Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.362
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928250

ABSTRACT

Posttraumatic stress disorder (PTSD) is a debilitating psychosomatic condition characterized by impairment of brain fear circuits and persistence of exceptionally strong associative memories resistant to extinction. In this study, we investigated the neural and behavioral consequences of inhibiting protein synthesis, a process known to suppress the formation of conventional aversive memories, in an established PTSD animal model based on contextual fear conditioning in mice. Control animals were subjected to the conventional fear conditioning task. Utilizing c-Fos neural activity mapping, we found that the retrieval of PTSD and normal aversive memories produced activation of an overlapping set of brain structures. However, several specific areas, such as the infralimbic cortex and the paraventricular thalamic nucleus, showed an increase in the PTSD group compared to the normal aversive memory group. Administration of protein synthesis inhibitor before PTSD induction disrupted the formation of traumatic memories, resulting in behavior that matched the behavior of mice with usual aversive memory. Concomitant with this behavioral shift was a normalization of brain c-Fos activation pattern matching the one observed in usual fear memory. Our findings demonstrate that inhibiting protein synthesis during traumatic experiences significantly impairs the development of PTSD in a mouse model. These data provide insights into the neural underpinnings of protein synthesis-dependent traumatic memory formation and open prospects for the development of new therapeutic strategies for PTSD prevention.


Subject(s)
Disease Models, Animal , Fear , Memory , Proto-Oncogene Proteins c-fos , Stress Disorders, Post-Traumatic , Animals , Stress Disorders, Post-Traumatic/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Mice , Male , Protein Synthesis Inhibitors/pharmacology , Mice, Inbred C57BL , Brain/metabolism , Protein Biosynthesis
2.
PLoS One ; 19(5): e0303747, 2024.
Article in English | MEDLINE | ID: mdl-38776347

ABSTRACT

The transmembrane protein Agp2, initially shown as a transporter of L-carnitine, mediates the high-affinity transport of polyamines and the anticancer drug bleomycin-A5. Cells lacking Agp2 are hyper-resistant to polyamine and bleomycin-A5. In these earlier studies, we showed that the protein synthesis inhibitor cycloheximide blocked the uptake of bleomycin-A5 into the cells suggesting that the drug uptake system may require de novo synthesis. However, our recent findings demonstrated that cycloheximide, instead, induced rapid degradation of Agp2, and in the absence of Agp2 cells are resistant to cycloheximide. These observations raised the possibility that the degradation of Agp2 may allow the cell to alter its drug resistance network to combat the toxic effects of cycloheximide. In this study, we show that membrane extracts from agp2Δ mutants accentuated several proteins that were differentially expressed in comparison to the parent. Mass spectrometry analysis of the membrane extracts uncovered the pleiotropic drug efflux pump, Pdr5, involved in the efflux of cycloheximide, as a key protein upregulated in the agp2Δ mutant. Moreover, a global gene expression analysis revealed that 322 genes were differentially affected in the agp2Δ mutant versus the parent, including the prominent PDR5 gene and genes required for mitochondrial function. We further show that Agp2 is associated with the upstream region of the PDR5 gene, leading to the hypothesis that cycloheximide resistance displayed by the agp2Δ mutant is due to the derepression of the PDR5 gene.


Subject(s)
ATP-Binding Cassette Transporters , Cycloheximide , Protein Synthesis Inhibitors , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cycloheximide/pharmacology , Protein Synthesis Inhibitors/pharmacology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Up-Regulation/drug effects , Drug Resistance, Fungal/genetics , Drug Resistance, Fungal/drug effects , Gene Expression Regulation, Fungal/drug effects
3.
J Microbiol Biotechnol ; 34(6): 1348-1355, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38755008

ABSTRACT

The eukaryotic translation initiation factor eIF5B is a bacterial IF2 ortholog that plays an important role in ribosome joining and stabilization of the initiator tRNA on the AUG start codon during the initiation of translation. We identified the fluorophenyl oxazole derivative 2,2-dibromo-1-(2-(4-fluorophenyl)benzo[d]oxazol-5-yl)ethanone quinolinol as an inhibitor of fungal protein synthesis using an in vitro translation assay in a fungal system. Mutants resistant to this compound were isolated in Saccharomyces cerevisiae and were demonstrated to contain amino acid substitutions in eIF5B that conferred the resistance. These results suggest that eIF5B is a target of potential antifungal compound and that mutation of eIF5B can confer resistance. Subsequent identification of 16 other mutants revealed that primary mutations clustered mainly on domain 2 of eIF5B and secondarily mainly on domain 4. Domain 2 has been implicated in the interaction with the small ribosomal subunit during initiation of translation. The tested translation inhibitor could act by weakening the functional contact between eIF5B and the ribosome complex. This data provides the basis for the development of a new family of antifungals.


