Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.638
Filter
1.
Cells ; 13(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38994993

ABSTRACT

The reparative and regenerative capabilities of dental pulp stem cells (DPSCs) are crucial for responding to pulp injuries, with protein phosphatase 1 (PP1) playing a significant role in regulating cellular functions pertinent to tissue healing. Accordingly, this study aimed to explore the effects of a novel cell-penetrating peptide Modified Sperm Stop 1-MSS1, that disrupts PP1, on the proliferation and odontogenic differentiation of DPSCs. Employing MSS1 as a bioportide, DPSCs were cultured and characterized for metabolic activity, cell proliferation, and cell morphology alongside the odontogenic differentiation through gene expression and alkaline phosphatase (ALP) activity analysis. MSS1 exposure induced early DPSC proliferation, upregulated genes related to odontogenic differentiation, and increased ALP activity. Markers associated with early differentiation events were induced at early culture time points and those associated with matrix mineralization were upregulated at mid-culture stages. This investigation is the first to document the potential of a PP1-disrupting bioportide in modulating DPSC functionality, suggesting a promising avenue for enhancing dental tissue regeneration and repair.


Subject(s)
Cell Differentiation , Cell Proliferation , Dental Pulp , Odontogenesis , Protein Phosphatase 1 , Stem Cells , Dental Pulp/cytology , Dental Pulp/drug effects , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Humans , Protein Phosphatase 1/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Odontogenesis/drug effects , Peptides/pharmacology , Peptides/metabolism , Cells, Cultured , Alkaline Phosphatase/metabolism
2.
Nat Commun ; 15(1): 5111, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877002

ABSTRACT

Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) is a determinant of cardiac myofilament function. Although cMyBP-C phosphorylation by various protein kinases has been extensively studied, the influence of protein phosphatases on cMyBP-C's multiple phosphorylation sites has remained largely obscure. Here we provide a detailed biochemical characterization of cMyBP-C dephosphorylation by protein phosphatases 1 and 2 A (PP1 and PP2A), and develop an integrated kinetic model for cMyBP-C phosphorylation using data for both PP1, PP2A and various protein kinases known to phosphorylate cMyBP-C. We find strong site-specificity and a hierarchical mechanism for both phosphatases, proceeding in the opposite direction of sequential phosphorylation by potein kinase A. The model is consistent with published data from human patients and predicts complex non-linear cMyBP-C phosphorylation patterns that are validated experimentally. Our results suggest non-redundant roles for PP1 and PP2A under both physiological and heart failure conditions, and emphasize the importance of phosphatases for cMyBP-C regulation.


Subject(s)
Carrier Proteins , Myocardium , Protein Phosphatase 1 , Protein Phosphatase 2 , Phosphorylation , Humans , Protein Phosphatase 1/metabolism , Carrier Proteins/metabolism , Animals , Protein Phosphatase 2/metabolism , Myocardium/metabolism , Protein Kinases/metabolism , Kinetics
3.
J Med Case Rep ; 18(1): 269, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38835078

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is the second most common type of leukemia in children. Although prognostic and diagnostic tests of AML patients have improved, there is still a great demand for new reliable clinical biomarkers for AML. Read-through fusion transcripts (RTFTs) are complex transcripts of adjacent genes whose molecular mechanisms are poorly understood. This is the first report of the presence of the PPP1R1B::STARD3 fusion transcript in an AML patient. Here, we investigated the presence of PPP1R1B::STARD3 RTFT in a case of AML using paired-end RNA sequencing (RNA-seq). CASE PRESENTATION: A Persian 12-year-old male was admitted to Dr. Sheikh Hospital of Mashhad, Iran, in September 2019 with the following symptoms, including fever, convulsions, hemorrhage, and bone pain. The patient was diagnosed with AML (non-M3-FAB subtype) based on cell morphologies and immunophenotypical features. Chromosomal analysis using the G-banding technique revealed t (9;22) (q34;q13). CONCLUSIONS: Single-cell RNA sequencing (scRNA-seq) analysis suggested that the PPP1R1B promoter may be responsible for the PPP1R1B::STARD3 expression. Alterations in the level of lipid metabolites implicate cancer development, and this fusion can play a crucial role in the cholesterol movement in cancer cells. PPP1R1B::STARD3 may be considered a candidate for targeted therapies of the cholesterol metabolic and the PI3K/AKT signaling pathways involved in cancer development and progression.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Male , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , Child , Protein Phosphatase 1/genetics , Oncogene Proteins, Fusion/genetics
4.
Nat Commun ; 15(1): 5359, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918402

