Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.825
Filter
1.
Med Oncol ; 41(6): 148, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733486

ABSTRACT

Numerous herbal products have been the subject of research regarding their potential role in cancer prevention or adjuvant therapy. Pistacia atlantica and its main phytochemicals have garnered significant attention for their potential anti-cancer effects. The study aimed to assess the growth inhibitory effects of P. atlantica essential oil (PAEO) on MKN-45 and AGS cells. This study quantified the volatile compounds in PAEO using Gas Chromatography-Mass Spectrometry (GC-MS). Subsequently, MKN-45 and AGS cells were treated with varying concentrations of PAEO (5%, 2.5%, 1.25%, 0.625%, 0.3125%, 0.156%, 0.0781%, 0.0391%, 0.0195%) for 24 h. Cell viability was evaluated through the MTT assay. The impact of PAEO on gene expression was investigated by quantifying the mRNA levels of Bax and Bcl2 in the various experimental groups using quantitative Real-Time PCR (qRT-PCR) analysis. Additionally, flow cytometry was utilized to evaluate apoptosis in the treated cells. The analysis of PAEO revealed that α-pinene was the predominant monoterpene, constituting 87.9% of the oil composition. The cytotoxic effects of PAEO were evaluated, and it was found that the oil significantly reduced the viability of MKN-45 and AGS cells. The IC50 for MKN-45 cells was determined to be 1.94 × 10-3% after 24 h of treatment, while for AGS cells the IC50 was 2.8 × 10-3% after 24 h. Additionally, the research revealed that PAEO triggered a notable rise in apoptotic cells in both AGS and MKN-45 cell lines. Moreover, at the molecular level, the findings indicated an increase in Bax expression and a decrease in Bcl2 mRNA expression, providing further evidence of the induction of apoptosis in both MKN-45 and AGS cell lines following PAEO treatment. The findings of this study offer evidence supporting the cytotoxic effects of PAEO on gastric cancer cell lines by promoting apoptosis. The findings suggest that PAEO may offer potential as a therapeutic candidate in managing and treating gastric cancer.


Subject(s)
Apoptosis , Cell Survival , Oils, Volatile , Pistacia , Stomach Neoplasms , Humans , Oils, Volatile/pharmacology , Pistacia/chemistry , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Gas Chromatography-Mass Spectrometry
2.
Mol Biol Rep ; 51(1): 603, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698270

ABSTRACT

BACKGROUND: Drug combination studies help to improve new treatment approaches for colon cancer. Tumor spheroids (3D) are better models than traditional 2-dimensional cultures (2D) to evaluate cellular responses to chemotherapy drugs. The cultivation of cancer cells in 2D and 3D cultures affects the apoptotic process, which is a major factor influencing the response of cancer cells to chemotherapeutic drugs. In this study, the antiproliferative effects of 5-fluorouracil (5-FU) and doxorubicin (DOX) were investigated separately and in combination using 2D and 3D cell culture models on two different colon cancer cell lines, HT-29 (apoptosis-resistant cells) and Caco-2 2 (apoptosis-susceptible cells). METHODS: The effect of the drugs on the proliferation of both colon cancer cells was determined by performing an MTT assay in 2D culture. The apoptotic effect of 5-FU and DOX, both as single agents and in combination, was assessed in 2D and 3D cultures through quantitative real-time polymerase chain reaction analysis. The expression of apoptotic genes, such as caspases, p53, Bax, and Bcl-2, was quantified. RESULTS: It was found that the mRNA expression of proapoptotic genes was significantly upregulated, whereas the mRNA expression of the antiapoptotic Bcl-2 gene was significantly downregulated in both colon cancer models treated with 5-FU, DOX, and 5-FU + DOX. CONCLUSION: The results indicated that the 5-FU + DOX combination therapy induces apoptosis and renders 5-FU and DOX more effective at lower concentrations compared to their alone use. This study reveals promising results in reducing the potential side effects of treatment by enabling the use of lower drug doses.


Subject(s)
Apoptosis , Cell Proliferation , Colorectal Neoplasms , Doxorubicin , Fluorouracil , Spheroids, Cellular , Humans , Fluorouracil/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Doxorubicin/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , HT29 Cells , Cell Proliferation/drug effects , Caco-2 Cells , Gene Expression Regulation, Neoplastic/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics
3.
J Cell Mol Med ; 28(9): e18329, 2024 May.
Article in English | MEDLINE | ID: mdl-38693863