Subject(s)
Antifungal Agents , Eukaryotic Initiation Factors , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Eukaryotic Initiation Factors/metabolism , Eukaryotic Initiation Factors/genetics , Antifungal Agents/pharmacology , Mutation , Protein Biosynthesis/drug effects , Drug Resistance, Fungal/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Protein Synthesis Inhibitors/pharmacology , Amino Acid Substitution
4.
Hippocampus ; 34(8): 380-392, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38785391

ABSTRACT

The consolidation of memory is thought to ultimately depend on the synthesis of new proteins, since translational inhibitors such as anisomycin and cycloheximide adversely affect the permanence of long-term memory. However, when applied directly in brain, these agents also profoundly suppress neural activity to an extent that is directly correlated to the degree of protein synthesis inhibition caused. Given that neural activity itself is likely to help mediate consolidation, this finding is a serious criticism of the strict de novo protein hypothesis of memory. Here, we test the neurophysiological effects of another translational inhibitor, emetine. Unilateral intra-hippocampal infusion of emetine suppressed ongoing local field and multiunit activity at ipsilateral sites as compared to the contralateral hippocampus in a fashion that was positively correlated to the degree of protein synthesis inhibition as confirmed by autoradiography. This suppression of activity was also specific to the circumscribed brain region in which protein synthesis inhibition took place. These experiments provide further evidence that ongoing protein synthesis is necessary and fundamental for neural function and suggest that the disruption of memory observed in behavioral experiments using translational inhibitors may be due, in large part, to neural suppression.


Subject(s)
Emetine , Hippocampus , Protein Synthesis Inhibitors , Emetine/pharmacology , Animals , Protein Synthesis Inhibitors/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiology , Male , Protein Biosynthesis/drug effects , Protein Biosynthesis/physiology , Rats , Neurons/drug effects , Action Potentials/drug effects , Action Potentials/physiology , Rats, Sprague-Dawley
5.
Neurochem Int ; 176: 105740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636905

ABSTRACT

The benefits of physical exercise (PE) on memory consolidation have been well-documented in both healthy and memory-impaired animals. However, the underlying mechanisms through which PE exerts these effects are still unclear. In this study, we aimed to investigate the role of hippocampal protein synthesis in memory modulation by acute PE in rats. After novel object recognition (NOR) training, rats were subjected to a 30-min moderate-intensity acute PE on the treadmill, while control animals did not undergo any procedures. Using anisomycin (ANI) and rapamycin (RAPA), compounds that inhibit protein synthesis through different mechanisms, we manipulated protein synthesis in the CA1 region of the hippocampus to examine its contribution to memory consolidation. Memory was assessed on days 1, 7, and 14 post-training. Our results showed that inhibiting protein synthesis by ANI or RAPA impaired NOR memory consolidation in control animals. However, acute PE prevented this impairment without affecting memory persistence. We also evaluated brain-derived neurotrophic factor (BDNF) levels after acute PE at 0.5h, 2h, and 12h afterward and found no differences in levels compared to animals that did not engage in acute PE or were only habituated to the treadmill. Therefore, our findings suggest that acute PE could serve as a non-pharmacological intervention to enhance memory consolidation and prevent memory loss in conditions associated with hippocampal protein synthesis inhibition. This mechanism appears not to depend on BDNF synthesis in the early hours after exercise.


Subject(s)
Amnesia , Anisomycin , Brain-Derived Neurotrophic Factor , Hippocampus , Physical Conditioning, Animal , Rats, Wistar , Animals , Male , Physical Conditioning, Animal/physiology , Rats , Hippocampus/metabolism , Hippocampus/drug effects , Anisomycin/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/biosynthesis , Amnesia/metabolism , Amnesia/prevention & control , Protein Synthesis Inhibitors/pharmacology , Sirolimus/pharmacology , Protein Biosynthesis/drug effects , Protein Biosynthesis/physiology , Memory Consolidation/drug effects , Memory Consolidation/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology
6.
Clín. investig. arterioscler. (Ed. impr.) ; 36(2): 86-100, mar.-abr. 2024. tab, graf
Article in English | IBECS | ID: ibc-231498