ABSTRACT

SDS22 forms an inactive complex with nascent protein phosphatase PP1 and Inhibitor-3. SDS22:PP1:Inhibitor-3 is a substrate for the ATPase p97/VCP, which liberates PP1 for binding to canonical regulatory subunits. The exact role of SDS22 in PP1-holoenzyme assembly remains elusive. Here, we show that SDS22 stabilizes nascent PP1. In the absence of SDS22, PP1 is gradually lost, resulting in substrate hyperphosphorylation and a proliferation arrest. Similarly, we identify a female individual with a severe neurodevelopmental disorder bearing an unstable SDS22 mutant, associated with decreased PP1 levels. We furthermore find that SDS22 directly binds to Inhibitor-3 and that this is essential for the stable assembly of SDS22:PP1: Inhibitor-3, the recruitment of p97/VCP, and the extraction of SDS22 during holoenzyme assembly. SDS22 with a disabled Inhibitor-3 binding site co-transfers with PP1 to canonical regulatory subunits, thereby forming non-functional holoenzymes. Our data show that SDS22, through simultaneous interaction with PP1 and Inhibitor-3, integrates the major steps of PP1 holoenzyme assembly.


Subject(s)
Protein Phosphatase 1 , Female , Humans , HEK293 Cells , Holoenzymes/metabolism , Phosphorylation , Protein Binding , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics
5.
PLoS Pathog ; 20(6): e1012355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38935808

ABSTRACT

Stress granules (SGs), formed by untranslated messenger ribonucleoproteins (mRNPs) during cellular stress in eukaryotes, have been linked to flavivirus interference without clear understanding. This study reveals the role of Zika virus (ZIKV) NS2B as a scaffold protein mediating interaction between protein phosphatase 1α (PP1α) and eukaryotic initiation factor 2α (eIF2α). This interaction promotes eIF2α dephosphorylation by PP1α, inhibiting SG formation. The NS2B-PP1α complex exhibits remarkable stability, resisting ubiquitin-induced degradation and amplifying eIF2α dephosphorylation, thus promoting ZIKV replication. In contrast, the NS2BV35A mutant, interacting exclusively with eIF2α, fails to inhibit SG formation, resulting in reduced viral replication and diminished impact on brain organoid growth. These findings reveal PP1α's dual role in ZIKV infection, inducing interferon production as an antiviral factor and suppressing SG formation as a viral promoter. Moreover, we found that NS2B also serves as a versatile mechanism employed by flaviviruses to counter host antiviral defenses, primarily by broadly inhibiting SG formation. This research advances our comprehension of the complex interplay in flavivirus-host interactions, offering potential for innovative therapeutic strategies against flavivirus infections.


Subject(s)
Eukaryotic Initiation Factor-2 , Protein Phosphatase 1 , Stress Granules , Viral Nonstructural Proteins , Virus Replication , Zika Virus Infection , Zika Virus , Zika Virus/physiology , Virus Replication/physiology , Humans , Zika Virus Infection/virology , Zika Virus Infection/metabolism , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Protein Phosphatase 1/metabolism , Eukaryotic Initiation Factor-2/metabolism , Stress Granules/metabolism , Animals
6.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928151