ABSTRACT

Therapy failure with the tyrosine kinase inhibitor (TKI) sunitinib remains a great challenge in metastatic renal cell carcinoma (mRCC). Growing evidence indicates that the tumour subpopulation can enter a transient, non-mutagenic drug-tolerant state to endure the treatment underlying the minimal residual disease and tumour relapse. Drug tolerance to sunitinib remains largely unexplored in RCC. Here, we show that sunitinib-tolerant 786-O/S and Caki-2/S cells are induced by prolonged drug treatment showing reduced drug sensitivity, enhanced clonogenicity, and DNA synthesis. Sunitinib-tolerance developed via dynamic processes, including (i) engagement of c-MET and AXL pathways, (ii) alteration of stress-induced p38 kinase and pro-survival BCL-2 signalling, (iii) extensive actin remodelling, which was correlated with activation of focal adhesion proteins. Remarkably, the acute drug response in both sensitive and sunitinib-tolerant cell lines led to dramatic fine-tuning of the actin-cytoskeleton and boosted cellular migration and invasion, indicating that the drug-response might depend on cell state transition rather than pre-existing mutations. The drug-tolerant state was transiently acquired, as the cells resumed initial drug sensitivity after >10 passages under drug withdrawal, reinforcing the concept of dynamic regulation and phenotypic heterogeneity. Our study described molecular events contributing to the reversible switch into sunitinib-tolerance, providing possible novel therapeutic opportunities in RCC.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Drug Resistance, Neoplasm , Kidney Neoplasms , Sunitinib , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Sunitinib/pharmacology , Sunitinib/therapeutic use , Cell Line, Tumor , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Cell Movement/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/genetics , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Axl Receptor Tyrosine Kinase , Pyrroles/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Cell Proliferation/drug effects , Indoles/pharmacology
4.
Parasite Immunol ; 46(5): e13035, 2024 May.
Article in English | MEDLINE | ID: mdl-38712475

ABSTRACT

Trichinella spiralis (T. spiralis) is an immunomodulating parasite that can adversely affect tumor growth and extend host lifespan. The aim of this study was to elucidate the mechanisms by which T. spiralis larval antigens achieve this effect using Ehrlich solid carcinoma (ESC) murine model. Assessment was done by histopathological and immunohistochemical analysis of caspase-3, TNF-α, Ki-67 and CD31. Additionally, Bcl2 and Bcl2-associated protein X (Bax) relative gene expression was assessed by molecular analysis for studying the effect of T. spiralis crude larval extract (CLE) antigen on tumor necrosis, apoptosis, cell proliferation and angiogenesis. We found that both T. spiralis infection and CLE caused a decrease in the areas of necrosis in ESC. Moreover, they led to increased apoptosis through activation of caspase-3, up-regulation of pro-apoptotic gene, Bax and down-regulation of anti-apoptotic gene, Bcl2. Also, T. spiralis infection and CLE diminished ESC proliferation, as evidenced by decreasing Ki-67. T. spiralis infection and CLE were able to suppress the development of ESC by inhibiting tumor proliferation, inducing apoptosis and decreasing tumor necrosis, with subsequent decrease in tumor metastasis. T. spiralis CLE antigen may be considered as a promising complementary immunotherapeutic agent in the treatment of cancer.


Subject(s)
Carcinoma, Ehrlich Tumor , Larva , Trichinella spiralis , Animals , Trichinella spiralis/drug effects , Mice , Larva/drug effects , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Carcinoma, Ehrlich Tumor/immunology , Apoptosis/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Antigens, Helminth/immunology , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Ki-67 Antigen/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Tumor Necrosis Factor-alpha/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Immunohistochemistry
5.
Cell Death Dis ; 15(5): 323, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724507

ABSTRACT

Richter's syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into a high-grade B-cell malignancy. Molecular and functional studies have pointed out that CLL cells are close to the apoptotic threshold and dependent on BCL-2 for survival. However, it remains undefined how evasion from apoptosis evolves during disease transformation. Here, we employed functional and static approaches to compare the regulation of mitochondrial apoptosis in CLL and RS. BH3 profiling of 17 CLL and 9 RS samples demonstrated that RS cells had reduced apoptotic priming and lower BCL-2 dependence than CLL cells. While a subset of RS was dependent on alternative anti-apoptotic proteins and was sensitive to specific BH3 mimetics, other RS cases harbored no specific anti-apoptotic addiction. Transcriptomics of paired CLL/RS samples revealed downregulation of pro-apoptotic sensitizers during disease transformation. Albeit expressed, effector and activator members were less likely to colocalize with mitochondria in RS compared to CLL. Electron microscopy highlighted reduced cristae width in RS mitochondria, a condition further promoting apoptosis resistance. Collectively, our data suggest that RS cells evolve multiple mechanisms that lower the apoptotic priming and shift the anti-apoptotic dependencies away from BCL-2, making direct targeting of mitochondrial apoptosis more challenging after disease transformation.