ABSTRACT

Objective Multiple systematic reviews (SR) have been performed on the effects of proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i), often providing conflicting findings. This overview and network meta-analysis (NMA) aimed to summarize SR findings on the efficacy and safety of PCSK9i and provide an updated NMA. Materials and methods MEDLINE (Pubmed), Scopus, Cochrane, Epistemonikos and Google Scholar were searched from inception to September 21, 2023 for SRs of randomized controlled trials (RCTs) and from January 1, 2020 to September 21, 2023 for additional RCTs. Double-independent study selection, data extraction and quality assessment were performed. Qualitative analysis was performed for SRs and a frequentist random-effects model NMA was performed for RCTs. Results Totally, 86 SRs and 76 RCTs were included. Alirocumab (77/86 [90%]) and evolocumab (73/86 [85%]) were mostly analyzed. Associations from SRs (35/42 [83%]) and the updated NMA indicated PCSK9i benefit on major adverse cardiovascular events (MACEs). Reductions were also noted for cerebrovascular events (47/66 [71%]), coronary revascularization (29/33 [88%]) and myocardial infarction (41/63 [65%]). Alirocumab was associated with reductions on all-cause mortality (RR=0.82, 95%CI [0.72,0.94]). Data on any CV event reduction were conflicting (7/16 [44%]). Inclisiran appeared effective only on MACEs (RR=0.76, 95%CI [0.61,0.94]). No reductions in heart failure were observed (0/16). No increases were identified between PCSK9i and any (0/35) or serious adverse events (0/52). However, PCSK9i were associated with injection-site reactions (20/28 [71%]). Conclusion PCSK9i appeared to be effective in CV outcomes and their clinical application was generally safe. (AU)


Objetivo Las revisiones sistemáticas (RS) sobre los efectos de los inhibidores de la proproteína convertasa subtilisina/kexina tipo 9 (PCSK9i), presentan resultados contradictorios. Esta revisión general y metaanálisis en red (MER) tiene como objetivo resumir los hallazgos sobre la eficacia y seguridad de los PCSK9i. Materiales y métodos Se realizaron búsquedas en MEDLINE (PubMed), Scopus, Cochrane, Epistemonikos y Google Scholar desde sus inicios hasta el 21 de septiembre de 2023 para las RS de ensayos controlados aleatorios (ECA) y desde el 1 de enero de 2020 hasta 21 de septiembre de 2023 para los ECA adicionales. La selección de estudios, extracción de datos y evaluación de calidad se llevaron a cabo de manera doble e independiente. Se realizó un análisis cualitativo de las SR y un modelo de efectos aleatorios frecuentistas MER para los ECA. Resultados En total, se incluyeron 86 SR y 76 RCT. Alirocumab (77/86 [90%]) y evolocumab (73/86 [85%]) fueron los más analizados. Se reconocieron beneficios de los PCSK9i en eventos cardiovasculares adversos mayores (ECVAM), reducción de eventos cerebrovasculares (47/66 [71%]), revascularización coronaria (29/33 [88%]) e infartos de miocardio (41/63 [65%]). Alirocumab redujo la mortalidad por todas las causas (RR: 0,82; IC del 95%: 0,72-0,94). Los resultados sobre la reducción de cualquier evento cardiovascular (CV) fueron contradictorios (7/16 [44%]). Inclisiran pareció ser efectivo solo en la reducción de ECVAM (RR: 0,76; IC del 95%: 0,61-0,94). No se observaron reducciones en insuficiencia cardíaca (0/16) o relación con eventos adversos serios (0/52). Sin embargo, se asociaron con reacciones en el lugar de la inyección (20/28 [71%]). (AU)


Subject(s)
Humans , Protein Synthesis Inhibitors/classification , Proprotein Convertase 9/classification , Treatment Outcome
7.
Nat Microbiol ; 9(4): 1130-1144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528147

ABSTRACT

Plasticity in gene expression allows bacteria to adapt to diverse environments. This is particularly relevant in the dynamic niche of the human intestinal tract; however, transcriptional networks remain largely unknown for gut-resident bacteria. Here we apply differential RNA sequencing (RNA-seq) and conventional RNA-seq to the model gut bacterium Bacteroides thetaiotaomicron to map transcriptional units and profile their expression levels across 15 in vivo-relevant growth conditions. We infer stress- and carbon source-specific transcriptional regulons and expand the annotation of small RNAs (sRNAs). Integrating this expression atlas with published transposon mutant fitness data, we predict conditionally important sRNAs. These include MasB, which downregulates tetracycline tolerance. Using MS2 affinity purification and RNA-seq, we identify a putative MasB target and assess its role in the context of the MasB-associated phenotype. These data-publicly available through the Theta-Base web browser ( http://micromix.helmholtz-hiri.de/bacteroides/ )-constitute a valuable resource for the microbiome community.


