Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 851
Filter
1.
Ren Fail ; 46(1): 2349133, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38726999

ABSTRACT

OBJECTIVE:  The clinical characteristics, genetic mutation spectrum, treatment strategies and prognoses of 15 children with Dent disease were retrospectively analyzed to improve pediatricians' awareness of and attention to this disease. METHODS:  We analyzed the clinical and laboratory data of 15 Chinese children with Dent disease who were diagnosed and treated at our hospital between January 2017 and May 2023 and evaluated the expression of the CLCN5 and OCRL1 genes. RESULTS:  All 15 patients were male and complained of proteinuria, and the incidence of low-molecular-weight proteinuria (LMWP) was 100.0% in both Dent disease 1 (DD1) and Dent disease 2 (DD2) patients. The incidence of hypercalciuria was 58.3% (7/12) and 66.7% (2/3) in DD1 and DD2 patients, respectively. Nephrocalcinosis and nephrolithiasis were found in 16.7% (2/12) and 8.3% (1/12) of DD1 patients, respectively. Renal biopsy revealed focal segmental glomerulosclerosis (FSGS) in 1 patient, minimal change lesion in 5 patients, and small focal acute tubular injury in 1 patient. A total of 11 mutations in the CLCN5 gene were detected, including 3 missense mutations (25.0%, c.1756C > T, c.1166T > G, and c.1618G > A), 5 frameshift mutations (41.7%, c.407delT, c.1702_c.1703insC, c.137delC, c.665_666delGGinsC, and c.2200delG), and 3 nonsense mutations (25.0%, c.776G > A, c.1609C > T, and c.1152G > A). There was no significant difference in age or clinical phenotype among patients with different mutation types (p > 0.05). All three mutations in the OCRL1 gene were missense mutations (c.1477C > T, c.952C > T, and c.198A > G). CONCLUSION:  Pediatric Dent disease is often misdiagnosed. Protein electrophoresis and genetic testing can help to provide an early and correct diagnosis.


Subject(s)
Chloride Channels , Dent Disease , Phosphoric Monoester Hydrolases , Humans , Male , Child , Chloride Channels/genetics , Retrospective Studies , Child, Preschool , China/epidemiology , Dent Disease/genetics , Dent Disease/diagnosis , Phosphoric Monoester Hydrolases/genetics , Mutation , Proteinuria/genetics , Adolescent , Hypercalciuria/genetics , Nephrocalcinosis/genetics , Nephrolithiasis/genetics , Infant , Genetic Testing , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/diagnosis , Mutation, Missense , Female , Glomerulosclerosis, Focal Segmental/genetics , Kidney/pathology , East Asian People
2.
BMJ Case Rep ; 17(3)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38442966

ABSTRACT

Genetic focal segmental glomerulosclerosis (FSGS) is an important but underestimated cause of inherited proteinuric chronic kidney disease (CKD) in adults. We discuss a case of familial CKD due to inverted formin 2 (INF2) gene mutation, where three siblings had disparate phenotypic presentations ranging from CKD with subnephrotic proteinuria to nephrotic-range proteinuria with collapsing FSGS on kidney biopsy over a period of 8 years. The youngest sibling was the index case. The family agreed to undergo genetic testing only after two more siblings were diagnosed with kidney disease. This case highlights how clinical heterogeneity, absence of family history in the index case, initial lack of specific biopsy-proven diagnosis and reluctance to undergo genetic testing can delay the diagnosis of genetic kidney disease in adults.


Subject(s)
Glomerulosclerosis, Focal Segmental , Renal Insufficiency, Chronic , Adult , Humans , Glomerulosclerosis, Focal Segmental/diagnosis , Glomerulosclerosis, Focal Segmental/genetics , Renal Insufficiency, Chronic/genetics , Kidney , Biopsy , Proteinuria/genetics
3.
Biochem Biophys Res Commun ; 704: 149713, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38428304

ABSTRACT

As life expectancy continues to increase, age-related kidney diseases are becoming more prevalent. Chronic kidney disease (CKD) is not only a consequence of aging but also a potential accelerator of aging process. Here we report the pivotal role of podocyte ERCC1, a DNA repair factor, in maintaining glomerular integrity and a potential effect on multiple organs. Podocyte-specific ERCC1-knockout mice developed severe proteinuria, glomerulosclerosis, and renal failure, accompanied by a significant increase in glomerular DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). ERCC1 gene transfer experiment in the knockout mice attenuated proteinuria and glomerulosclerosis with reduced DNA damage. Notably, CD44+CD8+ memory T cells, indicative of T-cell senescence, were already elevated in the peripheral blood of knockout mice at 10 weeks old. Additionally, levels of senescence-associated secretory phenotype (SASP) factors were significantly increased in both the circulation and multiple organs of the knockout mice. In older mice and human patients, we observed an accumulation of DSBs and an even greater buildup of SSBs in glomeruli, despite no significant reduction in ERCC1 expression with age in mice. Collectively, our findings highlight the crucial role of ERCC1 in repairing podocyte DNA damage, with potential implications for inflammation in various organs.


