Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 81(1): 329, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090270

ABSTRACT

Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.


Subject(s)
Decidua , Fetal Growth Retardation , Leptin , Placenta , Signal Transduction , Animals , Female , Mice , Pregnancy , Decidua/metabolism , Decidua/pathology , Diet, High-Fat/adverse effects , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/pathology , Leptin/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Obesity/pathology , Placenta/metabolism , Progesterone/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , STAT3 Transcription Factor/metabolism , Stromal Cells/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics
2.
Nat Commun ; 15(1): 6947, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138174

ABSTRACT

Fluxes in human copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate. We herein apply an unbiased temporal evaluation of the signaling and whole genome transcriptional activities modulated by copper level fluctuations to identify potential copper sensor proteins responsible for driving these activities. We find that fluctuations in physiologically relevant copper levels modulate EGFR signal transduction and activation of the transcription factor CREB. Both intracellular and extracellular assays support Cu1+ inhibition of the EGFR phosphatase PTPN2 (and potentially PTPN1)-via ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism. We additionally show i) copper supplementation drives weak transcriptional repression of the copper importer CTR1 and ii) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper stimulated EGFR/CREB signaling and CTR1 expression.


Subject(s)
Copper Transporter 1 , Copper , Cyclic AMP Response Element-Binding Protein , ErbB Receptors , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Signal Transduction , ErbB Receptors/metabolism , ErbB Receptors/genetics , Copper/metabolism , Humans , Cyclic AMP Response Element-Binding Protein/metabolism , Copper Transporter 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Transcription, Genetic/drug effects
3.
J Exp Med ; 221(9)2024 09 02.
Article in English | MEDLINE | ID: mdl-39028870

ABSTRACT

Identification of monogenic causes of immune dysregulation provides insight into human immune response and signaling pathways associated with autoimmunity. Here, Jeanpierre et al. (https://doi.org/10.1084/jem.20232337) identify new germline variants in the gene encoding PTPN2 associated with loss of regulatory function, enhanced JAK/STAT signaling, and early-onset autoimmunity.


Subject(s)
Janus Kinases , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , STAT Transcription Factors , Signal Transduction , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Janus Kinases/metabolism , Janus Kinases/genetics , Autoimmunity , Germ-Line Mutation
4.
J Exp Med ; 221(9)2024 09 02.
Article in English | MEDLINE | ID: mdl-39028869

ABSTRACT

An exome sequencing strategy employed to identify pathogenic variants in patients with pediatric-onset systemic lupus or Evans syndrome resulted in the discovery of six novel monoallelic mutations in PTPN2. PTPN2 is a phosphatase that acts as an essential negative regulator of the JAK/STAT pathways. All mutations led to a loss of PTPN2 regulatory function as evidenced by in vitro assays and by hyperproliferation of patients' T cells. Furthermore, patients exhibited high serum levels of inflammatory cytokines, mimicking the profile observed in individuals with gain-of-function mutations in STAT factors. Flow cytometry analysis of patients' blood cells revealed typical alterations associated with autoimmunity and all patients presented with autoantibodies. These findings further supported the notion that a loss of function in negative regulators of cytokine pathways can lead to a broad spectrum of autoimmune manifestations and that PTPN2 along with SOCS1 haploinsufficiency constitute a new group of monogenic autoimmune diseases that can benefit from targeted therapy.


Subject(s)
Anemia, Hemolytic, Autoimmune , Autoimmunity , Haploinsufficiency , Lupus Erythematosus, Systemic , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Humans , Haploinsufficiency/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Anemia, Hemolytic, Autoimmune/genetics , Anemia, Hemolytic, Autoimmune/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Female , Male , Child , Autoimmunity/genetics , Adolescent , Mutation , Thrombocytosis/genetics , Thrombocytosis/immunology , Suppressor of Cytokine Signaling 1 Protein/genetics , Autoantibodies/immunology , Cytokines/metabolism , Child, Preschool , T-Lymphocytes/immunology , Thrombocytopenia
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159533, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39009241

ABSTRACT

Macrophage lipid accumulation indicates a pathological change in atherosclerosis. Ilexgenin A (IA), a pentacyclic triterpenoid compound, plays a role in preventing inflammation, bacterial infection, and fatty liver and induces a potential anti-atherogenic effect. However, the anti-atherosclerotic mechanism remains unclear. The present study investigated the effects of IA on lipid accumulation in macrophage-derived foam cells and atherogenesis in apoE-/- mice. Our results indicated that the expression of adenosine triphosphate-binding cassette transporter A1 (ABCA1) was up-regulated by IA, promoting cholesterol efflux and reducing lipid accumulation in macrophages, which may be regulated by the protein tyrosine phosphatase non-receptor type 2 (PTPN2)/ERK1/2 signalling pathway. IA attenuated the progression of atherosclerosis in high-fat diet-fed apoE-/- mice. PTPN2 knockdown with siRNA or treatment with an ERK1/2 agonist (Ro 67-7476) impeded the effects of IA on ABCA1 upregulation and cholesterol efflux in macrophages. These results suggest that IA inhibits macrophage lipid accumulation and alleviates atherosclerosis progression via the PTPN2/ERK1/2 signalling pathway.


Subject(s)
ATP Binding Cassette Transporter 1 , Atherosclerosis , Lipid Metabolism , MAP Kinase Signaling System , Macrophages , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , Mice , Macrophages/metabolism , Macrophages/drug effects , MAP Kinase Signaling System/drug effects , Lipid Metabolism/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Male , Triterpenes/pharmacology , Cholesterol/metabolism , Foam Cells/metabolism , Foam Cells/drug effects , Foam Cells/pathology , Mice, Inbred C57BL , Disease Progression , RAW 264.7 Cells , Signal Transduction/drug effects , Diet, High-Fat/adverse effects
6.
Cell Biochem Funct ; 42(2): e3947, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379221

ABSTRACT

Psoriasis is a recurrent and protracted disease that severely impacts the patient's physical and mental health. Thus, there is an urgent need to explore its pathogenesis to identify therapeutic targets. The expression level of protein tyrosine phosphatase nonreceptor type 2 (PTPN2) was analyzed by immunohistochemistry techniques in psoriatic tissues and imiquimod-induced psoriatic mouse models. PTPN2 and signal transducer and activator of transcription 3 (STAT3) were overexpressed or silenced in human keratinocytes or an interleukin (IL)-6-induced psoriasis HaCaT cell model using overexpression plasmid transfection or small interfering RNA technology in vitro, and the effects of PTPN2 on STAT3, HaCaT cell function, and autophagy levels were investigated using reverse transcription-quantitative polymerase chain reaction, Western blot, Cell Counting Kit 8, 5-ethynyl-20-deoxyuridine, flow cytometry, and transmission electron microscopy. PTPN2 expression was found to be significantly downregulated in psoriatic tissues. Then, the in vitro antipsoriatic properties of PTPN2 were investigated in an IL-6-induced psoriasis-like cell model, and the results demonstrated that inhibition of keratinocyte proliferation by PTPN2 may be associated with elevated STAT3 dephosphorylation and autophagy levels. These findings provide novel insights into the mechanisms of autophagy in psoriatic keratinocytes and may be essential for developing new therapeutic strategies to improve inflammatory homeostasis in psoriatic patients.


Subject(s)
Psoriasis , STAT3 Transcription Factor , Animals , Humans , Mice , Cell Line , Cell Proliferation , Keratinocytes/metabolism , Keratinocytes/pathology , Phosphoric Monoester Hydrolases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/pharmacology , Psoriasis/drug therapy , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL