(s)
Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Protein Multimerization/genetics , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , ADP-Ribosylation/genetics , Adenosine Diphosphate Ribose/metabolism , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Neoplasm Proteins/genetics , Poly(ADP-ribose) Polymerases/genetics , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sf9 Cells , Spodoptera , Transfection , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics
10.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: mdl-35022249

ABSTRACT

Heterodimerization of RNA binding proteins Nrd1 and Nab3 is essential to communicate the RNA recognition in the nascent transcript with the Nrd1 recognition of the Ser5-phosphorylated Rbp1 C-terminal domain in RNA polymerase II. The structure of a Nrd1-Nab3 chimera reveals the basis of heterodimerization, filling a missing gap in knowledge of this system. The free form of the Nrd1 interaction domain of Nab3 (NRID) forms a multi-state three-helix bundle that is clamped in a single conformation upon complex formation with the Nab3 interaction domain of Nrd1 (NAID). The latter domain forms two long helices that wrap around NRID, resulting in an extensive protein-protein interface that would explain the highly favorable free energy of heterodimerization. Mutagenesis of some conserved hydrophobic residues involved in the heterodimerization leads to temperature-sensitive phenotypes, revealing the importance of this interaction in yeast cell fitness. The Nrd1-Nab3 structure resembles the previously reported Rna14/Rna15 heterodimer structure, which is part of the poly(A)-dependent termination pathway, suggesting that both machineries use similar structural solutions despite they share little sequence homology and are potentially evolutionary divergent.


Subject(s)
Nuclear Proteins , RNA-Binding Proteins , Saccharomyces cerevisiae Proteins , Amino Acid Sequence , Calorimetry , Circular Dichroism , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Conformation , Protein Multimerization/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , mRNA Cleavage and Polyadenylation Factors/chemistry , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism
11.
Biochim Biophys Acta Biomembr ; 1864(1): 183807, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34662567

ABSTRACT

Human death receptors control apoptotic events during cell differentiation, cell homeostasis and the elimination of damaged or infected cells. Receptor activation involves ligand-induced structural reorganizations of preformed receptor trimers. Here we show that the death receptor transmembrane domains only have a weak intrinsic tendency to homo-oligomerize within a membrane, and thus these domains potentially do not significantly contribute to receptor trimerization. However, mutation of Pro183 in the human CD95/Fas receptor transmembrane helix results in a dramatically increased interaction propensity, as shown by genetic assays. The increased interaction of the transmembrane domain is coupled with a decreased ligand-sensitivity of cells expressing the Fas receptor, and thus in a decreased number of apoptotic events. Mutation of Pro183 likely results in a substantial rearrangement of the self-associated Fas receptor transmembrane trimer, which likely abolishes further signaling of the apoptotic signal but may activate other signaling pathways. Our study shows that formation of a stable Fas receptor transmembrane helix oligomer does not per se result in receptor activation.


Subject(s)
Apoptosis/genetics , Protein Domains/genetics , Protein Multimerization/genetics , fas Receptor/genetics , Cell Differentiation/genetics , Homeostasis/genetics , Humans , Ligands , Mutation/genetics , Receptors, Death Domain/genetics , Signal Transduction/genetics
12.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34829983

ABSTRACT

The BAM is a macromolecular machine responsible for the folding and the insertion of integral proteins into the outer membrane of diderm Gram-negative bacteria. In Escherichia coli, it consists of a transmembrane ß-barrel subunit, BamA, and four outer membrane lipoproteins (BamB-E). Using BAM-specific antibodies, in E. coli cells, the complex is shown to localize in the lateral wall in foci. The machinery was shown to be enriched at midcell with specific cell cycle timing. The inhibition of septation by aztreonam did not alter the BAM midcell localization substantially. Furthermore, the absence of late cell division proteins at midcell did not impact BAM timing or localization. These results imply that the BAM enrichment at the site of constriction does not require an active cell division machinery. Expression of the Tre1 toxin, which impairs the FtsZ filamentation and therefore midcell localization, resulted in the complete loss of BAM midcell enrichment. A similar effect was observed for YidC, which is involved in the membrane insertion of cell division proteins in the inner membrane. The presence of the Z-ring is needed for preseptal peptidoglycan (PG) synthesis. As BAM was shown to be embedded in the PG layer, it is possible that BAM is inserted preferentially simultaneously with de novo PG synthesis to facilitate the insertion of OMPs in the newly synthesized outer membrane.