Subject(s)
Kidney Diseases , Podocytes , Humans , Mice , Animals , Podocytes/metabolism , Kidney Glomerulus/metabolism , Kidney Diseases/metabolism , Mice, Knockout , Proteinuria/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endonucleases/genetics , Endonucleases/metabolism
4.
Mol Genet Genomic Med ; 12(3): e2353, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488435

ABSTRACT

BACKGROUND: Although proteinuria is long recognized as an independent risk factor for progressive chronic kidney diseases, not all forms of proteinuria are detrimental to kidney function, one of which is isolated proteinuria caused by cubilin (CUBN)-specific mutations. CUBN encodes an endocytic receptor, initially found to be responsible for the Imerslund-Gräsbeck syndrome (IGS; OMIM #261100) characterized by a combined phenotype of megaloblastic anemia and proteinuria. METHODS: After analyzing their clinical and pathological characterizations, next-generation sequencing for renal disease genes or whole-exome sequencing (WES) was performed on four patients with non-progressive isolated proteinuria. CUBN biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing, immunohistochemistry, minigene assay, and multiple in silico prediction tools, including 3D protein modeling. RESULTS: Here, we present four patients with isolated proteinuria caused by CUBN C-terminal biallelic pathogenic variants, all of which showed no typical IGS symptoms, such as anemia and vitamin B12 deficiency. Their urine protein levels fluctuated between +~++ and estimated glomerular filtration rate (eGFR) were normal or slightly higher. Mild mesangial hypercellularity was found in three children's renal biopsies. A homozygous splice-site variant of CUBN (c.6821+3 (IVS44) A>G) was proven to result in the exon 44 skipping and premature translation termination by cDNA sequencing and immunohistochemistry. Compound heterozygous mutations were identified among the other three children, including another novel splice-site variant (c.10764+1 (IVS66) G>A) causing the retention of first 4 nucleotides in intron 66 by minigene assay, two unreported missense mutations (c.4907G>A (p.R1636Q); c. 9095 A>G (p.Y3032C)), and two reported missense mutations in China (c.8938G>A (p.D2980N); c. 9287T>C (p.L3096P)), locating behind the vitamin B12-binding domain, affecting CUB11, CUB16, CUB22, CUB23, and CUB27 domains, respectively. CONCLUSION: These results demonstrate that above CUBN mutations may cause non-progressive and isolated proteinuria, expanding the variant spectrum of CUBN and benefiting our understanding of proteinuria and renal function.


Subject(s)
Proteinuria , Receptors, Cell Surface , Child , Humans , DNA, Complementary , Proteinuria/genetics , Proteinuria/pathology , Receptors, Cell Surface/genetics
5.
Kidney Int ; 105(5): 1020-1034, 2024 May.
Article in English | MEDLINE | ID: mdl-38387504

ABSTRACT

The circadian clock influences a wide range of biological process and controls numerous aspects of physiology to adapt to the daily environmental changes caused by Earth's rotation. The kidney clock plays an important role in maintaining tubular function, but its effect on podocytes remains unclear. Here, we found that podocytes expressed CLOCK proteins, and that 2666 glomerular gene transcripts (13.4%), including autophagy related genes, had 24-hour circadian rhythms. Deletion of Clock in podocytes resulted in 1666 gene transcripts with the loss of circadian rhythm including autophagy genes. Podocyte-specific Clock knockout mice at age three and eight months showed deficient autophagy, loss of podocytes and increased albuminuria. Chromatin immunoprecipitation (ChIP) sequence analysis indicated autophagy related genes were targets of CLOCK in podocytes. ChIP-PCR further confirmed Clock binding to the promoter regions of Becn1 and Atg12, two autophagy related genes. Furthermore, the association of CLOCK regulated autophagy with chronic sleep fragmentation and diabetic kidney disease was analyzed. Chronic sleep fragmentation resulted in the loss of glomerular Clock rhythm, inhibition of podocyte autophagy, and proteinuria. Rhythmic oscillations of Clock also disappeared in high glucose treated podocytes and in glomeruli from diabetic mice. Finally, circadian differences in podocyte autophagy were also abolished in diabetic mice. Deletion Clock in podocytes aggravated podocyte injury and proteinuria in diabetic mice. Thus, our findings demonstrate that clock-dependent regulation of autophagy may be essential for podocyte survival. Hence. loss of circadian controlled autophagy may play an important role in podocyte injury and proteinuria.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Podocytes , Mice , Animals , Podocytes/metabolism , Diabetes Mellitus, Experimental/complications , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Proteinuria/genetics , Proteinuria/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/complications , Mice, Knockout , Autophagy
6.
Hum Mol Genet ; 33(8): 667-676, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38224683