ABSTRACT

Valosin-containing protein (VCP), an ATPase-associated protein, is emerging as a crucial regulator in cardiac pathologies. However, the pivotal role of VCP in the heart under physiological conditions remains undetermined. In this study, we tested a hypothesis that sufficient VCP expression is required for cardiac development and physiological cardiac function. Thus, we generated a cardiac-specific VCP knockout (KO) mouse model and assessed the consequences of VCP suppression on the heart through physiological and molecular studies at baseline. Our results reveal that homozygous KO mice are embryonically lethal, whereas heterozygous KO mice with a reduction in VCP by ~40% in the heart are viable at birth but progressively develop heart failure and succumb to mortality at the age of 10 to 12 months. The suppression of VCP induced a selective activation of the mammalian target of rapamycin complex 1 (mTORC1) but not mTORC2 at the early age of 12 weeks. The prolonged suppression of VCP increased the expression (by ~2 folds) and nuclear translocation (by >4 folds) of protein phosphatase 1 (PP1), a key mediator of protein dephosphorylation, accompanied by a remarked reduction (~80%) in AKTSer473 phosphorylation in VCP KO mouse hearts at a later age but not the early stage. These temporal molecular alterations were highly associated with the progressive decline in cardiac function. Overall, our findings shed light on the essential role of VCP in the heart under physiological conditions, providing new insights into molecular mechanisms in the development of heart failure.


Subject(s)
Heart Failure , Mechanistic Target of Rapamycin Complex 2 , Mice, Knockout , Protein Phosphatase 1 , Valosin Containing Protein , Animals , Heart Failure/metabolism , Heart Failure/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics , Mice , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Myocardium/metabolism , Myocardium/pathology , Male , Disease Models, Animal
7.
Open Biol ; 14(5): 230460, 2024 May.
Article in English | MEDLINE | ID: mdl-38806145

ABSTRACT

The precise spatial and temporal control of histone phosphorylations is important for the ordered progression through the different phases of mitosis. The phosphorylation of H2B at S6 (H2B S6ph), which is crucial for chromosome segregation, reaches its maximum level during metaphase and is limited to the inner centromere. We discovered that the temporal and spatial regulation of this modification, as well as its intensity, are governed by the scaffold protein RepoMan and its associated catalytically active phosphatases, PP1α and PP1γ. Phosphatase activity is inhibited at the area of maximal H2B S6 phosphorylation at the inner centromere by site-specific Aurora B-mediated inactivation of the PP1/RepoMan complex. The motor protein Mklp2 contributes to the relocalization of Aurora B from chromatin to the mitotic spindle during anaphase, thus alleviating Aurora B-dependent repression of the PP1/RepoMan complex and enabling dephosphorylation of H2B S6. Accordingly, dysregulation of Mklp2 levels, as commonly observed in tumour cells, leads to the lack of H2B S6 dephosphorylation during early anaphase, which might contribute to chromosomal instability.


Subject(s)
Aurora Kinase B , Cell Cycle Proteins , Histones , Mitosis , Protein Phosphatase 1 , Aurora Kinase B/metabolism , Phosphorylation , Humans , Histones/metabolism , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , HeLa Cells , Spindle Apparatus/metabolism , Centromere/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
8.
Nucleic Acids Res ; 52(12): 6866-6885, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38783162

ABSTRACT

The genomes of Leishmania and trypanosomes are organized into polycistronic transcription units flanked by a modified DNA base J involved in promoting RNA polymerase II (Pol II) termination. We recently characterized a Leishmania complex containing a J-binding protein, PP1 protein phosphatase 1, and PP1 regulatory protein (PNUTS) that controls transcription termination potentially via dephosphorylation of Pol II by PP1. While T. brucei contains eight PP1 isoforms, none purified with the PNUTS complex, complicating the analysis of PP1 function in termination. We now demonstrate that the PP1-binding motif of TbPNUTS is required for function in termination in vivo and that TbPP1-1 modulates Pol II termination in T. brucei and dephosphorylation of the large subunit of Pol II. PP1-1 knock-down results in increased cellular levels of phosphorylated RPB1 accompanied by readthrough transcription and aberrant transcription of the chromosome by Pol II, including Pol I transcribed loci that are typically silent, such as telomeric VSG expression sites involved in antigenic variation. These results provide important insights into the mechanism underlying Pol II transcription termination in primitive eukaryotes that rely on polycistronic transcription and maintain allelic exclusion of VSG genes.


Subject(s)
Alleles , Protein Phosphatase 1 , Protozoan Proteins , RNA Polymerase II , Transcription Termination, Genetic , Trypanosoma brucei brucei , Variant Surface Glycoproteins, Trypanosoma , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/enzymology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Variant Surface Glycoproteins, Trypanosoma/genetics , Variant Surface Glycoproteins, Trypanosoma/metabolism , Phosphorylation , Transcription, Genetic
9.
Cells ; 13(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667309

ABSTRACT

Variants of mitochondrial DNA (mtDNA) have been identified as risk factors for the development of Parkinson's disease (PD). However, the underlying pathogenetic mechanisms remain unclear. Cybrid models carrying various genotypes of mtDNA variants were tested for resistance to PD-simulating MPP+ treatment. The most resistant line was selected for transcriptome profiling, revealing specific genes potentially influencing the resistant characteristic. We then conducted protein validation and molecular biological studies to validate the related pathways as the influential factor. Cybrids carrying the W3 mtDNA haplogroup demonstrated the most resistance to the MPP+ treatment. In the transcriptome study, PPP1R15A was identified, while further study noted elevated expressions of the coding protein GADD34 across all cybrids. In the study of GADD34-related mitochondrial unfolding protein response (mtUPR), we found that canonical mtUPR, launched by the phosphate eIF2a, is involved in the resistant characteristic of specific mtDNA to MPP+ treatment. Our study suggests that a lower expression of GADD34 in the late phase of mtUPR may prolong the mtUPR process, thereby benefitting protein homeostasis and facilitating cellular resistance to PD development. We herein demonstrate that GADD34 plays an important role in PD development and should be further investigated as a target for the development of therapies for PD.


Subject(s)
DNA, Mitochondrial , Haplotypes , Parkinson Disease , Parkinson Disease/genetics , Humans , DNA, Mitochondrial/genetics , Haplotypes/genetics , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Unfolded Protein Response/genetics
10.
Cell Rep ; 43(4): 114011, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38573854

ABSTRACT

Fatalska et al.1 use an interdisciplinary strategy to elucidate how an intrinsically disordered regulatory subunit of protein phosphatase 1 binds trimeric eIF2 and positions the phosphatase-substrate complex for dephosphorylation. As validation, they show that a disease mutation abolishes the interaction.


Subject(s)
Eukaryotic Initiation Factor-2 , Protein Phosphatase 1 , Protein Phosphatase 1/metabolism , Humans , Eukaryotic Initiation Factor-2/metabolism , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Protein Binding , Phosphorylation , Protein Subunits/metabolism , Protein Subunits/chemistry , Mutation
11.
Life Sci ; 345: 122608, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574885

ABSTRACT

BACKGROUND AND AIMS: The protein phosphatase 1 regulatory inhibitor subunit 1A (PPP1R1A) has been linked with insulin secretion and diabetes mellitus. Yet, its full significance in pancreatic ß-cell function remains unclear. This study aims to elucidate the role of the PPP1R1A gene in ß-cell biology using human pancreatic islets and rat INS-1 (832/13) cells. RESULTS: Disruption of Ppp1r1a in INS-1 cells was associated with reduced insulin secretion and impaired glucose uptake; however, cell viability, ROS, apoptosis or proliferation were intact. A significant downregulation of crucial ß-cell function genes such as Ins1, Ins2, Pcsk1, Cpe, Pdx1, Mafa, Isl1, Glut2, Snap25, Vamp2, Syt5, Cacna1a, Cacna1d and Cacnb3, was observed upon Ppp1r1a disruption. Furthermore, silencing Pdx1 in INS-1 cells altered PPP1R1A expression, indicating that PPP1R1A is a target gene for PDX1. Treatment with rosiglitazone increased Ppp1r1a expression, while metformin and insulin showed no effect. RNA-seq analysis of human islets revealed high PPP1R1A expression, with α-cells showing the highest levels compared to other endocrine cells. Muscle tissues exhibited greater PPP1R1A expression than pancreatic islets, liver, or adipose tissues. Co-expression analysis revealed significant correlations between PPP1R1A and genes associated with insulin biosynthesis, exocytosis machinery, and intracellular calcium transport. Overexpression of PPP1R1A in human islets augmented insulin secretion and upregulated protein expression of Insulin, MAFA, PDX1, and GLUT1, while silencing of PPP1R1A reduced Insulin, MAFA, and GLUT1 protein levels. CONCLUSION: This study provides valuable insights into the role of PPP1R1A in regulating ß-cell function and glucose homeostasis. PPP1R1A presents a promising opportunity for future therapeutic interventions.