Subject(s)
Bacteroides thetaiotaomicron , Humans , Bacteroides thetaiotaomicron/genetics , Transcriptome , RNA , Protein Synthesis Inhibitors , Tetracyclines
8.
FEBS J ; 291(10): 2191-2208, 2024 May.
Article in English | MEDLINE | ID: mdl-38431777

ABSTRACT

The essential yeast protein GPN-loop GTPase 1 (Npa3) plays a critical role in RNA polymerase II (RNAPII) assembly and subsequent nuclear import. We previously identified a synthetic lethal interaction between a mutant lacking the carboxy-terminal 106-amino acid tail of Npa3 (npa3ΔC) and a bud27Δ mutant. As the prefoldin-like Bud27 protein participates in ribosome biogenesis and translation, we hypothesized that Npa3 may also regulate these biological processes. We investigated this proposal by using Saccharomyces cerevisiae strains episomally expressing either wild-type Npa3 or hypomorphic mutants (Npa3ΔC, Npa3K16R, and Npa3G70A). The Npa3ΔC mutant fully supports RNAPII nuclear localization and activity. However, the Npa3K16R and Npa3G70A mutants only partially mediate RNAPII nuclear targeting and exhibit a higher reduction in Npa3 function. Cell proliferation in these strains displayed an increased sensitivity to protein synthesis inhibitors hygromycin B and geneticin/G418 (npa3G70A > npa3K16R > npa3ΔC > NPA3 cells) but not to transcriptional elongation inhibitors 6-azauracil, mycophenolic acid or 1,10-phenanthroline. In all three mutant strains, the increase in sensitivity to both aminoglycoside antibiotics was totally rescued by expressing NPA3. Protein synthesis, visualized by quantifying puromycin incorporation into nascent-polypeptide chains, was markedly more sensitive to hygromycin B inhibition in npa3ΔC, npa3K16R, and npa3G70A than NPA3 cells. Notably, high-copy expression of the TIF11 gene, that encodes the eukaryotic translation initiation factor 1A (eIF1A) protein, completely suppressed both phenotypes (of reduced basal cell growth and increased sensitivity to hygromycin B) in npa3ΔC cells but not npa3K16R or npa3G70A cells. We conclude that Npa3 plays a critical RNAPII-independent and previously unrecognized role in translation initiation.


Subject(s)
Hygromycin B , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Hygromycin B/pharmacology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Protein Synthesis Inhibitors/pharmacology , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Cell Nucleus/metabolism , Cell Nucleus/genetics , Protein Biosynthesis/drug effects
9.
Sci Rep ; 14(1): 6947, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38521802

ABSTRACT

Shigellosis remains a common gastrointestinal disease mostly in children < 5 years of age in developing countries. Azithromycin (AZM), a macrolide, is currently the first-line treatment for shigellosis in Bangladesh; ciprofloxacin (CIP) and ceftriaxone (CRO) are also used frequently. We aimed to evaluate the current epidemiology of antimicrobial resistance (AMR) and mechanism(s) of increasing macrolide resistance in Shigella in Bangladesh. A total of 2407 clinical isolates of Shigella from 2009 to 2016 were studied. Over the study period, Shigella sonnei was gradually increasing and become predominant (55%) over Shigella flexneri (36%) by 2016. We used CLSI-guided epidemiological cut-off value (ECV) for AZM in Shigella to set resistance breakpoints (zone-diameter ≤ 15 mm for S. flexneri and ≤ 11 mm for S. sonnei). Between 2009 and 2016, AZM resistance increased from 22% to approximately 60%, CIP resistance increased by 40%, and CRO resistance increased from zero to 15%. The mphA gene was the key macrolide resistance factor in Shigella; a 63MDa conjugative middle-range plasmid was harboring AZM and CRO resistance factors. Our findings show that, especially after 2014, there has been a rapid increase in resistance to the three most effective antibiotics. The rapid spread of macrolide (AZM) resistance genes among Shigella are driven by horizontal gene transfer rather than direct lineage.