ABSTRACT

More than 60 monogenic genes mutated in steroid-resistant nephrotic syndrome (SRNS) have been identified. Our previous study found that mutations in nucleoporin 160 kD (NUP160) are implicated in SRNS. The NUP160 gene encodes a component of the nuclear pore complex. Recently, two siblings with homozygous NUP160 mutations presented with SRNS and a nervous system disorder. However, replication of nephrotic syndrome (NS)-associated phenotypes in a mammalian model following loss of Nup160 is needed to prove that NUP160 mutations cause SRNS. Here, we generated a podocyte-specific Nup160 knockout (Nup160podKO) mouse model using CRISPR/Cas9 and Cre/loxP technologies. We investigated NS-associated phenotypes in these Nup160podKO mice. We verified efficient abrogation of Nup160 in Nup160podKO mice at both the DNA and protein levels. We showed that Nup160podKO mice develop typical signs of NS. Nup160podKO mice exhibited progression of proteinuria to average albumin/creatinine ratio (ACR) levels of 15.06 ± 2.71 mg/mg at 26 weeks, and had lower serum albumin levels of 13.13 ± 1.34 g/l at 30 weeks. Littermate control mice had urinary ACR mean values of 0.03 mg/mg and serum albumin values of 22.89 ± 0.34 g/l at the corresponding ages. Further, Nup160podKO mice exhibited glomerulosclerosis compared with littermate control mice. Podocyte-specific Nup160 knockout in mice led to NS and glomerulosclerosis. Thus, our findings strongly support that mutations in NUP160 cause SRNS. The newly generated Nup160podKO mice are a reliable mammalian model for future study of the pathogenesis of NUP160-associated SRNS.


Subject(s)
Nephrotic Syndrome , Podocytes , Animals , Mice , Mice, Knockout , Mutation , Nephrotic Syndrome/genetics , Nephrotic Syndrome/diagnosis , Nephrotic Syndrome/pathology , Proteinuria/genetics , Serum Albumin/genetics
7.
Pediatr Nephrol ; 39(4): 1301-1313, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38165475

ABSTRACT

A 3-year-old female patient with no significant medical history presented to her pediatrician with foamy urine. Initial testing revealed moderate proteinuria on qualitative testing, although she was incidentally noted to have severe hypertension (240/200 mmHg). Physical examination of the carotid and femoral areas revealed significant systolic vascular murmurs. Labs showed elevated serum creatinine, hypokalemia, metabolic alkalosis, elevated renin and aldosterone and hypercalciuria. Echocardiography identified ventricular hypertrophy. Computed tomography (CT) of the abdomen and magnetic resonance angiography of the head showed multiple tortuous or interrupted arteries and multiple calcifications in the renal sinus area. B-mode ultrasonography suggested thickening of the carotid and femoral artery walls, with numerous spotted calcifications. Genetic testing revealed that ABCC6 had a complex heterozygous mutation (exon 24: c.3340C > T and intron 30: c.4404-1G > A). Our panel of experts reviewed the evaluation of this patient with hypertension, proteinuria, hypercalciuria, and vascular abnormalities as well as the diagnosis and appropriate management of a rare disease.


Subject(s)
Hypertension , Hypokalemia , Female , Humans , Child, Preschool , Hypercalciuria/complications , Hypercalciuria/diagnosis , Hypercalciuria/genetics , Hypertension/complications , Hypertension/diagnosis , Hypokalemia/genetics , Genetic Testing , Proteinuria/etiology , Proteinuria/genetics
8.
Clin Genet ; 105(4): 406-414, 2024 04.
Article in English | MEDLINE | ID: mdl-38214412

ABSTRACT

Alport syndrome (AS) shows a broad phenotypic spectrum ranging from isolated microscopic hematuria (MH) to end-stage kidney disease (ESKD). Monoallelic disease-causing variants in COL4A3/COL4A4 have been associated with autosomal dominant AS (ADAS) and biallelic variants with autosomal recessive AS (ARAS). The aim of this study was to analyze clinical and genetic data regarding a possible genotype-phenotype correlation in individuals with disease-causing variants in COL4A3/COL4A4. Eighty-nine individuals carrying at least one COL4A3/COL4A4 variant classified as (likely) pathogenic according to the American College of Medical Genetics guidelines and current amendments were recruited. Clinical data concerning the prevalence and age of first reported manifestation of MH, proteinuria, ESKD, and extrarenal manifestations were collected. Individuals with monoallelic non-truncating variants reported a significantly higher prevalence and earlier diagnosis of MH and proteinuria than individuals with monoallelic truncating variants. Individuals with biallelic variants were more severely affected than those with monoallelic variants. Those with biallelic truncating variants were more severely affected than those with compound heterozygous non-truncating/truncating variants or individuals with biallelic non-truncating variants. In this study an association of heterozygous non-truncating COL4A3/COL4A4 variants with a more severe phenotype in comparison to truncating variants could be shown indicating a potential dominant-negative effect as an explanation for this observation. The results for individuals with ARAS support the, still scarce, data in the literature.