Subject(s)
Insulin-Secreting Cells , Islets of Langerhans , Protein Phosphatase 1 , Animals , Humans , Rats , Calcium Channels/metabolism , Cell Line , Glucose/metabolism , Insulin/metabolism , Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism
12.
Antiviral Res ; 226: 105895, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679165

ABSTRACT

Rift Valley fever virus (RVFV) is an arbovirus in the Phenuiviridae family identified initially by the large 'abortion storms' observed among ruminants; RVFV can also infect humans. In humans, there is a wide variation of clinical symptoms ranging from subclinical to mild febrile illness to hepatitis, retinitis, delayed-onset encephalitis, or even hemorrhagic fever. The RVFV is a tri-segmented negative-sense RNA virus consisting of S, M, and L segments. The L segment encodes the RNA-dependent RNA polymerase (RdRp), termed the L protein, which is responsible for both viral mRNA synthesis and genome replication. Phosphorylation of viral RdRps is known to regulate viral replication. This study shows that RVFV L protein is serine phosphorylated and identified Casein Kinase 1 alpha (CK1α) and protein phosphatase 1 alpha (PP1α) as L protein binding partners. Inhibition of CK1 and PP1 through small molecule inhibitor treatment, D4476 and 1E7-03, respectively, caused a change in the phosphorylated status of the L protein. Inhibition of PP1α resulted in increased L protein phosphorylation whereas inhibition of CK1α decreased L protein phosphorylation. It was also found that in RVFV infected cells, PP1α localized to the cytoplasmic compartment. Treatment of RVFV infected cells with CK1 inhibitors reduced virus production in both mammalian and mosquito cells. Lastly, inhibition of either CK1 or PP1 reduced viral genomic RNA levels. These data indicate that L protein is phosphorylated and that CK1 and PP1 play a crucial role in regulating the L protein phosphorylation cycle, which is critical to viral RNA production and viral replication.


Subject(s)
Protein Phosphatase 1 , Rift Valley fever virus , Virus Replication , Rift Valley fever virus/physiology , Rift Valley fever virus/genetics , Phosphorylation , Humans , Animals , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Genome, Viral , Viral Proteins/metabolism , Viral Proteins/genetics , Casein Kinase Ialpha/metabolism , Casein Kinase Ialpha/genetics , Chlorocebus aethiops , Cell Line , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Vero Cells , RNA, Viral/genetics , RNA, Viral/metabolism , Rift Valley Fever/virology
13.
Cell Rep ; 43(4): 114069, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38602876

ABSTRACT

The integrated stress response (ISR) is a key cellular signaling pathway activated by environmental alterations that represses protein synthesis to restore homeostasis. To prevent sustained damage, the ISR is counteracted by the upregulation of growth arrest and DNA damage-inducible 34 (GADD34), a stress-induced regulatory subunit of protein phosphatase 1 that mediates translation reactivation and stress recovery. Here, we uncover a novel ISR regulatory mechanism that post-transcriptionally controls the stability of PPP1R15A mRNA encoding GADD34. We establish that the 3' untranslated region of PPP1R15A mRNA contains an active AU-rich element (ARE) recognized by proteins of the ZFP36 family, promoting its rapid decay under normal conditions and stabilization for efficient expression of GADD34 in response to stress. We identify the tight temporal control of PPP1R15A mRNA turnover as a component of the transient ISR memory, which sets the threshold for cellular responsiveness and mediates adaptation to repeated stress conditions.