Subject(s)
Apoptosis , Leukemia, Lymphocytic, Chronic, B-Cell , Mitochondria , Proto-Oncogene Proteins c-bcl-2 , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Mitochondria/metabolism , Male , Female , Middle Aged
6.
Zhongguo Zhong Yao Za Zhi ; 49(3): 744-753, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621878

ABSTRACT

This study observed the protective effect of resveratrol(Res) on ovarian function in poor ovarian response(POR) mice by regulating the Hippo signaling pathway and explored the potential mechanism of Res in inhibiting ovarian cell apoptosis. Female mice with regular estrous cycles were randomly divided into a blank group, a model group, and low-and high-dose Res groups(20 and 40 mg·kg~(-1)), with 20 mice in each group. The blank group received an equal volume of 0.9% saline solution by gavage, while the model group and Res groups received suspension of glycosides of Triptergium wilfordii(GTW) at 50 mg·kg~(-1) by gavage for two weeks to induce the model. After modeling, the low-and high-dose Res groups were continuously treated with drugs by gavage for two weeks, while the blank group and the model group received an equal volume of 0.9% saline solution by gavage. Ovulation was induced in all groups on the day following the end of treatment. Finally, 12 female mice were randomly selected from each group, and the remaining eight female mice were co-housed with male mice at a ratio of 1∶1. Changes in the estrous cycle of mice were observed using vaginal cytology smears. The number of ovulated eggs, ovarian wet weight, ovarian index, and pregnancy rate of mice were measured. The le-vels of anti-Mullerian hormone(AMH), follicle-stimulating hormone(FSH), estradiol(E_2), and luteinizing hormone(LH) in serum were determined using enzyme-linked immunosorbent assay(ELISA). Ovarian tissue morphology and ovarian cell apoptosis were observed using hematoxylin-eosin(HE) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining, respectively. The protein expression levels of yes-associated protein(YAP) 1 and transcriptional coactivator with PDZ-binding motif(TAZ) were detected by immunohistochemistry(IHC), while the changes in protein expression levels of mammalian sterile 20-like kinase(MST) 1/2, large tumor suppressor(LATS) 1/2, YAP1, TAZ, B-cell lymphoma-2(Bcl-2), and Bcl-2 associated X protein(Bax) were determined by Western blot. The results showed that compared with the blank group, the model group had an increased rate of estrous cycle disruption in mice, a decreased number of normally developing ovarian follicles, an increased number of blocked ovarian follicles, increased ovarian granulosa cell apoptosis, decreased ovulation, reduced ovarian wet weight and ovarian index, increased serum FSH and LH levels, decreased AMH and E_2 levels, decreased protein expression levels of YAP1 and TAZ in ovarian tissues, increased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and decreased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Additionally, the number of embryos per litter significantly decreased after co-housing. Compared with the model group, the low-and high-dose Res groups exhibited reduced estrous cycle disruption rates in mice, varying degrees of improvement in the number and morphology of ovarian follicles, reduced numbers of blocked ovarian follicles, improved ovarian granulosa cell apoptosis, increased ovulation, elevated ovarian wet weight and ovarian index, decreased serum FSH and LH levels, increased AMH and E_2 levels, elevated protein expression levels of YAP1 and TAZ in ovarian tissues, decreased relative expression levels of MST1/2, LATS1/2, and Bax proteins, and increased relative expression levels of YAP1, TAZ, and Bcl-2 proteins. Furthermore, the number of embryos per litter increased to varying degrees after co-housing. In conclusion, Res effectively inhibits ovarian cell apoptosis in mice and improves ovarian responsiveness. Its mechanism may be related to the regulation of key molecules in the Hippo pathway.


Subject(s)
Hippo Signaling Pathway , Ovary , Pregnancy , Mice , Female , Male , Animals , bcl-2-Associated X Protein/metabolism , Resveratrol/pharmacology , Saline Solution/metabolism , Saline Solution/pharmacology , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Mammals/metabolism
7.
Cells ; 13(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38667315