Subject(s)
Collagen Type IV , Nephritis, Hereditary , Humans , Mutation , Collagen Type IV/genetics , Autoantigens/genetics , Nephritis, Hereditary/diagnosis , Hematuria/genetics , Proteinuria/genetics
9.
Int J Biol Sci ; 20(3): 937-952, 2024.
Article in English | MEDLINE | ID: mdl-38250156

ABSTRACT

Proteinuria is a common and important clinical manifestation of chronic kidney disease (CKD) and an independent risk factor for the progression of kidney disease. As a component of the glomerular filtration barrier (GFB), podocyte plays a key role in the pathogenesis of glomerular diseases and proteinuria. However, the pathophysiology of glomerular diseases associated with mitochondrial function is incompletely understood. Here, we identified three novel mutations in MTX2, encoding a membrane protein in mitochondria, associated with multisystem manifestations including nephrotic proteinuria and kidney injury in two Chinese patients. Conditional podocyte-specific Mtx2 knockout (Pod-Mtx2-KO) mice present a series of podocyte and glomerular abnormalities from 8 weeks to old age, including microalbuminuria, glomerular mesangial hyperplasia, fusion and effacement of foot process. MTX2 deficiency impaired podocyte functions in vitro, manifested by reductions of adhesion, migration and endocytosis, which were further restored by overexpression of MTX2. Moreover, MTX2 defects led to abnormal mitochondrial structure and dysfunction, evidenced with defects of complex I and III, increased production of reactive oxygen species (ROS), and decreased protein levels of Sam50-CHCHD3-Mitofilin axis in the mitochondrial intermembrane space bridging (MIB) complex which is responsible for maintaining mitochondrial cristae morphology. Collectively, these findings reveal that the normal expression of MTX2 in glomerulus plays an important role in the adhesion, migration, endocytosis, proliferation and other physiological functions of podocytes, which may be realized by maintaining the morphological structure and function of mitochondria. Abnormal expression of MTX2 can lead to mitochondrial dysfunction and structural abnormalities by Sam50-CHCHD3-Mitofilin axis in podocyte, which further induces podocyte injury, glomerular lesions and proteinuria.


Subject(s)
Mitochondrial Diseases , Mitochondrial Proteins , Podocytes , Renal Insufficiency, Chronic , Animals , Humans , Mice , Kidney Glomerulus , Mitochondrial Proteins/genetics , Proteinuria/genetics
10.
Pediatr Nephrol ; 39(3): 905-909, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37572117

ABSTRACT

BACKGROUND  : Nephropathy in Denys-Drash syndrome (DDS) develops within a few months of birth, often progressing to kidney failure. Wilms tumors also develop at an early age with a high rate of incidence. When a patient does not have Wilms tumor but develops kidney failure, prophylactic bilateral nephrectomy, and kidney transplantation (KTX) is an optimal approach owing to the high risk of Wilms tumor development. In the case presented here, prophylactic bilateral nephrectomy and KTX were performed in a patient who had not developed Wilms tumor or kidney failure. However, the treatment option is controversial as it involves the removal of a tumor-free kidney and performing KTX in the absence of kidney failure. CASE DIAGNOSIS/TREATMENT: We present the case of a 7-year-old boy, born at 38 weeks gestation. Examinations at the age of 1 year revealed severe proteinuria and abnormal internal and external genitalia. Genetic testing identified a missense mutation in exon 9 of the WT1 gene, leading to the diagnosis of DDS. At the age of 6 years, he had not yet developed Wilms tumor and had grown to a size that allowed him to safely undergo a KTX. His kidney function was slowly deteriorating (chronic kidney disease (CKD) stage 3), but he had not yet developed kidney failure. Two treatment options were considered for this patient: observation until the development of kidney failure or prophylactic bilateral nephrectomy with KTX to avoid Wilms tumor development. After a detailed explanation of options to the patient and family, they decided to proceed with prophylactic bilateral nephrectomy and KTX. At the latest follow-up 4 months after KTX, the patient's kidney functioned well without proteinuria. CONCLUSION: We performed prophylactic bilateral nephrectomy with KTX on a DDS patient who had not developed kidney failure or Wilms tumor by the age of 7 years. Although the risk of development of Wilms tumor in such a patient is unclear, this treatment may be an optimal approach for patients who are physically able to undergo KTX, considering the potentially lethal nature of Wilms tumor in CKD patients.


Subject(s)
Denys-Drash Syndrome , Kidney Neoplasms , Kidney Transplantation , Renal Insufficiency, Chronic , Renal Insufficiency , Wilms Tumor , Male , Humans , Child , Denys-Drash Syndrome/complications , Denys-Drash Syndrome/genetics , Denys-Drash Syndrome/surgery , Kidney Transplantation/adverse effects , Wilms Tumor/complications , Wilms Tumor/surgery , Wilms Tumor/genetics , Genes, Wilms Tumor , Renal Insufficiency/genetics , Nephrectomy/adverse effects , Kidney Neoplasms/complications , Kidney Neoplasms/surgery , Kidney Neoplasms/genetics , Renal Insufficiency, Chronic/genetics , Proteinuria/genetics , WT1 Proteins/genetics
11.
Transl Res ; 266: 68-83, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37995969