Subject(s)
Dysentery, Bacillary , Shigella , Child , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Dysentery, Bacillary/drug therapy , Dysentery, Bacillary/epidemiology , Macrolides/pharmacology , Macrolides/therapeutic use , Drug Resistance, Bacterial/genetics , Azithromycin/pharmacology , Azithromycin/therapeutic use , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Ceftriaxone/pharmacology , Microbial Sensitivity Tests , Protein Synthesis Inhibitors/pharmacology , Plasmids/genetics
10.
J Neurosci ; 44(9)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38286626

ABSTRACT

It is widely accepted that fear memories are consolidated through protein synthesis-dependent changes in the basolateral amygdala complex (BLA). However, recent studies show that protein synthesis is not required to consolidate the memory of a new dangerous experience when it is similar to a prior experience. Here, we examined whether the protein synthesis requirement for consolidating the new experience varies with its spatial and temporal distance from the prior experience. Female and male rats were conditioned to fear a stimulus (S1, e.g., light) paired with shock in stage 1 and a second stimulus (S2, e.g., tone) that preceded additional S1-shock pairings (S2-S1-shock) in stage 2. The latter stage was followed by a BLA infusion of a protein synthesis inhibitor, cycloheximide, or vehicle. Subsequent testing with S2 revealed that protein synthesis in the BLA was not required to consolidate fear to S2 when the training stages occurred 48 h apart in the same context; was required when they were separated by 14 d or occurred in different contexts; but was again not required if S1 was re-presented after the delay or in the different context. Similarly, protein synthesis in the BLA was not required to reconsolidate fear to S2 when the training stages occurred 48 h apart but was required when they occurred 14 d apart. Thus, the protein synthesis requirement for consolidating/reconsolidating fear memories in the BLA is determined by similarity between present and past experiences, the time and place in which they occur, and reminders of the past experiences.


Subject(s)
Basolateral Nuclear Complex , Memory Consolidation , Rats , Male , Female , Animals , Basolateral Nuclear Complex/physiology , Memory Consolidation/physiology , Protein Synthesis Inhibitors/pharmacology , Cycloheximide/pharmacology , Fear/physiology
11.
J Med Chem ; 67(3): 1961-1981, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38272464

ABSTRACT

Hyperactivated KRAS mutations fuel tumorigenesis and represent attractive targets for cancer treatment. While covalent inhibitors have shown clinical benefits against the KRASG12C mutant, advancements for non-G12C mutants remain limited, highlighting the urgent demand for pan-KRAS inhibitors. RNA G-quadruplexes (rG4s) in the 5'-untranslated region of KRAS mRNA can regulate KRAS translation, making them promising targets for pan-KRAS inhibitor development. Herein, we designed and synthesized 50 novel coumarin-quinolinium derivatives, leveraging our previously developed rG4-specific ligand, QUMA-1. Notably, several compounds exhibited potent antiproliferative activity against cancer cells as pan-KRAS translation inhibitors. Among them, 15a displayed exceptional capability in stabilizing KRAS rG4s, suppressing KRAS translation, and consequently modulating MAPK and PI3K-AKT pathways. 15a induced cell cycle arrest, prompted apoptosis in KRAS-driven cancer cells, and effectively inhibited tumor growth in a KRAS mutant xenograft model. These findings underscore the potential of 15a as a pan-KRAS translation inhibitor, offering a novel and promising approach to target various KRAS-driven cancers.


Subject(s)
G-Quadruplexes , Proto-Oncogene Proteins p21(ras) , Humans , Cell Line, Tumor , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Synthesis Inhibitors , Mutation
12.
J Biomol Struct Dyn ; 42(4): 2111-2126, 2024.
Article in English | MEDLINE | ID: mdl-37097976