ABSTRACT

Cervical cancer is a major cause of death in women despite the advancement of current treatment modalities. The conventional therapeutic agent, cisplatin (CCDP), is the standard treatment for CC; however, resistance often develops due to the cancer's heterogeneity. Therefore, a detailed elucidation of the specific molecular mechanisms driving CC is crucial for the development of targeted therapeutic strategies. Retinoblastoma binding protein 6 (RBBP6) is a potential biomarker associated with cell proliferation and is upregulated in cervical cancer sites, exhibiting apoptosis and dysregulated p53 expression. Furthermore, RBBP6 has been demonstrated to sensitize cancer cells to radiation and certain chemotherapeutic agents by regulating the Bcl-2 gene, thus suggesting a crosstalk among RBBP6/p53/BCL-2 oncogenic signatures. The present study, therefore, investigated the relationship between cisplatin and RBBP6 expression in CC cells. Herein, we first explored bioinformatics simulations and identified that the RBBP6/p53/BCL-2 signaling pathway is overexpressed and correlated with CC. For further analysis, we explored the Genomics of Drug Sensitivity in Cancer (GDSC) and found that most of the CC cell lines are sensitive to CCDP. To validate these findings, RBBP6 was silenced in HeLa and Vero cells using RNAi technology, followed by measurement of wild-type p53 and Bcl-2 at the mRNA level using qPCR. Cells co-treated with cisplatin and siRBBP6 were subsequently analyzed for apoptosis induction and real-time growth monitoring using flow cytometry and the xCELLigence system, respectively. Cancer cells in the co-treatment group showed a reduction in apoptosis compared to the cisplatin-treated group. Moreover, the real-time growth monitoring revealed a reduced growth rate in RBBP6 knockdown cells treated with cisplatin. Although wild-type p53 remained unchanged in the co-treatment group of cancer cells, Bcl-2 was completely repressed, suggesting that RBBP6 is necessary for sensitizing cervical cancer cells to cisplatin treatment by downregulating Bcl-2. The Vero cell population, which served as a non-cancerous control cell line in this study, remained viable following treatment with both siRBBP6 and cisplatin. Findings from this study suggest that RBBP6 expression promotes cisplatin sensitivity in HeLa cells through Bcl-2 downregulation. Knockdown of RBBP6 limits apoptosis induction and delays cell growth inhibition in response to cisplatin. The knowledge obtained here has the potential to help improve cisplatin efficacy through personalized administration based on the expression profile of RBBP6 among individual patients.


Subject(s)
Cisplatin , DNA-Binding Proteins , Ubiquitin-Protein Ligases , Uterine Cervical Neoplasms , Humans , Cisplatin/pharmacology , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/drug therapy , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Gene Expression Regulation, Neoplastic/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Apoptosis/drug effects , Apoptosis/genetics , Gene Knockdown Techniques , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects , HeLa Cells
8.
Cancer Cell ; 42(5): 850-868.e9, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38670091

ABSTRACT

TP53-mutant blood cancers remain a clinical challenge. BH3-mimetic drugs inhibit BCL-2 pro-survival proteins, inducing cancer cell apoptosis. Despite acting downstream of p53, functional p53 is required for maximal cancer cell killing by BH3-mimetics through an unknown mechanism. Here, we report p53 is activated following BH3-mimetic induced mitochondrial outer membrane permeabilization, leading to BH3-only protein induction and thereby potentiating the pro-apoptotic signal. TP53-deficient lymphomas lack this feedforward loop, providing opportunities for survival and disease relapse after BH3-mimetic treatment. The therapeutic barrier imposed by defects in TP53 can be overcome by direct activation of the cGAS/STING pathway, which promotes apoptosis of blood cancer cells through p53-independent BH3-only protein upregulation. Combining clinically relevant STING agonists with BH3-mimetic drugs efficiently kills TRP53/TP53-mutant mouse B lymphoma, human NK/T lymphoma, and acute myeloid leukemia cells. This represents a promising therapy regime that can be fast-tracked to tackle TP53-mutant blood cancers in the clinic.


Subject(s)
Apoptosis , Membrane Proteins , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/genetics , Humans , Animals , Mice , Membrane Proteins/genetics , Apoptosis/drug effects , Cell Line, Tumor , Mutation , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Peptide Fragments/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction/drug effects , Proto-Oncogene Proteins/genetics
9.
Mol Biol Rep ; 51(1): 513, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622345

ABSTRACT

BACKGROUND: In recent years, anti-angiogenic peptides have received considerable attention as candidates for cancer treatment. Arresten is an angiogenesis inhibitor that cleaves from the α1 chain of type IV collagen and stimulates apoptosis in endothelial cells. We have recently indicated that a peptide corresponding to the amino acid 78 to 86 of arresten, so-called Ars, prevented the migration and tube formation of HUVECs and the colon carcinoma growth in mice significantly. The current study aimed to determine whether induction of apoptotic cell death in endothelial cells is one of the biochemical mechanisms of this anti-angiogenic peptide. METHODS AND RESULTS: This hypothesis was assessed using the MTT assay, cell cycle analysis, Annexin V-FITC/PI staining, BCL2, CASP8, CASP9, p53, and CDKN2A gene expression studies as well as evaluating apoptosis in tumor tissues by TUNEL assay. Results demonstrated that 40 µM of Ars significantly stimulated 46.2% of early and late apoptosis in HUVECs compared to 13.6% in the untreated cells and did not significantly alter the cell cycle distribution. Moreover, BCL2 and CASP8 were down-regulated, while CASP9 and p53 were up-regulated in endothelial cells. CDKN2A gene expression, the regulator of G1 cell cycle arrest, was not significantly altered. CONCLUSIONS: It might be suggested that Ars induced apoptosis in endothelial cells through the mitochondrial pathway and had no effect on the cell cycle. Besides, Ars induced apoptosis significantly in vivo. However, further studies are required to confirm the detailed molecular mechanism of Ars, this peptide has the potential to be optimized for clinical translations.