Subject(s)
Bacterial Outer Membrane Proteins/ultrastructure , Bacterial Proteins/genetics , Cytoskeletal Proteins/genetics , Escherichia coli Proteins/genetics , Membrane Transport Proteins/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/ultrastructure , Cell Division/genetics , Cytoskeletal Proteins/ultrastructure , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Escherichia coli Proteins/ultrastructure , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/ultrastructure , Lipoproteins/genetics , Lipoproteins/ultrastructure , Membrane Transport Proteins/ultrastructure , Protein Folding , Protein Multimerization/genetics
13.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34830280

ABSTRACT

Most of the known Drosophila architectural proteins interact with an important cofactor, CP190, that contains three domains (BTB, M, and D) that are involved in protein-protein interactions. The highly conserved N-terminal CP190 BTB domain forms a stable homodimer that interacts with unstructured regions in the three best-characterized architectural proteins: dCTCF, Su(Hw), and Pita. Here, we identified two new CP190 partners, CG4730 and CG31365, that interact with the BTB domain. The CP190 BTB resembles the previously characterized human BCL6 BTB domain, which uses its hydrophobic groove to specifically associate with unstructured regions of several transcriptional repressors. Using GST pull-down and yeast two-hybrid assays, we demonstrated that mutations in the hydrophobic groove strongly affect the affinity of CP190 BTB for the architectural proteins. In the yeast two-hybrid assay, we found that architectural proteins use various mechanisms to improve the efficiency of interaction with CP190. Pita and Su(Hw) have two unstructured regions that appear to simultaneously interact with hydrophobic grooves in the BTB dimer. In dCTCF and CG31365, two adjacent regions interact simultaneously with the hydrophobic groove of the BTB and the M domain of CP190. Finally, CG4730 interacts with the BTB, M, and D domains of CP190 simultaneously. These results suggest that architectural proteins use different mechanisms to increase the efficiency of interaction with CP190.


Subject(s)
CCCTC-Binding Factor/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism , Animals , Chromatin/metabolism , Drosophila Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Microtubule-Associated Proteins/chemistry , Mutation , Nuclear Proteins/chemistry , Protein Binding/genetics , Protein Interaction Domains and Motifs/genetics , Protein Interaction Maps/genetics , Protein Multimerization/genetics
14.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34638548

ABSTRACT

CLEC12A is a myeloid inhibitory receptor that negatively regulates inflammation in mouse models of autoimmune and autoinflammatory arthritis. Reduced CLEC12A expression enhances myeloid cell activation and inflammation in CLEC12A knock-out mice with collagen antibody-induced or gout-like arthritis. Similarly to other C-type lectin receptors, CLEC12A harbours a stalk domain between its ligand binding and transmembrane domains. While it is presumed that the cysteines in the stalk domain have multimerisation properties, their role in CLEC12A expression and/or signaling remain unknown. We thus used site-directed mutagenesis to determine whether the stalk domain cysteines play a role in CLEC12A expression, internalisation, oligomerisation, and/or signaling. Mutation of C118 blocks CLEC12A transport through the secretory pathway diminishing its cell-surface expression. In contrast, mutating C130 does not affect CLEC12A cell-surface expression but increases its oligomerisation, inducing ligand-independent phosphorylation of the receptor. Moreover, we provide evidence that CLEC12A dimerisation is regulated in a redox-dependent manner. We also show that antibody-induced CLEC12A cross-linking induces flotillin oligomerisation in insoluble membrane domains in which CLEC12A signals. Taken together, these data indicate that the stalk cysteines in CLEC12A differentially modulate this inhibitory receptor's expression, oligomerisation and signaling, suggestive of the regulation of CLEC12A in a redox-dependent manner during inflammation.


