ABSTRACT
Protein tyrosine phosphatase N2 (PTPN2) is a type 1 diabetes (T1D) candidate gene identified from human genome-wide association studies. PTPN2 is highly expressed in human and murine islets and becomes elevated upon inflammation and models of T1D, suggesting that PTPN2 may be important for ß-cell survival in the context of T1D. To test whether PTPN2 contributed to ß-cell dysfunction in an inflammatory environment, we generated a ß-cell-specific deletion of Ptpn2 in mice (PTPN2-ß knockout [ßKO]). Whereas unstressed animals exhibited normal metabolic profiles, low- and high-dose streptozotocin-treated PTPN2-ßKO mice displayed hyperglycemia and accelerated death, respectively. Furthermore, cytokine-treated Ptpn2-KO islets resulted in impaired glucose-stimulated insulin secretion, mitochondrial defects, and reduced glucose-induced metabolic flux, suggesting ß-cells lacking Ptpn2 are more susceptible to inflammatory stress associated with T1D due to maladaptive metabolic fitness. Consistent with the phenotype, proteomic analysis identified an important metabolic enzyme, ATP-citrate lyase, as a novel PTPN2 substrate.
Subject(s)
Diabetes Mellitus, Type 1 , Mice , Humans , Animals , Diabetes Mellitus, Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Phosphoric Monoester Hydrolases , Genome-Wide Association Study , Proteomics , Glucose , Mice, KnockoutABSTRACT
BACKGROUND & AIMS: Loss-of-function variants in the PTPN2 gene are associated with increased risk of inflammatory bowel disease. We recently showed that Ptpn2 is critical for intestinal epithelial cell (IEC) barrier maintenance, IEC-macrophage communication, and modulation of the gut microbiome in mice, restricting expansion of a small intestinal pathobiont associated with inflammatory bowel disease. Here, we aimed to identify how Ptpn2 loss affects ileal IEC subtypes and their function in vivo. METHODS: Constitutive Ptpn2 wild-type, heterozygous, and knockout (KO) mice, as well as mice with inducible deletion of Ptpn2 in IECs, were used in the study. Investigation was performed using imaging techniques, flow cytometry, enteroid culture, and analysis of gene and protein levels of IEC markers. RESULTS: Partial transcriptome analysis showed that expression of Paneth cell-associated antimicrobial peptides Lyz1, Pla2g2a, and Defa6 was down-regulated markedly in Ptpn2-KO mice compared with wild-type and heterozygous. In parallel, Paneth cell numbers were reduced, their endoplasmic reticulum architecture was disrupted, and the endoplasmic reticulum stress protein, C/EBP-homologous protein (CHOP), was increased in Ptpn2-KO mice. Despite reduced Paneth cell number, flow cytometry showed increased expression of the Paneth cell-stimulatory cytokines interleukin 22 and interferon γ+ in CD4+ T cells isolated from Ptpn2-KO ileum. Key findings in constitutive Ptpn2-KO mice were confirmed in epithelium-specific Ptpn2ΔIEC mice, which also showed impaired lysozyme protein levels in Paneth cells compared with Ptpn2fl/fl control mice. CONCLUSIONS: Constitutive Ptpn2 deficiency affects Paneth cell viability and compromises Paneth cell-specific antimicrobial peptide production. The observed effects may contribute to the increased susceptibility to intestinal infection and dysbiosis in these mice.
Subject(s)
Inflammatory Bowel Diseases , Paneth Cells , Mice , Animals , Paneth Cells/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Cell Survival , Inflammatory Bowel Diseases/genetics , Ileum/metabolism , Mice, KnockoutABSTRACT
BACKGROUND: Cerebral Cavernous Malformations (CCM) predispose patients to a lifetime risk of seizures and symptomatic hemorrhage. Only a small percentage of people affected will develop clinical symptoms and the molecular mechanisms underlying lesional activity remain unclear. We analyzed a panel of Single Nucleotide Polymorphisms (SNPs) in CCM patients. We looked for plasmatic inflammatory cytokines, checking for a pattern of plasma expression heterogeneity and any correlation with genetic variations identified with different CCM clinical phenotypes. METHODS: This was a case-control study from a long-term follow-up cohort including 23 CCM patients, of which 16 were symptomatic, and 7 were asymptomatic. A 200-SNP panel was considered through next-generation sequencing and 18 different plasma molecules were assessed through a suspension array system. RESULTS: Fcγ receptor IIa rs1801274 (FCGR2A) and protein tyrosine phosphatase non-receptor type 2 rs72872125 PTPN2 were statistically different between groups. Patients who had a combination of the presence of FCGR2A and the absence of PTPN2 also had symptoms earlier in life. The combination of genetic polymorphisms and serum level of GM-CSF showed the best diagnostic biomarker to distinguish symptomatic patients as formulated: [0.296*(FCGR2A)] + [-0.788*(PTPN2)] + [-0.107*(GM-CSF)]. CONCLUSION: We have shown that SNPs in inflammation genes might be related to a symptomatic phenotype in CCM. We also demonstrated that a formula based on two of these polymorphisms (FCGR2A+ and PTPN2+) is possibly capable of predicting a symptomatic phenotype during a patient's lifetime.
Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Hemangioma, Cavernous, Central Nervous System/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Receptors, IgG/genetics , Adult , Aged , Case-Control Studies , Female , Genetic Markers , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Young AdultABSTRACT
Although B cells reactive with islet autoantigens are silenced by tolerance mechanisms in healthy individuals, they can become activated and contribute to the development of type 1 diabetes. We previously demonstrated that high-affinity insulin-binding B cells (IBCs) occur exclusively in the anergic (BND) compartment in peripheral blood of healthy subjects. Consistent with their activation early in disease development, high-affinity IBCs are absent from the BND compartment of some first-degree relatives (FDRs) as well as all patients with autoantibody-positive prediabetes and new-onset type 1 diabetes, a time when they are found in pancreatic islets. Loss of BND IBCs is associated with a loss of the entire BND B-cell compartment consistent with provocation by an environmental trigger or predisposing genetic factors. To investigate potential mechanisms operative in subversion of B-cell tolerance, we explored associations between HLA and non-HLA type 1 diabetes-associated risk allele genotypes and loss of BNDs in FDRs. We found that high-risk HLA alleles and a subset of non-HLA risk alleles (i.e., PTPN2 [rs1893217], INS [rs689], and IKZF3 [rs2872507]), relevant to B- and T-cell development and function are associated with loss of anergy. Hence, the results suggest a role for risk-conferring alleles in perturbation of B-cell anergy during development of type 1 diabetes.
Subject(s)
Autoantibodies/immunology , B-Lymphocytes/immunology , Clonal Anergy/immunology , Diabetes Mellitus, Type 1/immunology , Prediabetic State/immunology , Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease , HLA-DQ Antigens/genetics , HLA-DR Antigens/genetics , Humans , Ikaros Transcription Factor/genetics , Insulin/genetics , Islets of Langerhans , Prediabetic State/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/geneticsABSTRACT
Turner syndrome (TS) is one of the most common sexual chromosome abnormalities and is clearly associated with an increased risk of autoimmune diseases, particularly thyroid disease and coeliac disease (CD). Single-nucleotide polymorphism analyses have been shown to provide correlative evidence that specific genes are associated with autoimmune disease. Our aim was to study the functional polymorphic variants of PTPN22 and ZFAT in relation to thyroid disease and those of MYO9B in relation to CD. A cross-sectional comparative analysis was performed on Mexican mestizo patients with TS and age-matched healthy females. Our data showed that PTPN22 C1858T (considered a risk variant) is not associated with TS (X2 = 3.50, p = .61, and OR = 0.33 [95% CI = 0.10-1.10]). Also, ZFAT was not associated with TS (X2 = 1.2, p = .28, and OR = 1.22 [95% CI = 0.84-1.79]). However, for the first time, rs2305767 MYO9B was revealed to have a strong association with TS (X2 = 58.6, p = .0001, and OR = 10.44 [95% C = 5.51-19.80]), supporting a high level of predisposition to CD among TS patients. This report addresses additional data regarding the polymorphic variants associated with autoimmune disease, one of the most common complications in TS.
Subject(s)
Autoimmune Diseases/etiology , Autoimmune Diseases/genetics , Myosins/genetics , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Transcription Factors/genetics , Turner Syndrome/complications , Turner Syndrome/genetics , Autoimmune Diseases/epidemiology , Autoimmune Diseases/ethnology , Female , Humans , Mexico/epidemiology , Mexico/ethnology , Turner Syndrome/epidemiology , Turner Syndrome/ethnologyABSTRACT
OBJECTIVE: To evaluate the association of the PTPN2 rs1893217 polymorphism with T1DM and/or its clinical and laboratory characteristics in a Caucasian population from Southern Brazil. SUBJECTS AND METHODS: Four hundred and eighty six patients with T1DM and 484 non-diabetic subjects were included in the study. Genotyping of the PTPN2 rs1893217 was performed by real-time PCR. RESULTS: Genotype frequencies did not differ between T1DM patients and non-diabetic subjects (P = 0.265). The C allele was observed in 14.5% of the T1DM sample and 12.2% of the non-diabetic group (P = 0.152). Moreover, the frequencies of this variant did not differ statistically between T1DM patients and non-diabetic subjects when assuming recessive, dominant, or additive inheritance models. The clinical and laboratory characteristics of T1DM patients did not differ significantly among the three genotypes of the rs1893217 polymorphism, either. CONCLUSION: The PTPN2 rs1893217 polymorphism is not significantly associated with T1DM in Caucasian subjects from Southern Brazil.