ABSTRACT

Linezolid is the first and only oxazolidinone antibacterial drug was approved in the last 35 years. It exhibits bacteriostatic efficacy against M. tuberculosis and is a crucial constituent of the BPaL regimen (Bedaquiline, Pretomanid, and Linezolid), which was authorized by the FDA in 2019 for the treatment of XDR-TB or MDR-TB. Despite its unique mechanism of action, Linezolid carries a considerable risk of toxicity, including myelosuppression and serotonin syndrome (SS), which is caused by inhibition of mitochondrial protein synthesis (MPS) and monoamine oxidase (MAO), respectively. Based on the structure toxicity relationship (STR) of Linezolid, in this work, we used a bioisosteric replacement approach to optimize the structure of Linezolid at the C-ring and/or C-5 position for myelosuppression and serotogenic toxicity. Extensive hierarchical multistep docking, drug likeness prediction, molecular binding interactions analyses, and toxicity assessment identified three promising compounds (3071, 7549 and 9660) as less toxic potential modulators of Mtb EthR protein. Compounds 3071, 7549 and 9660 were having the significant docking score of -12.696 Kcal/mol, -12.681 Kcal/mol and -15.293 Kcal/mol towards the Mtb EthR protein with less MAO-A and B affinity [compound 3071: MAO A (-4.799 Kcal/mol) and MAO B (-6.552 Kcal/mol); compound 7549: MAO A (> -2.00 Kcal/mol) and MAO B (> -2.00 Kcal/mol) and compound 9660: MAO A (> -5.678 Kcal/mol) and MAO B (> -6.537Kcal/mol) and none of them shown the Leukopenia as a side effect due to the Myelosuppression. The MD simulation results and binding free energy estimations correspond well with docking analyses, indicating that the proposed compounds bind and inhibit the EthR protein more effectively than Linezolid. The quantum mechanical and electrical characteristics were evaluated using density functional theory (DFT), which also demonstrated that the proposed compounds are more reactive than Linezolid.Communicated by Ramaswamy H. Sarma.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Linezolid/adverse effects , Protein Synthesis Inhibitors/pharmacology , Protein Synthesis Inhibitors/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Monoamine Oxidase , Drug Resistance, Multiple , Molecular Docking Simulation
13.
J Biol Rhythms ; 39(1): 20-34, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37872767

ABSTRACT

Circadian-paced biological processes are key to physiology and required for metabolic, immunologic, and cardiovascular homeostasis. Core circadian clock components are transcription factors whose half-life is precisely regulated, thereby controlling the intrinsic cellular circadian clock. Genetic disruption of molecular clock components generally leads to marked pathological events phenotypically affecting behavior and multiple aspects of physiology. Using a transcriptional signature similarity approach, we identified anti-cancer protein synthesis inhibitors as potent modulators of the cardiomyocyte molecular clock. Eukaryotic protein translation inhibitors, ranging from translation initiation (rocaglates, 4-EGI1, etc.) to ribosomal elongation inhibitors (homoharringtonine, puromycin, etc.), were found to potently ablate protein abundance of REV-ERBα, a repressive nuclear receptor and component of the molecular clock. These inhibitory effects were observed both in vitro and in vivo and could be extended to PER2, another component of the molecular clock. Taken together, our observations suggest that the activity spectrum of protein synthesis inhibitors, whose clinical use is contemplated not only in cancers but also in viral infections, must be extended to circadian rhythm disruption, with potential beneficial or iatrogenic effects upon acute or prolonged administration.


Subject(s)
Circadian Clocks , Circadian Clocks/genetics , Circadian Rhythm/physiology , Protein Synthesis Inhibitors , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Heart
15.
Otol Neurotol ; 45(1): e49-e56, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38085767

ABSTRACT

BACKGROUND: The widespread use of aminoglycosides is a prevalent cause of sensorineural hearing loss. Patients receiving aminoglycosides usually have elevated levels of circulating stress hormones due to disease or physiological stress; however, whether the stress hormone cortisol impacts aminoglycoside-mediated injury of cochlear hair cells has not been fully investigated. METHODS: House Ear Institute-Organ of Corti 1 (HEI-OC1) cells with or without cortisol pretreatment were exposed to gentamicin, we investigated the effect of cortisol pretreatment on gentamicin ototoxicity by assessing cell viability. Molecular pathogenesis was explored by detecting apoptosis and oxidative stress. Meanwhile, by inhibiting glucocorticoid receptors (GR) and mineralocorticoid receptors (MR), the potential roles of receptor types in cortisol-mediated sensitization were evaluated. RESULTS: Cortisol concentrations below 75 µmol/l did not affect cell viability. However, pretreatment with 50 µmol/l cortisol for 24 hours sensitized hair cells to gentamicin-induced apoptosis. Further mechanistic studies revealed that cortisol significantly increased hair cell apoptosis and oxidative stress, and altered apoptosis-related protein expressions induced by gentamicin. In addition, blockade of either GR or MR attenuated cortisol-induced hair cell sensitization to gentamicin toxicity. CONCLUSION: Cortisol pretreatment increased mammalian hair cell susceptibility to gentamicin toxicity. Sensitization was related to the activation of the intrinsic apoptotic pathway and excessive generation of reactive oxygen species. Cortisol may exacerbate aminoglycoside ototoxicity.


Subject(s)
Anti-Bacterial Agents , Gentamicins , Hair Cells, Auditory , Hydrocortisone , Ototoxicity , Animals , Humans , Aminoglycosides , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Apoptosis , Gentamicins/adverse effects , Gentamicins/toxicity , Hair Cells, Auditory/drug effects , Hydrocortisone/pharmacology , Mammals/metabolism , Ototoxicity/etiology , Ototoxicity/metabolism , Protein Synthesis Inhibitors , Reactive Oxygen Species/metabolism
16.
J Hazard Mater ; 464: 132994, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37988943

ABSTRACT

Microplastics (MPs) and antibiotics are ubiquitous in aquatic ecosystems, and their accumulation and combined effects are considered emerging threats that may affect biodiversity and ecosystem function. The particle size of microplastics plays an important role in their combined effects with antibiotics. Submerged macrophytes are crucial in maintaining the health and stability of freshwater ecosystems. However, little is known about the combined effects of different particle size of MPs and antibiotics on freshwater plants, particularly their effects on submerged macrophyte communities. Thus, there is an urgent need to study their effects on the macrophyte communities to provide essential information for freshwater ecosystem management. In the present study, a mesocosm experiment was conducted to explore the effects of three particle sizes (5 µm, 50 µm, and 500 µm) of polystyrene-microplastics (PSMPs) (75 mg/L), tetracycline (TC) (50 mg/L), and their co-pollutants on interactions between Hydrilla verticillata and Elodea nuttallii. Our results showed that the effects of MPs are size-dependent on macrophytes at the community level rather than at the population level, and that small and medium sized MPs can promote the growth of the two test macrophytes at the community level. In addition, macrophytes at the community level have a stronger resistance to pollutant stress than those at the population level. Combined exposure to MPs and TC co-pollutants induces species-specific responses and antagonistic toxic effects on the physio-biochemical traits of submerged macrophytes. Our study provides evidence that MPs and co-pollutants not only affect the morphology and physiology at the population level but also the interactions between macrophytes. Thus, there are promising indications on the potential consequences of MPs and co-pollutants on macrophyte community structure, which suggests that future studies should focus on the effects of microplastics and their co-pollutants on aquatic macrophytes at the community level rather than only at the population level. This will improve our understanding of the profound effects of co-pollutants in aquatic environments on the structure and behavior of aquatic communities and ecosystems.


Subject(s)
Ecosystem , Environmental Pollutants , Microplastics/toxicity , Plastics/toxicity , Particle Size , Protein Synthesis Inhibitors , Anti-Bacterial Agents , Tetracyclines
17.
Biochemistry (Mosc) ; 88(11): 1786-1799, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38105199

ABSTRACT

In response to stress stimuli, eukaryotic cells typically suppress protein synthesis. This leads to the release of mRNAs from polysomes, their condensation with RNA-binding proteins, and the formation of non-membrane-bound cytoplasmic compartments called stress granules (SGs). SGs contain 40S but generally lack 60S ribosomal subunits. It is known that cycloheximide, emetine, and anisomycin, the ribosome inhibitors that block the progression of 80S ribosomes along mRNA and stabilize polysomes, prevent SG assembly. Conversely, puromycin, which induces premature termination, releases mRNA from polysomes and stimulates the formation of SGs. The same effect is caused by some translation initiation inhibitors, which lead to polysome disassembly and the accumulation of mRNAs in the form of stalled 48S preinitiation complexes. Based on these and other data, it is believed that the trigger for SG formation is the presence of mRNA with extended ribosome-free segments, which tend to form condensates in the cell. In this study, we evaluated the ability of various small-molecule translation inhibitors to block or stimulate the assembly of SGs under conditions of severe oxidative stress induced by sodium arsenite. Contrary to expectations, we found that ribosome-targeting elongation inhibitors of a specific type, which arrest solitary 80S ribosomes at the beginning of the mRNA coding regions but do not interfere with all subsequent ribosomes in completing translation and leaving the transcripts (such as harringtonine, lactimidomycin, or T-2 toxin), completely prevent the formation of arsenite-induced SGs. These observations suggest that the presence of even a single 80S ribosome on mRNA is sufficient to prevent its recruitment into SGs, and the presence of extended ribosome-free regions of mRNA is not sufficient for SG formation. We propose that mRNA entry into SGs may be mediated by specific contacts between RNA-binding proteins and those regions on 40S subunits that remain inaccessible when ribosomes are associated.