Subject(s)
Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Myeloid Cells/metabolism , Protein Multimerization/genetics , Receptors, Mitogen/genetics , Receptors, Mitogen/metabolism , Cell Line, Tumor , Cysteine/metabolism , HEK293 Cells , HeLa Cells , Humans , Inflammation/genetics , Lectins, C-Type/biosynthesis , Membrane Proteins/genetics , Mutagenesis, Site-Directed , Phosphorylation , Protein Domains/genetics , Protein Transport/genetics , Receptors, Mitogen/biosynthesis , Signal Transduction/immunology
15.
J Mol Biol ; 433(24): 167306, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34666043

ABSTRACT

The APOBEC3 (A3) family of single-stranded DNA cytidine deaminases are host restriction factors that inhibit lentiviruses, such as HIV-1, in the absence of the Vif protein that causes their degradation. Deamination of cytidine in HIV-1 (-)DNA forms uracil that causes inactivating mutations when uracil is used as a template for (+)DNA synthesis. For APOBEC3C (A3C), the chimpanzee and gorilla orthologues are more active than human A3C, and we determined that Old World Monkey A3C from rhesus macaque (rh) is not active against HIV-1. Biochemical, virological, and coevolutionary analyses combined with molecular dynamics simulations showed that the key amino acids needed to promote rhA3C antiviral activity, 44, 45, and 144, also promoted dimerization and changes to the dynamics of loop 1, near the enzyme active site. Although forced evolution of rhA3C resulted in a similar dimer interface with hominid A3C, the key amino acid contacts were different. Overall, our results determine the basis for why rhA3C is less active than human A3C and establish the amino acid network for dimerization and increased activity. Based on identification of the key amino acids determining Old World Monkey antiviral activity we predict that other Old World Monkey A3Cs did not impart anti-lentiviral activity, despite fixation of a key residue needed for hominid A3C activity. Overall, the coevolutionary analysis of the A3C dimerization interface presented also provides a basis from which to analyze dimerization interfaces of other A3 family members.


Subject(s)
Cytidine Deaminase/chemistry , Cytidine Deaminase/classification , Evolution, Molecular , HIV Infections/virology , HIV-1 , Protein Multimerization , Amino Acid Sequence , Amino Acid Substitution/genetics , Animals , Cytidine Deaminase/genetics , HEK293 Cells , Humans , Macaca mulatta , Mutation , Phylogeny , Protein Multimerization/genetics , Substrate Specificity
16.
Biomolecules ; 11(10)2021 10 06.
Article in English | MEDLINE | ID: mdl-34680099

ABSTRACT

Glycation of α-synuclein (αSyn), as occurs with aging, has been linked to the progression of Parkinson's disease (PD) through the promotion of advanced glycation end-products and the formation of toxic oligomers that cannot be properly cleared from neurons. DJ-1, an antioxidative protein that plays a critical role in PD pathology, has been proposed to repair glycation in proteins, yet a mechanism has not been elucidated. In this study, we integrate solution nuclear magnetic resonance (NMR) spectroscopy and liquid atomic force microscopy (AFM) techniques to characterize glycated N-terminally acetylated-αSyn (glyc-ac-αSyn) and its interaction with DJ-1. Glycation of ac-αSyn by methylglyoxal increases oligomer formation, as visualized by AFM in solution, resulting in decreased dynamics of the monomer amide backbone around the Lys residues, as measured using NMR. Upon addition of DJ-1, this NMR signature of glyc-ac-αSyn monomers reverts to a native ac-αSyn-like character. This phenomenon is reversible upon removal of DJ-1 from the solution. Using relaxation-based NMR, we have identified the binding site on DJ-1 for glycated and native ac-αSyn as the catalytic pocket and established that the oxidation state of the catalytic cysteine is imperative for binding. Based on our results, we propose a novel mechanism by which DJ-1 scavenges glyc-ac-αSyn oligomers without chemical deglycation, suppresses glyc-ac-αSyn monomer-oligomer interactions, and releases free glyc-ac-αSyn monomers in solution. The interference of DJ-1 with ac-αSyn oligomers may promote free ac-αSyn monomer in solution and suppress the propagation of toxic oligomer and fibril species. These results expand the understanding of the role of DJ-1 in PD pathology by acting as a scavenger for aggregated αSyn.