Subject(s)
Endothelial Cells , Tumor Suppressor Protein p53 , Mice , Animals , Endothelial Cells/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Apoptosis , Peptides/pharmacology , Peptides/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Proliferation , Cell Line, Tumor
10.
Bratisl Lek Listy ; 125(5): 311-317, 2024.
Article in English | MEDLINE | ID: mdl-38624056

ABSTRACT

OBJECTIVES: In this study, we analyzed pTa bladder cancer (BC) for molecular markers BCL2, TP53, FOXA1, and GATA3 in relation to cancer recurrence. METHODS: We analyzed samples of 79 patients with the pTa stage of BC using a real-time polymerase chain reaction (real-time PCR) between September 2018 and September 2020. The expression levels of BCL2, TP53, FOXA1, and GATA3 were compared with homologous non-tumor bladder tissue. RESULTS: Expression of FOXA1, GATA3, and TP53 was significantly higher (p<0.01) in NMIBC samples compared to homologous non-tumor tissue. The expression of TP53 and FOXA1 in pTa was significantly lower (p<0.01) in the high-grade (HG) tumor when compared to the low-grade (LG) tumor. In contrast, the relative quantification (RQ) of GATA3 was significantly higher (p<0.01) in HG pTa. Patients with recurrence (pTa=33) had significantly higher expression of TP53, and GATA3 (p<0.01), and the gene of FOXA1 (p<0.01) had a significantly lower expression when compared to pTa tumors without recurrence. The expression of Bcl-2 was not statistically significant. CONCLUSION: Our results, indicate, that comparing expression levels of these genes in cancer and cancer-free tissue could provide valuable data, as patients with pTa BC recurrence within up to 54 months of follow-up had a significantly higher RQ of TP53, GATA3, and FOXA1 when compared to pTa BC patients without recurrence (Tab. 2, Fig. 8, Ref. 54). Text in PDF www.elis.sk Keywords: bladder cancer, gene expression, recurrence, GATA3, FOXA1, TP53, BCL2.


Subject(s)
Urinary Bladder Neoplasms , Urinary Bladder , Humans , Urinary Bladder/chemistry , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Biomarkers, Tumor/analysis , Tumor Suppressor Protein p53/genetics , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism
11.
Front Biosci (Landmark Ed) ; 29(4): 162, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38682177

ABSTRACT

BACKGROUND AND OBJECTIVE: There is a growing need to comprehend the potential outcomes of nanoparticles (NPs) on human well-being, including their potential for detecting and treating leukemia. This study examined the role of iron folate core-shell and iron oxide nanoparticles in inducing apoptosis and altering the expression of the B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X-protein (Bax), and Caspase-3 genes in leukemia cells. METHODS: The obtained iron oxide and iron folate core-shell nanoparticles were analyzed using a variety of analytical techniques, including ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, and transmission electron microscopy (TEM). Additionally, FTIR and UV-Vis were used to characterize doxorubicin. The MTT test was utilized to investigate the cytotoxicity of iron oxide and iron folate core-shell nanoparticles. The expression of the apoptotic signaling proteins Bcl-2, Bax, and Caspase-3 was evaluated using the real-time reverse transcription polymerase chain reaction (RT-qPCR) method. Additionally, flow cytometry was performed to gauge the degrees of necrosis and apoptosis. RESULTS: UV-Visible spectroscopy analysis showed that the generated iron oxide and iron folate core-shell NPs had a distinctive absorption curve in the 250-300 nm wavelength range. The XRD peaks were also discovered to index the spherical form with a size of less than 50 nm, which validated the crystal structure. The FTIR analysis determined the bonds and functional groups at wavenumbers between 400 and 4000 cm-1. A viable leukemia treatment approach is a nanocomposite consisting of iron and an iron folate core-shell necessary for inhibiting and activating cancer cell death. The nearly resistant apoptosis in the CCRF-CEM cells may have resulted from upregulating Bax and Casepase-3 while downregulating Bcl-2 expression. CONCLUSIONS: Our study documents the successful synthetization and characterization of iron oxide, which has excellent anticancer activities. A metal oxide conjugation with the nanoparticles' core-shell enhanced the effect against acute leukemia.