ABSTRACT

Podocyte damage is the major cause of glomerular injury and proteinuria in multiple chronic kidney diseases. Metadherin (MTDH) is involved in podocyte apoptosis and promotes renal tubular injury in mouse models of diabetic nephropathy and renal fibrosis; however, its role in podocyte injury and proteinuria needs further exploration. Here, we show that MTDH was induced in the glomerular podocytes of patients with proteinuric chronic kidney disease and correlated with proteinuria. Podocyte-specific knockout of MTDH in mice reversed proteinuria, attenuated podocyte injury, and prevented glomerulosclerosis after advanced oxidation protein products challenge or adriamycin injury. Furthermore, specific knockout of MTDH in podocytes repressed ß-catenin phosphorylation at the Ser675 site and inhibited its downstream target gene transcription. Mechanistically, on the one hand, MTDH increased cAMP and then activated protein kinase A (PKA) to induce ß-catenin phosphorylation at the Ser675 site, facilitating the nuclear translocation of MTDH and ß-catenin; on the other hand, MTDH induced the deaggregation of pyruvate kinase M2 (PKM2) tetramers and promoted PKM2 monomers to enter the nucleus. This cascade of events leads to the formation of the MTDH/PKM2/ß-catenin/CBP/TCF4 transcription complex, thus triggering TCF4-dependent gene transcription. Inhibition of PKA activity by H-89 or blockade of PKM2 deaggregation by TEPP-46 abolished this cascade of events and disrupted transcription complex formation. These results suggest that MTDH induces podocyte injury and proteinuria by assembling the ß-catenin-mediated transcription complex by regulating PKA and PKM2 function.


Subject(s)
Diabetic Nephropathies , Podocytes , Renal Insufficiency, Chronic , Humans , Mice , Animals , Podocytes/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Cyclic AMP-Dependent Protein Kinases , Transcription Factors/genetics , Proteinuria/genetics , Proteinuria/metabolism , Diabetic Nephropathies/metabolism , Renal Insufficiency, Chronic/metabolism , Membrane Proteins , RNA-Binding Proteins/metabolism
12.
J Pathol ; 262(3): 296-309, 2024 03.
Article in English | MEDLINE | ID: mdl-38129319

ABSTRACT

The standard of care for patients with Alport syndrome (AS) is angiotensin-converting enzyme (ACE) inhibitors. In autosomal recessive Alport (ARAS) mice, ACE inhibitors double lifespan. We previously showed that deletion of Itga1 in Alport mice [double-knockout (DKO) mice] increased lifespan by 50%. This effect seemed dependent on the prevention of laminin 211-mediated podocyte injury. Here, we treated DKO mice with vehicle or ramipril starting at 4 weeks of age. Proteinuria and glomerular filtration rates were measured at 5-week intervals. Glomeruli were analyzed for laminin 211 deposition in the glomerular basement membrane (GBM) and GBM ultrastructure was analyzed using transmission electron microscopy (TEM). RNA sequencing (RNA-seq) was performed on isolated glomeruli at all time points and the results were compared with cultured podocytes overlaid (or not) with recombinant laminin 211. Glomerular filtration rate declined in ramipril-treated DKO mice between 30 and 35 weeks. Proteinuria followed these same patterns with normalization of foot process architecture in ramipril-treated DKO mice. RNA-seq revealed a decline in the expression of Foxc2, nephrin (Nphs1), and podocin (Nphs2) mRNAs, which was delayed in the ramipril-treated DKO mice. GBM accumulation of laminin 211 was delayed in ramipril-treated DKO mice, likely due to a role for α1ß1 integrin in CDC42 activation in Alport mesangial cells, which is required for mesangial filopodial invasion of the subendothelial spaces of the glomerular capillary loops. Ramipril synergized with Itga1 knockout, tripling lifespan compared with untreated ARAS mice. © 2023 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Nephritis, Hereditary , Podocytes , Humans , Mice , Animals , Integrin alpha1/genetics , Integrin alpha1/metabolism , Ramipril/pharmacology , Ramipril/metabolism , Longevity , Glomerular Basement Membrane/metabolism , Nephritis, Hereditary/drug therapy , Nephritis, Hereditary/genetics , Nephritis, Hereditary/metabolism , Podocytes/metabolism , Laminin/genetics , Laminin/metabolism , Mice, Knockout , Proteinuria/drug therapy , Proteinuria/genetics , Proteinuria/metabolism , Sequence Analysis, RNA
13.
Ter Arkh ; 95(6): 511-515, 2023 Aug 17.
Article in Russian | MEDLINE | ID: mdl-38158972