Subject(s)
Glycation End Products, Advanced/genetics , Parkinson Disease/genetics , Protein Deglycase DJ-1/genetics , alpha-Synuclein/genetics , Acetylation , Cysteine/metabolism , Humans , Magnetic Resonance Spectroscopy , Neurons/metabolism , Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Multimerization/genetics
17.
Biomolecules ; 11(10)2021 10 12.
Article in English | MEDLINE | ID: mdl-34680136

ABSTRACT

G-protein coupled receptors (GPCRs) are known to form homo- and hetero- oligomers which are considered critical to modulate their function. However, studying the existence and functional implication of these complexes is not straightforward as controversial results are obtained depending on the method of analysis employed. Here, we use a quantitative single molecule super-resolution imaging technique named qPAINT to quantify complex formation within an example GPCR. qPAINT, based upon DNA-PAINT, takes advantage of the binding kinetics between fluorescently labelled DNA imager strands to complementary DNA docking strands coupled to protein targeting antibodies to quantify the protein copy number in nanoscale dimensions. We demonstrate qPAINT analysis via a novel pipeline to study the oligomerization of the purinergic receptor Y2 (P2Y2), a rhodopsin-like GPCR, highly expressed in the pancreatic cancer cell line AsPC-1, under control, agonistic and antagonistic conditions. Results reveal that whilst the density of P2Y2 receptors remained unchanged, antagonistic conditions displayed reduced percentage of oligomers, and smaller numbers of receptors in complexes. Yet, the oligomeric state of the receptors was not affected by agonist treatment, in line with previous reports. Understanding P2Y2 oligomerization under agonistic and antagonistic conditions will contribute to unravelling P2Y2 mechanistic action and therapeutic targeting.


Subject(s)
Pancreatic Neoplasms/genetics , Protein Multimerization/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Purinergic P2Y2/genetics , DNA/genetics , Humans , Kinetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Receptors, G-Protein-Coupled/ultrastructure , Receptors, Purinergic P2Y2/ultrastructure , Rhodopsin/genetics , Rhodopsin/ultrastructure , Signal Transduction/genetics
18.
J Biol Chem ; 297(5): 101336, 2021 11.
Article in English | MEDLINE | ID: mdl-34688662

ABSTRACT

Protein arginine methylation is a posttranslational modification catalyzed by the protein arginine methyltransferase (PRMT) enzyme family. Dysregulated protein arginine methylation is linked to cancer and a variety of other human diseases. PRMT1 is the predominant PRMT isoform in mammalian cells and acts in pathways regulating transcription, DNA repair, apoptosis, and cell proliferation. PRMT1 dimer formation, which is required for methyltransferase activity, is mediated by interactions between a structure called the dimerization arm on one monomer and a surface of the Rossman Fold of the other monomer. Given the link between PRMT1 dysregulation and disease and the link between PRMT1 dimerization and activity, we searched the Catalogue of Somatic Mutations in Cancer (COSMIC) database to identify potential inactivating mutations occurring in the PRMT1 dimerization arm. We identified three mutations that correspond to W215L, Y220N, and M224V substitutions in human PRMT1V2 (isoform 1) (W197L, Y202N, M206V in rat PRMT1V1). Using a combination of site-directed mutagenesis, analytical ultracentrifugation, native PAGE, and activity assays, we found that these conservative substitutions surprisingly disrupt oligomer formation and substantially impair both S-adenosyl-L-methionine (AdoMet) binding and methyltransferase activity. Molecular dynamics simulations suggest that these substitutions introduce novel interactions within the dimerization arm that lock it in a conformation not conducive to dimer formation. These findings provide a clear, if putative, rationale for the contribution of these mutations to impaired arginine methylation in cells and corresponding health consequences.