Subject(s)
Apoptosis , Folic Acid , Humans , Folic Acid/chemistry , Folic Acid/pharmacology , Apoptosis/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Caspase 3/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry , Leukemia/drug therapy , Leukemia/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/chemistry , Ferric Compounds/chemistry
12.
Sci Rep ; 14(1): 9636, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671055

ABSTRACT

In consideration of the chromones' therapeutic potential and anticancer activity, a new series of chromanone derivatives have been synthesized through a straightforward reaction between 6-formyl-7-hydroxy-5-methoxy-2-methylchromone (2) and various organic active compounds. The cytotoxic activity of the newly synthesized congeners was investigated against MCF-7 (human breast cancer), HCT-116 (colon cancer), HepG2 (liver cancer), and normal skin fibroblast cells (BJ1). The obtained data indicated that compounds 14b, 17, and 19 induce cytotoxic activity in the breast MCF7, while compounds 6a, 6b, 11 and 14c showed highly potent activity in the colon cancer cell lines. Overall, the results demonstrate that the potential cytotoxic effects of the studied compounds may be based on their ability to induce DNA fragmentation in cancer cell lines, down-regulate the expression level of CDK4 as well as the anti-apoptotic gene Bcl-2 and up-regulate the expression of the pro-apoptotic genes P53 and Bax. Furthermore, compounds 14b and 14c showed a dual mechanism of action by inducing apoptosis and cell cycle arrest. The docking studies showed that the binding affinity of the most active cytotoxic compounds within the active pocket of the CDK4 enzyme is stronger due to hydrophobic and H-bonding interactions. These results were found to be consistent with the experimental results.


Subject(s)
Antineoplastic Agents , Apoptosis , Chromones , Molecular Docking Simulation , Humans , Chromones/chemistry , Chromones/pharmacology , Chromones/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , MCF-7 Cells , Cell Line, Tumor , HCT116 Cells , Hep G2 Cells , Cyclin-Dependent Kinase 4/metabolism , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Drug Screening Assays, Antitumor
13.
Oncol Rep ; 51(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38456489

ABSTRACT

α­Phellandrene (α­PA), a natural constituent of herbs, inhibits cancer cell viability and proliferation. 5­Fluorouracil (5­FU) is a frequently utilized chemotherapeutic medicine for the treatment of colon cancer, which works by triggering cancer cell apoptosis. The present study examined how the combination of α­PA and 5­FU affects the suppression of human colon cancer cells by promoting apoptosis. The impact of this treatment on cell viability, apoptosis, and the expression levels of Bcl­2 family members, caspase family members and mitochondria­related molecules in HT­29 cells was assessed by the MTT assay, immunocytochemistry, western blotting and quantitative PCR. The combination of 5­FU and α­PA had a synergistic inhibitory effect on cell viability, as determined by assessing the combination index value. Bax protein expression levels were higher in the 50, 100 or 250 µM α­PA combined with 5­FU groups compared with those in the 5­FU alone group (P<0.05). By contrast, Bcl­2 protein expression levels and mitochondrial membrane potential (MMP, ΔΨm) were lower in the 100 or 250 µM α­PA combined with 5­FU groups than those in the 5­FU alone group (P<0.05). In addition, hexokinase­2 (HK­2) protein expression levels were lower in the 50, 100 or 250 µM α­PA combined with 5­FU groups than those in the 5­FU alone group (P<0.05). Compared with 5­FU alone, after HT­29 cells were treated with 50, 100 or 250 µM α­PA combined with 5­FU, the mRNA expression levels of extrinsic­induced apoptotic molecules, including caspase­8 and Bid, were higher (P<0.05). Treatment with 50, 100 or 250 µM α­PA combined with 5­FU also increased the mRNA expression levels of cytochrome c, caspase­9 and caspase­3, regulating intrinsic apoptosis (P<0.05). These results showed that α­PA and 5­FU had a synergistic effect on reducing the viability of human colon cancer HT­29 cells by inducing extrinsic and intrinsic apoptosis pathways. The mechanism by which apoptosis is induced may involve the intrinsic apoptosis pathway that activates the mitochondria­dependent pathway, including regulating the expression levels of Bcl­2 family members, including Bax, Bcl­2 and Bid, regulating MMP and HK­2 expression levels, and increasing the expression of caspase cascade molecules, including caspase­9 and caspase­3. In addition, it may involve the extrinsic apoptosis pathway that activates caspase­8 and caspase­3 leading to apoptosis.