ABSTRACT

We report a case of atypical hemolytic uremic syndrome (aHUS) that occurred after childbirth in a patient with a history of numerous recurrent episodes of TMA with nephrotic proteinuria and impaired renal function. At 33 weeks of the first spontaneous pregnancy, proteinuria up to 0.8 g/l was first registered, at 38 weeks she was hospitalized with proteinuria, reaching a maximum of 13 g/l, she was delivered promptly, after which progressive thrombocytopenia was noted over the next few days (up to 44×109/l) and anemia and severe arterial hypertension, which could not be corrected by several groups of antihypertensive drugs. Initiated plasma therapy had no effect. After exclusion of all other causes of TMA, therapy with eculizumab was initiated, which made it possible to quickly and completely stop the phenomena of TMA. The presented observation demonstrates the successful treatment of recurrent course of aHUS with eculizumab with the achievement of complete recovery of kidney function in a patient with a homozygous mutation in the MCP gene. It is worth noting the importance of genetic research even in those situations where clinically aHUS is beyond doubt.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Pregnancy , Female , Humans , Atypical Hemolytic Uremic Syndrome/diagnosis , Atypical Hemolytic Uremic Syndrome/genetics , Atypical Hemolytic Uremic Syndrome/therapy , Prognosis , Postpartum Period , Proteinuria/genetics , Genetic Testing , Phenotype
14.
Medicine (Baltimore) ; 102(46): e36057, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37986374

ABSTRACT

RATIONALE: Autosomal recessive Alport syndrome (ARAS) is an hereditary heterogeneous disease that poses a serious risk to pregnant women. PATIENT CONCERNS: We reported 2 cases of pregnancy with progressive proteinuria. The case 1 was a 21-year-old woman with 24-h proteinuria increased from 2.03 to 11.72 g at 13 to 35 weeks of gestation, and the case 2 was a 28-year-old woman with 24-h proteinuria increased from 2.10 to 9.32 g at 8 to 36 weeks of gestation. In advanced stage of pregnancy, the fetal development was smaller than the gestational age. DIAGNOSES: Sanger sequencing showed that novel compound heterozygous mutations [c.1315 G>T (p.G439C) and c.4847 G>A (p.C1616Y)] of the collagen type IV alpha 3 chain (COL4A3) gene were found in the 2 cases. Renal puncture pathology confirmed the diagnosis of ARAS. INTERVENTIONS: The 2 cases were treated with albumin, compounded amino acids, calcium, vitamin D, and low molecular weight heparin in addition to conventional treatment during pregnancy. Pregnancy was terminated by cesarean section at 36 to 37 weeks of gestation. After delivery, the patients were treated with Losartan for anti-proteinuric therapy for 1 year. OUTCOMES: The neonatal weights and Apgar scores were normal. The patients recovered well and 24-h proteinuria decreased to pre-pregnancy level. LESSONS: When pregnant women present with a persistent increasing proteinuria, ARAS needs to be considered. Sanger sequencing is useful to assist in the diagnosis of ARAS. Multidisciplinary treatments from nephrologists and gynecologists are needed to ensure the safety of pregnancy and the fetus.


Subject(s)
Nephritis, Hereditary , Adult , Female , Humans , Infant, Newborn , Pregnancy , Young Adult , Cesarean Section , Collagen Type IV/genetics , Kidney/pathology , Mutation , Nephritis, Hereditary/drug therapy , Nephritis, Hereditary/genetics , Nephritis, Hereditary/pathology , Proteinuria/drug therapy , Proteinuria/genetics , Proteinuria/pathology
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(12): 1560-1565, 2023 Dec 10.
Article in Chinese | MEDLINE | ID: mdl-37994143

ABSTRACT

OBJECTIVE: To explore the clinical characteristics and genetic etiology for a child with atypical Hemolytic uremic syndrome (aHUS) in conjunct with nephrotic level proteinuria. METHODS: A child patient who had visited the Affiliated Hospital of Qingdao University on June 25, 2020 was selected as the study subject. Clinical data of the patient was collected. Whole exome sequencing (WES) was carried out for the child, and candidate variant was verified by Sanger sequencing of the child and his parents. RESULTS: The child, an 8-month-old male, had presented mainly with edema, oliguria, hematuria, nephrotic level proteinuria, anemia, thrombocytopenia, increased creatinine and urea, hypercholesterolemia but normal complement levels. Genetic testing revealed that he has harbored compound heterozygous variants of the DGKE gene, namely c.12_18dupGAGGCGG (p.P7fs*37) and c.1042G>T (p.D348Y), which were respectively inherited from his father and mother. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variants were classified as likely pathogenic and variant of uncertain significance, respectively. By combining his clinical manifestations and results of genetic testing, the child was diagnosed with aHUS with nephrotic level proteinuria. CONCLUSION: For infants and young children with aHUS in conjunct with nephrotic level proteinuria, variants of the DGKE gene should be screened. Above finding has expanded the mutational spectrum of the DGKE gene.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Thrombocytopenia , Infant , Female , Humans , Child , Male , Child, Preschool , Atypical Hemolytic Uremic Syndrome/genetics , Atypical Hemolytic Uremic Syndrome/diagnosis , Mutation , Genetic Testing , Thrombocytopenia/genetics , Proteinuria/genetics
16.
Sci Rep ; 13(1): 18406, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891237