Subject(s)
3' Untranslated Regions , Protein Phosphatase 1 , Animals , Humans , Mice , 3' Untranslated Regions/genetics , Adaptation, Physiological/genetics , AU Rich Elements/genetics , HEK293 Cells , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , RNA Stability/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Stress, Physiological/genetics , Tristetraprolin/metabolism , Tristetraprolin/genetics
14.
Trends Neurosci ; 47(5): 319-321, 2024 May.
Article in English | MEDLINE | ID: mdl-38614892

ABSTRACT

In a recent study, Oliveira and colleagues revealed how growth arrest and DNA damage-inducible protein 34 (GADD34), an effector of the integrated stress response, initiates the translation of synaptic plasticity-related mRNAs following brain-derived neurotrophic factor (BDNF) stimulation. This work suggests that GADD34 may link transcriptional products with translation control upon neuronal activation, illuminating how protein synthesis is orchestrated in neuronal plasticity.


Subject(s)
Neuronal Plasticity , Neurons , Protein Biosynthesis , Protein Phosphatase 1 , Neurons/metabolism , Neurons/physiology , Animals , Protein Phosphatase 1/metabolism , Humans , Protein Biosynthesis/physiology , Neuronal Plasticity/physiology , Brain-Derived Neurotrophic Factor/metabolism , Stress, Physiological/physiology
15.
Cell Death Differ ; 31(5): 683-696, 2024 May.
Article in English | MEDLINE | ID: mdl-38589496

ABSTRACT

Protein phosphatase 1 catalytic subunit gamma (PPP1CC) promotes DNA repair and tumor development and progression, however, its underlying mechanisms remain unclear. This study investigated the molecular mechanism of PPP1CC's involvement in DNA repair and the potential clinical implications. High expression of PPP1CC was significantly correlated with radioresistance and poor prognosis in human nasopharyngeal carcinoma (NPC) patients. The mechanistic study revealed that PPP1CC bound to Ku70/Ku80 heterodimers and activated DNA-PKcs by promoting DNA-PK holoenzyme formation, which enhanced nonhomologous end junction (NHEJ) -mediated DNA repair and led to radioresistance. Importantly, BRCA1-BRCA2-containing complex subunit 3 (BRCC3) interacted with PPP1CC to enhance its stability by removing the K48-linked polyubiquitin chain at Lys234 to prevent PPP1CC degradation. Therefore, BRCC3 helped the overexpressed PPP1CC to maintain its high protein level, thereby sustaining the elevation of DNA repair capacity and radioresistance. Our study identified the molecular mechanism by which PPP1CC promotes NHEJ-mediated DNA repair and radioresistance, suggesting that the BRCC3-PPP1CC-Ku70 axis is a potential therapeutic target to improve the efficacy of radiotherapy.


Subject(s)
DNA End-Joining Repair , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Protein Phosphatase 1 , Radiation Tolerance , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , DNA Repair , DNA-Activated Protein Kinase/metabolism , DNA-Activated Protein Kinase/genetics , Ku Autoantigen/metabolism , Ku Autoantigen/genetics , Mice, Nude , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/metabolism , Prognosis , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Radiation Tolerance/genetics
16.
Proc Natl Acad Sci U S A ; 121(14): e2320013121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547060

ABSTRACT

Dephosphorylation of pSer51 of the α subunit of translation initiation factor 2 (eIF2αP) terminates signaling in the integrated stress response (ISR). A trimeric mammalian holophosphatase comprised of a protein phosphatase 1 (PP1) catalytic subunit, the conserved C-terminally located ~70 amino acid core of a substrate-specific regulatory subunit (PPP1R15A/GADD34 or PPP1R15B/CReP) and G-actin (an essential cofactor) efficiently dephosphorylate eIF2αP in vitro. Unlike their viral or invertebrate counterparts, with whom they share the conserved 70 residue core, the mammalian PPP1R15s are large proteins of more than 600 residues. Genetic and cellular observations point to a functional role for regions outside the conserved core of mammalian PPP1R15A in dephosphorylating its natural substrate, the eIF2 trimer. We have combined deep learning technology, all-atom molecular dynamics simulations, X-ray crystallography, and biochemistry to uncover binding of the γ subunit of eIF2 to a short helical peptide repeated four times in the functionally important N terminus of human PPP1R15A that extends past its conserved core. Binding entails insertion of Phe and Trp residues that project from one face of an α-helix formed by the conserved repeats of PPP1R15A into a hydrophobic groove exposed on the surface of eIF2γ in the eIF2 trimer. Replacing these conserved Phe and Trp residues with Ala compromises PPP1R15A function in cells and in vitro. These findings suggest mechanisms by which contacts between a distant subunit of eIF2 and elements of PPP1R15A distant to the holophosphatase active site contribute to dephosphorylation of eIF2αP by the core PPP1R15 holophosphatase and to efficient termination of the ISR in mammals.