Subject(s)
Colonic Neoplasms , Cyclohexane Monoterpenes , Fluorouracil , Humans , Fluorouracil/pharmacology , Caspase 3 , Caspase 9 , Caspase 8 , HT29 Cells , Apoptosis , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Caspases , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Messenger
14.
Chem Biol Drug Des ; 103(3): e14492, 2024 03.
Article in English | MEDLINE | ID: mdl-38485457

ABSTRACT

Recent evidence has proved that thymoquinone as a natural polyphenol has great anticancer and anti-proliferative effects in cancer cells. In this study, we aimed to examine the effects of thymoquinone on increasing cisplatin-induced apoptosis human oral squamous cell carcinoma cells and its underlying molecular mechanisms. SCC-25 cancer cells treated by thymoquinone and cisplatin with different concentrations. Cell viability will determine by using MTT assay. The concentrations of reactive oxygen species (ROS) and antioxidant activities were determined using specific related kits. DNA damage, lipid, and protein oxidation were assessed. Real-time PCR and Western blot analysis will be used to determine the expression of apoptosis-related proteins including Bax, Bcl-2, and caspase-3. Combination of thymoquinone and cisplatin suppressed synergistically SCC-25 cancer cell viability and induced apoptosis in dose-depended manner. Cell treatment with combination of thymoquinone and cisplatin led to accumulation of ROS within cells and increase in the intracellular levels of DNA damage, protein and lipid peroxidation. In addition, the combination of thymoquinone and cisplatin modulated the mRNA and protein expression levels of apoptosis-related proteins including Bax, Bcl-2, and caspase-3. Thymoquinone potentiated cisplatin anti-cancer effect on OSCC by inducing oxidative stress in cells.


Subject(s)
Benzoquinones , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , Caspase 3/genetics , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Mouth Neoplasms/drug therapy , Apoptosis , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis Regulatory Proteins/metabolism , Oxidative Stress , Cell Line, Tumor
15.
Stem Cell Res ; 76: 103377, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460306

ABSTRACT

Bcl-2-associated X protein (BAX) and Blc-2 homologous antagonist killer 1 (BAK) are two pro-apoptotic members of BCL2 family. Here, two BAX/BAK double knock-out human induced pluripotent stem cell lines (iPSC) we generated using CRISPR-Cas9 to generate apoptosis incompetent cell lines. The resulting cell lines were karyotypically normal, had typical morphology and expressed typical markers for the undifferentiated state.


Subject(s)
Induced Pluripotent Stem Cells , Proto-Oncogene Proteins c-bcl-2 , Humans , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Induced Pluripotent Stem Cells/metabolism , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism , CRISPR-Cas Systems/genetics , Apoptosis/genetics
16.
Clin Epigenetics ; 16(1): 48, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38528641

ABSTRACT

BACKGROUND: miR-182 promoter hypermethylation frequently occurs in various tumors, including acute myeloid leukemia, and leads to low expression of miR-182. However, whether adult acute lymphocyte leukemia (ALL) cells have high miR-182 promoter methylation has not been determined. METHODS: To assess the methylation status of the miR-182 promoter, methylation and unmethylation-specific PCR analysis, bisulfite-sequencing analysis, and MethylTarget™ assays were performed to measure the frequency of methylation at the miR-182 promoter. Bone marrow cells were isolated from miR-182 knockout (182KO) and 182 wild type (182WT) mice to construct BCR-ABL (P190) and Notch-induced murine B-ALL and T-ALL models, respectively. Primary ALL samples were performed to investigate synergistic effects of the hypomethylation agents (HMAs) and the BCL2 inhibitor venetoclax (Ven) in vitro. RESULTS: miR-182 (miR-182-5P) expression was substantially lower in ALL blasts than in normal controls (NCs) because of DNA hypermethylation at the miR-182 promoter in ALL blasts but not in normal controls (NCs). Knockout of miR-182 (182KO) markedly accelerated ALL development, facilitated the infiltration, and shortened the OS in a BCR-ABL (P190)-induced murine B-ALL model. Furthermore, the 182KO ALL cell population was enriched with more leukemia-initiating cells (CD43+B220+ cells, LICs) and presented higher leukemogenic activity than the 182WT ALL population. Furthermore, depletion of miR-182 reduced the OS in a Notch-induced murine T-ALL model, suggesting that miR-182 knockout accelerates ALL development. Mechanistically, overexpression of miR-182 inhibited proliferation and induced apoptosis by directly targeting PBX3 and BCL2, two well-known oncogenes, that are key targets of miR-182. Most importantly, DAC in combination with Ven had synergistic effects on ALL cells with miR-182 promoter hypermethylation, but not on ALL cells with miR-182 promoter hypomethylation. CONCLUSIONS: Collectively, we identified miR-182 as a tumor suppressor gene in ALL cells and low expression of miR-182 because of hypermethylation facilitates the malignant phenotype of ALL cells. DAC + Ven cotreatment might has been applied in the clinical try for ALL patients with miR-182 promoter hypermethylation. Furthermore, the methylation frequency at the miR-182 promoter should be a potential biomarker for DAC + Ven treatment in ALL patients.