ABSTRACT

We evaluated the prospective association of mitochondrial DNA copy number (mtDNA CN) with markers of kidney function among a cohort of persons who inject drugs (PWID). This is a Prospective cohort study nested in the AIDS linked to the intravenous experience cohort (community-based cohort of PWID in Baltimore, MD). mtDNA CN was measured at two time-points 5 years apart using a real-time polymerase chain reaction. Kidney function (estimated glomerular filtration rate [eGFR], serum creatinine, urine protein) was measured annually. We used linear mixed effects models to evaluate kidney function trajectories (N = 946) and Cox regression models to assess hazard of incident CKD (eGFR < 60 at two consecutive visits, N = 739) and proteinuria (urine protein:creatinine ratio > 200, N = 573) by level of mtDNA CN (Low [lowest quartile], vs high [other three quartiles]. Models were adjusted for demographic and behavioral characteristics, HIV and/or HCV infection, and comorbidity burden. Low mtDNA CN was independently associated with higher hazard of incident CKD (aHR: 2.33, 95% CI 1.42, 3.80) and proteinuria (aHR: 1.42, 95% CI 1.04, 1.96). Participants with low mtDNA CN had greater declines in eGFR and greater increases in serum creatinine over time. Low mtDNA CN is associated with more rapid kidney function decline and risk of incident CKD and proteinuria.


Subject(s)
Acquired Immunodeficiency Syndrome , Drug Users , Renal Insufficiency, Chronic , Substance Abuse, Intravenous , Humans , DNA, Mitochondrial/genetics , Prospective Studies , Creatinine , DNA Copy Number Variations , Substance Abuse, Intravenous/complications , Substance Abuse, Intravenous/epidemiology , Risk Factors , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics , Proteinuria/epidemiology , Proteinuria/genetics , Glomerular Filtration Rate
17.
Free Radic Biol Med ; 209(Pt 1): 40-54, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37793501

ABSTRACT

Podocyte injury is a hallmark of glomerular disease and one of the leading causes of chronic kidney disease (CKD). Peroxisome proliferator-activated receptor α (PPARα) plays a key role in podocyte fatty acid oxidation (FAO). However, the underlying regulatory mechanisms remain unresolved. Trim63 is an E3 ubiquitin ligase that has been shown to inhibit PPARα activity; however, its role in fatty acid metabolism in the kidney has not been elucidated to date. In this study, we investigated the effects of overexpression and knockdown of Trim63 in Adriamycin (ADR)-induced nephropathy and diabetic nephropathy models and a podocyte cell line. In both rodents and human patients with proteinuric CKD, Trim63 was upregulated, particularly in the podocytes of injured glomeruli. In the ADR-induced nephropathy model, ectopic Trim63 application aggravated FAO deficiency and mitochondrial dysfunction and triggered intense lipid deposition, podocyte injury, and proteinuria. Notably, Trim63 inhibition alleviated FAO deficiency and mitochondrial dysfunction, and markedly restored podocyte injury and renal fibrosis in ADR-induced and diabetic nephropathy (DN) models. Additionally, Trim63 was observed to mediate PPARα ubiquitination and degradation, leading to podocyte injury. We demonstrate the pathological role of Trim63, which was previously unrecognized in kidney tissue, in FAO deficiency and podocyte injury. Targeting Trim63 may represent a viable therapeutic strategy for podocyte injury and proteinuria.


Subject(s)
Diabetic Nephropathies , Podocytes , Renal Insufficiency, Chronic , Humans , PPAR alpha/genetics , PPAR alpha/metabolism , Diabetic Nephropathies/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Proteinuria/genetics , Proteinuria/metabolism , Proteinuria/pathology , Doxorubicin/pharmacology , Renal Insufficiency, Chronic/pathology , Fatty Acids/metabolism
18.
J Cardiovasc Pharmacol ; 82(6): 445-457, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37643020

ABSTRACT

ABSTRACT: The progression of chronic kidney disease results from the accumulation of extracellular matrix leading to end-stage renal disease. We previously demonstrated that a broad-spectrum matrix metalloproteinase (MMP) inhibitor reduced renal injury in rat models of hypertension and diabetes. However, the isoforms and mechanisms involved are unclear. This study examined the role of MMP2 during the development of proteinuria and renal injury after induction of hypertension or diabetes in Dahl salt-sensitive (SS) and MMP2 knockout (KO) rats. Mean arterial pressure rose from 115 ± 2 to 145 ± 2 mm Hg and 116 ± 1 to 152 ± 3 mm Hg in MMP2 KO and SS rats fed a high-salt (8% NaCl) diet for 3 weeks. The degree of proteinuria, glomerular injury, renal fibrosis, and podocyte loss was lower in MMP2 KO rats than in SS rats. Blood glucose and HbA1c levels, and mean arterial pressure rose to the same extent in streptozotocin-treated SS and MMP2 KO rats. However, the degree of proteinuria, glomerulosclerosis, renal fibrosis, renal hypertrophy, glomerular permeability to albumin, and the renal expression of MMP2 and TGFß1 were significantly reduced in MMP2 KO rats. Glomerular filtration rate fell by 33% after 12 weeks of diabetes in streptozotocin-treated SS rats compared with time-control rats, but glomerular filtration rate only fell by 12% in MMP2 KO rats. These results indicate that activation of MMP2 plays an essential role in the pathogenesis of hypertensive and diabetic nephropathy and suggests that an MMP2 inhibitor might slow the progression of chronic kidney disease.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Hypertension , Renal Insufficiency, Chronic , Rats , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Matrix Metalloproteinase 2/metabolism , Streptozocin/metabolism , Rats, Inbred Dahl , Hypertension/metabolism , Kidney , Proteinuria/genetics , Proteinuria/metabolism , Renal Insufficiency, Chronic/complications , Fibrosis , Blood Pressure , Sodium Chloride, Dietary , Diabetes Mellitus/metabolism
19.
Kidney Int ; 104(4): 754-768, 2023 10.
Article in English | MEDLINE | ID: mdl-37406929