Subject(s)
Eukaryotic Initiation Factor-2 , Protein Processing, Post-Translational , Animals , Humans , Actins/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Phosphorylation , Protein Phosphatase 1/metabolism
17.
Viruses ; 16(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38399988

ABSTRACT

Viruses evolve many strategies to ensure the efficient synthesis of their proteins. One such strategy is the inhibition of the integrated stress response-the mechanism through which infected cells arrest translation through the phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2α). We have recently shown that the human common cold betacoronavirus OC43 actively inhibits eIF2α phosphorylation in response to sodium arsenite, a potent inducer of oxidative stress. In this work, we examined the modulation of integrated stress responses by OC43 and demonstrated that the negative feedback regulator of eIF2α phosphorylation GADD34 is strongly induced in infected cells. However, the upregulation of GADD34 expression induced by OC43 was independent from the activation of the integrated stress response and was not required for the inhibition of eIF2α phosphorylation in virus-infected cells. Our work reveals a complex interplay between the common cold coronavirus and the integrated stress response, in which efficient viral protein synthesis is ensured by the inhibition of eIF2α phosphorylation but the GADD34 negative feedback loop is disrupted.


Subject(s)
Betacoronavirus , Common Cold , Humans , Betacoronavirus/metabolism , Protein Phosphatase 1/metabolism , Proteins/metabolism , Phosphorylation , Protein Biosynthesis , Eukaryotic Initiation Factor-2/metabolism , eIF-2 Kinase/genetics
18.
Cell Death Dis ; 15(2): 149, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365764

ABSTRACT

Copper ions play a crucial role as cofactors for essential enzymes in cellular processes. However, when the intracellular concentration of copper ions exceeds the homeostatic threshold, they become toxic to cells. In our study, we demonstrated that elesclomol, as a carrier of copper ions, caused an upregulation of protein phosphatase 1 regulatory subunit 15 A (PPP1R15A), which plays a role in regulating substrate selectivity of protein phosphatase 1 during cuproptosis. Mechanistically, we investigated that PPP1R15A activated translation initiation by dephosphorylating eukaryotic translation initiation factor 2 subunit alpha at the S51 residue through protein phosphatase 1 and phosphorylating eukaryotic translation initiation factor 4E binding protein 1 at the T70 residue. In addition, PPP1R15A reduced H3K4 methylation by altering the phosphorylation of histone methyltransferases, which led to the silencing of MYC and G2M phase arrest.


Subject(s)
Copper , Neoplasms , Protein Phosphatase 1 , Humans , Copper/metabolism , Ions/metabolism , Neoplasms/genetics , Phosphoproteins/metabolism , Phosphorylation , Protein Biosynthesis , Protein Phosphatase 1/metabolism , Cell Cycle Checkpoints/genetics , Apoptosis/genetics , Peptide Chain Initiation, Translational/genetics
19.
FEBS J ; 291(12): 2615-2635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38303113