Subject(s)
Molecular Dynamics Simulation , Mutation, Missense , Neoplasms , Protein Multimerization/genetics , Protein-Arginine N-Methyltransferases , Repressor Proteins , Amino Acid Substitution , Animals , Humans , Neoplasm Proteins , Neoplasms/enzymology , Neoplasms/genetics , Protein-Arginine N-Methyltransferases/chemistry , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Rats , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism
19.
J Biol Chem ; 297(5): 101308, 2021 11.
Article in English | MEDLINE | ID: mdl-34673030

ABSTRACT

The design of allosteric modulators to control protein function is a key objective in drug discovery programs. Altering functionally essential allosteric residue networks provides unique protein family subtype specificity, minimizes unwanted off-target effects, and helps avert resistance acquisition typically plaguing drugs that target orthosteric sites. In this work, we used protein engineering and dimer interface mutations to positively and negatively modulate the immunosuppressive activity of the proapoptotic human galectin-7 (GAL-7). Using the PoPMuSiC and BeAtMuSiC algorithms, mutational sites and residue identity were computationally probed and predicted to either alter or stabilize the GAL-7 dimer interface. By designing a covalent disulfide bridge between protomers to control homodimer strength and stability, we demonstrate the importance of dimer interface perturbations on the allosteric network bridging the two opposite glycan-binding sites on GAL-7, resulting in control of induced apoptosis in Jurkat T cells. Molecular investigation of G16X GAL-7 variants using X-ray crystallography, biophysical, and computational characterization illuminates residues involved in dimer stability and allosteric communication, along with discrete long-range dynamic behaviors involving loops 1, 3, and 5. We show that perturbing the protein-protein interface between GAL-7 protomers can modulate its biological function, even when the overall structure and ligand-binding affinity remains unaltered. This study highlights new avenues for the design of galectin-specific modulators influencing both glycan-dependent and glycan-independent interactions.


Subject(s)
Apoptosis , Galectins , Immune Tolerance , Protein Multimerization , T-Lymphocytes/immunology , Allosteric Regulation , Apoptosis/genetics , Apoptosis/immunology , Galectins/chemistry , Galectins/genetics , Galectins/immunology , Humans , Jurkat Cells , Protein Multimerization/genetics , Protein Multimerization/immunology
20.
J Am Chem Soc ; 143(43): 18073-18090, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34699194

ABSTRACT

Human calprotectin (CP, S100A8/S100A9 oligomer, MRP8/MRP14 oligomer) is an abundant innate immune protein that contributes to the host metal-withholding response. Its ability to sequester transition metal nutrients from microbial pathogens depends on a complex interplay of Ca(II) binding and self-association, which converts the αß heterodimeric apo protein into a Ca(II)-bound (αß)2 heterotetramer that displays enhanced transition metal affinities, antimicrobial activity, and protease stability. A paucity of structural data on the αß heterodimer has hampered molecular understanding of how Ca(II) binding enables CP to exert its metal-sequestering innate immune function. We report solution NMR data that reveal how Ca(II) binding affects the structure and dynamics of the CP αß heterodimer. These studies provide a structural model in which the apo αß heterodimer undergoes conformational exchange and switches between two states, a tetramerization-incompetent or "inactive" state and a tetramerization-competent or "active" state. Ca(II) binding to the EF-hands of the αß heterodimer causes the active state to predominate, resulting in self-association and formation of the (αß)2 heterotetramer. Moreover, Ca(II) binding causes local and allosteric ordering of the His3Asp and His6 metal-binding sites. Ca(II) binding to the noncanonical EF-hand of S100A9 positions (A9)D30 and organizes the His3Asp site. Remarkably, Ca(II) binding causes allosteric effects in the C-terminal region of helix αIV of S100A9, which stabilize the α-helicity at positions H91 and H95 and thereby organize the functionally versatile His6 site. Collectively, this study illuminates the molecular basis for how CP responds to high extracellular Ca(II) concentrations, which enables its metal-sequestering host-defense function.


Subject(s)
Calcium/metabolism , Leukocyte L1 Antigen Complex/metabolism , Protein Multimerization/drug effects , Transition Elements/metabolism , Calgranulin A/genetics , Calgranulin A/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Histidine/chemistry , Humans , Leukocyte L1 Antigen Complex/genetics , Metals, Heavy/metabolism , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation, alpha-Helical/drug effects , Protein Multimerization/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...