Subject(s)
Protein Biosynthesis , Stress Granules , RNA, Messenger/metabolism , Cytoplasmic Granules , Ribosomes/metabolism , Protein Synthesis Inhibitors/pharmacology , RNA-Binding Proteins/metabolism
18.
Nucleic Acids Res ; 51(20): 11375-11385, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37791877

ABSTRACT

We herein report the selection and characterization of a new riboswitch dependent on the aminoglycoside tobramycin. Its dynamic range rivals even the tetracycline dependent riboswitch to be the current best performing, synthetic riboswitch that controls translation initiation. The riboswitch was selected with RNA Capture-SELEX, a method that not only selects for binding but also for structural changes in aptamers on binding. This study demonstrates how this method can fundamentally reduce the labour required for the de novo identification of synthetic riboswitches. The initially selected riboswitch candidate harbours two distinct tobramycin binding sites with KDs of 1.1 nM and 2.4 µM, respectively, and can distinguish between tobramycin and the closely related compounds kanamycin A and B. Using detailed genetic and biochemical analyses and 1H NMR spectroscopy, the proposed secondary structure of the riboswitch was verified and the tobramycin binding sites were characterized. The two binding sites were found to be essentially non-overlapping, allowing for a separate investigation of their contribution to the activity of the riboswitch. We thereby found that only the high-affinity binding site was responsible for regulatory activity, which allowed us to engineer a riboswitch from only this site with a minimal sequence size of 33 nt and outstanding performance.


Subject(s)
Aptamers, Nucleotide , Genetic Engineering , Riboswitch , Tobramycin , Aptamers, Nucleotide/chemistry , Ligands , Nucleic Acid Conformation , Protein Synthesis Inhibitors , RNA/chemistry , Tetracycline , Tobramycin/pharmacology , Saccharomyces cerevisiae/drug effects , Genetic Engineering/methods
19.
PLoS One ; 18(10): e0292311, 2023.
Article in English | MEDLINE | ID: mdl-37824534

ABSTRACT

INTRODUCTION: Streptococcal toxic shock syndrome (STSS) is a severe consequence of infections from Streptococcus pyogenes. The early identification and timely intervention with appropriate anti-infective agents are pivotal for managing pediatric STSS. This study evaluates the effectiveness of various treatment regimens for STSS in children. METHODS: Clinical data of children with STSS resulting from ß-hemolytic streptococcal infections in two hospitals were retrospectively analyzed from January 2009 to April 2023. Additionally, literature from the China National Knowledge Infrastructure on pediatric STSS was examined. Antimicrobial treatments were categorized into four groups based on their compositions, with an additional categorization for adjunct therapeutic drugs. RESULTS: Of 32 confirmed STSS cases, all displayed sensitivity to ampicillin, ß-lactam antibiotics, and vancomycin, but resistance to clindamycin, erythromycin, and tetracycline. From the literature, 23 studies with 50 cases were extracted, leading to a total of 82 patients for evaluation. The efficacy rates varied significantly among the four treatment groups. Notably, the standard penicillin-containing group exhibited the highest efficacy (86.4%), while the group with macrolides/unused antibiotics registered a 0% efficacy rate. The other two groups demonstrated efficacy rates of 32.1% and 42.3%. CONCLUSION: For pediatric STSS, Streptococcus pyogenes shows notable sensitivity to ampicillin. Implementing timely ß-lactam antibiotics, specifically penicillin, in conjunction with clindamycin and intravenous immunoglobulins enhances the treatment success rate.


Subject(s)
Shock, Septic , Streptococcal Infections , Humans , Child , Anti-Bacterial Agents/therapeutic use , Clindamycin/therapeutic use , Shock, Septic/drug therapy , Retrospective Studies , Streptococcal Infections/drug therapy , Streptococcus pyogenes , Penicillins/therapeutic use , Ampicillin/therapeutic use , Protein Synthesis Inhibitors/therapeutic use , Macrolides/therapeutic use
20.
J Med Chem ; 66(20): 13860-13873, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37807849

ABSTRACT

Oxazolidinones represent a significant class of synthetic bacterial protein synthesis inhibitors that are primarily effective against Gram-positive bacteria. The commercial success of linezolid, the first FDA-approved oxazolidinone antibiotic, has motivated researchers to develop more potent oxazolidinones by employing various drug development strategies to fight against antimicrobial resistance, some of which have shown promising results. Thus, this Perspective aims to discuss the strategies employed in constructing oxazolidinone-based antibacterial agents and summarize recent advances in discovering oxazolidinone antibiotics to provide valuable insights for potentially developing next-generation oxazolidinone antibacterial agents or other pharmaceuticals.


Subject(s)
Oxazolidinones , Oxazolidinones/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Linezolid/pharmacology , Protein Synthesis Inhibitors , Gram-Positive Bacteria , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...