ABSTRACT

Protein phosphatase-1 (PP1) complexed to nuclear inhibitor of PP1 (NIPP1) limits DNA repair through dephosphorylation of NIPP1-recruited substrates. However, the PP1:NIPP1 holoenzyme is completely inactive under basal conditions, hinting at a DNA damage-regulated activation mechanism. Here, we report that DNA damage caused the activation of PP1:NIPP1 after a time delay of several hours through phosphorylation of NIPP1 at the C-terminal tyrosine 335 (Y335) by a Src-family kinase. PP1:NIPP1 activation partially resulted from the dissociation of the C terminus of NIPP1 from the active site of PP1. In addition, the released Y335-phosphorylated C terminus interacted with the N terminus of NIPP1 to enhance substrate recruitment by the flanking forkhead-associated (FHA) domain. Constitutive activation of PP1:NIPP1 by knock-in of a phospho-mimicking (Y335E) NIPP1 mutant led to the hypo-phosphorylation of FHA ligands and an accumulation of DNA double-strand breaks. Our data indicate that PP1:NIPP1 activation through circularization of NIPP1 is a late response to DNA damage that contributes to the timely recovery from damage repair.


Subject(s)
DNA Damage , Protein Phosphatase 1 , src-Family Kinases , Phosphorylation , Humans , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Protein Phosphatase 1/chemistry , src-Family Kinases/metabolism , src-Family Kinases/genetics , src-Family Kinases/chemistry , DNA Repair , Allosteric Regulation , DNA Breaks, Double-Stranded , HEK293 Cells , Protein Binding , Intracellular Signaling Peptides and Proteins
20.
Mol Cancer ; 23(1): 34, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360682

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer with high aggressive phenotype and poor prognosis. Accumulating evidence suggests that circRNAs have been identified as pivotal mediators in cancers. However, the role of circRNAs in ccRCC progression remains elusive. METHODS: The differentially expressed circRNAs in 4 paired human ccRCC and adjacent noncancerous tissues ccRCC were screened using circRNA microarrays and the candidate target was selected based on circRNA expression level using weighted gene correlation network analysis (WGCNA) and the gene expression omnibus (GEO) database. CircPDHK1 expression in ccRCC and adjacent noncancerous tissues (n = 148) were evaluated along with clinically relevant information. RT-qPCR, RNase R digestion, and actinomycin D (ActD) stability test were conducted to identify the characteristics of circPDHK1. The subcellular distribution of circPDHK1 was analyzed by subcellular fractionation assay and fluorescence in situ hybridization (FISH). Immunoprecipitation-mass spectrometry (IP-MS) and immunofluorescence (IF) were employed to evaluate the protein-coding ability of circPDHK1. ccRCC cells were transfected with siRNAs, plasmids or lentivirus approach, and cell proliferation, migration and invasion, as well as tumorigenesis and metastasis in nude mice were assessed to clarify the functional roles of circPDHK1 and its encoded peptide PDHK1-241aa. RNA-sequencing, western blot analysis, immunoprecipitation (IP) and chromatin immunoprecipitation (ChIP) assays were further employed to identify the underlying mechanisms regulated by PDHK1-241aa. RESULTS: CircPDHK1 was upregulated in ccRCC tissues and closely related to WHO/ISUP stage, T stage, distant metastasis, VHL mutation and Ki-67 levels. CircPDHK1 had a functional internal ribosome entry site (IRES) and encoded a novel peptide PDHK1-241aa. Functionally, we confirmed that PDHK1-241aa and not the circPDHK1 promoted the proliferation, migration and invasion of ccRCC. Mechanistically, circPDHK1 was activated by HIF-2A at the transcriptional level. PDHK1-241aa was upregulated and interacted with PPP1CA, causing the relocation of PPP1CA to the nucleus. This thereby inhibited AKT dephosphorylation and activated the AKT-mTOR signaling pathway. CONCLUSIONS: Our data indicated that circPDHK1-encoded PDHK1-241aa promotes ccRCC progression by interacting with PPP1CA to inhibit AKT dephosphorylation. This study provides novel insights into the multiplicity of circRNAs and highlights the potential use of circPDHK1 or PDHK1-241aa as a therapeutic target for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Mice , Humans , Carcinoma, Renal Cell/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Circular/genetics , Mice, Nude , In Situ Hybridization, Fluorescence , Cell Line, Tumor , Signal Transduction/genetics , Kidney Neoplasms/genetics , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation/genetics , Peptides/genetics , Gene Expression Regulation, Neoplastic , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...