ABSTRACT

Proteinuria is a prominent feature of chronic kidney disease. Interventions that reduce proteinuria slow the progression of chronic kidney disease and the associated risk of cardiovascular disease. Here, we propose a mechanistic coupling between proteinuria and proprotein convertase subtilisin/kexin type 9 (PCSK9), a regulator of cholesterol and a therapeutic target in cardiovascular disease. PCSK9 undergoes glomerular filtration and is captured by megalin, the receptor responsible for driving protein reabsorption in the proximal tubule. Accordingly, megalin-deficient mice and patients carrying megalin pathogenic variants (Donnai Barrow syndrome) were characterized by elevated urinary PCSK9 excretion. Interestingly, PCSK9 knockout mice displayed increased kidney megalin while PCSK9 overexpression resulted in its reduction. Furthermore, PCSK9 promoted trafficking of megalin to lysosomes in cultured proximal tubule cells, suggesting that PCSK9 is a negative regulator of megalin. This effect can be accelerated under disease conditions since either genetic destruction of the glomerular filtration barrier in podocin knockout mice or minimal change disease (a common cause of nephrotic syndrome) in patients resulted in enhanced tubular PCSK9 uptake and urinary PCSK9 excretion. Pharmacological PCSK9 inhibition increased kidney megalin while reducing urinary albumin excretion in nephrotic mice. Thus, glomerular damage increases filtration of PCSK9 and concomitantly megalin degradation, resulting in escalated proteinuria.


Subject(s)
Cardiovascular Diseases , Nephrotic Syndrome , Renal Insufficiency, Chronic , Humans , Mice , Animals , Nephrotic Syndrome/pathology , Proprotein Convertase 9/metabolism , Low Density Lipoprotein Receptor-Related Protein-2 , Cardiovascular Diseases/metabolism , Proteinuria/genetics , Kidney Tubules, Proximal/pathology , Renal Insufficiency, Chronic/pathology , Mice, Knockout , Subtilisins/metabolism
20.
Int J Mol Sci ; 24(13)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37445814

ABSTRACT

In systemic lupus erythematosus (SLE), the relevance of non-hematopoietic sources of type I interferon in human autoimmunity has recently been recognized. Particularly, type I interferon production precedes autoimmunity in early skin lesions related to SLE. However, the relevance of intrarenal type I interferon expression has not been shown in lupus nephritis. From transcriptome array datasets, median-centered log2 mRNA expression levels of IFNα (IFNA1, IFNA2, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNA10, IFNA13, IFNA14, IFNA16, IFNA17, and IFNA21), IFNω (IFNW1), and IFNß (IFNB1) in lupus nephritis were extracted specifically from microdissected tubulointerstitial (n = 32) and glomerular compartments (n = 32). We found an association between proteinuria and tubulointerstitial expression of type I interferon IFNA5 (p = 0.0142), while all others were not significantly associated. By contrast, no such correlation was observed between proteinuria and any type I interferon expression in the glomerular compartment in lupus nephritis. Interestingly, there was no difference between female and male patients (p = 0.8237) and no association between type I interferon IFNA5 expression and kidney function or lupus nephritis progression. Finally, we identified distinct molecular signatures involved in transcriptional regulation (GLI protein-regulated transcription, IRF7 activation, and HSF1-dependent transactivation) and receptor signaling (BMP signaling and GPCR ligand binding) in association with tubulointerstitial expression of type I interferon IFNA5 in the kidney. In summary, this transcriptome array-based approach links proteinuria to the tubulointerstitial expression of type I interferon IFNA5 in lupus nephritis. Because type I interferon receptor subunit I antagonism has recently been investigated in active SLE, the current study further emphasizes the role of type I interferons in lupus nephritis and might also be of relevance for mechanistic studies.


Subject(s)
Interferon Type I , Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Male , Female , Transcriptome , Ligands , Receptors, G-Protein-Coupled/genetics , Proteinuria/genetics , Interferon Type I/genetics , Interferon-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...