Subject(s)
Antineoplastic Agents , MicroRNAs , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Adult , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , DNA Methylation/genetics , Lymphocytes/metabolism , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/therapeutic use , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
17.
Funct Integr Genomics ; 24(2): 61, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507114

ABSTRACT

This research provides a glimmer of hope that the knockout of HCP5 leads to a therapy response to considerably prolong the life of patients with OC. RT-PCR evaluated the expression of lncRNA HCP5 in the ovarian cancer OVCAR-3 cell line. CRISPR knockout cell lines validated by western blot. Small genomic deletions at the targeted locus were induced. CCK-8 colony formation assays were used to analyze the effect of HCP5 knockout on the proliferation capacity of OVCAR-3 cells. Transwell migration and invasion assayed. Furthermore, the Sphere-formation assay isolated the most aggressive population of cancer stem cells. Bioinformatic analysis showed a significant correlation between lncRNA HCP5 up-regulation and OVCAR-3 cell proliferation. The ChIP technique assesses specific sites of interaction between transcription factors and DNA. Real-time PCR assays explored the relationship between HCP5, Hsa-miR-9-5p, CXCR4, CDH1, caspase-3, p53, bcl2 and survivin. PCR carried out amplification of the 448-bp band for sgRNA1 and sgRNA2 after the use of particular primers for HCP5. the number of breast cancer cells that moved to the bottom chamber reduced considerably after transfection with PX461-sgRNA1/2 vectors compared to the Blank control groups (P < 0.05). MTT assay designated growth curves that showed the rate of OVCAR-3 growth was significantly repressed (***P < 0.001) when compared with control OVCAR-3 cells after HCP5 knockdown. Also, the survival results of W.T cells in 24, 48 and 72 h showed 92%, 87% and 85%, respectively. This is while the cells of the CRISPR/Cas9 group in which LncRNA HCP5 was knocked out had 42% (*P < 0.05), 23%(**P < 0.01) and 14% (**P < 0.01) survival, respectively. The expression levels of caspase-3, Hsa-miR-9-5p, P53 genes in the HCP5 deletion of CRISPR/Cas9 group significantly increased than the W.T. control group; the deletion group showed a considerable reduction in HCP5 expression compared to the blank control group (3.6-fold, p < 0.01). Whereas BCL2, SURVIVIN, CXCR4, CDH1 genes expression markedly increased than in HCP5 knockout cells (5.8-fold, p < 0.05). These results indicate that CRISPR/Cas9-mediated HCP5 disruption on OVCAR-3 cell lines promotes anti-tumor biomarkers, suppressing ovarian cancer progression. Consistent with these results, HCP5 is one of the most critical lnc for the efficient proliferation and migration of OVCAR-3 cell lines.


Subject(s)
MicroRNAs , Ovarian Neoplasms , RNA, Long Noncoding , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Survivin/genetics , Survivin/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Apoptosis/genetics , Cell Line, Tumor , Up-Regulation , MicroRNAs/genetics , Cell Proliferation/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Gene Expression Regulation, Neoplastic
19.
Methods Mol Biol ; 2761: 301-316, 2024.
Article in English | MEDLINE | ID: mdl-38427246

ABSTRACT

The involvement of apoptosis in neurodegeneration can be detected by quantifying the apoptotic proteins in hippocampal lysate. Apoptosis can occur due to the overproduction of apoptotic proteins under the influence of external trigger or due to the overexpression of the apoptotic genes. Thus, the imbalance in the production of apoptotic proteins can be quantified using the Western blotting technique and the overexpression of apoptotic genes in hippocampal DNA can be quantified using the real-time quantification of mRNA expression of the apoptotic proteins. Here we provide the methodology of detecting the apoptosis-related proteins like Bax and Bcl-2 and their mRNA expression in hippocampal neurodegeneration. In this chapter, we have described the methodology for quantification of mRNA expression of these apoptosis-related proteins in the hippocampal lysate using the real-time quantitative polymerase chain reaction (qPCR) technique and the methodology of detection and characterization of respective protein expression in the hippocampal lysate using the Western blotting technique.


Subject(s)
Apoptosis Regulatory Proteins , Proto-Oncogene Proteins c-bcl-2 , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis/genetics , Hippocampus/metabolism , RNA, Messenger/metabolism
20.
J Exp Clin Cancer Res ; 43(1): 79, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38475919

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) with biallelic (CEBPAbi) as well as single mutations located in the bZIP region is associated with a favorable prognosis, but the underlying mechanisms are still unclear. Here, we propose that two isoforms of C/EBPα regulate DNA damage-inducible transcript 3 (DDIT3) transcription in AML cells corporately, leading to altered susceptibility to endoplasmic reticulum (ER) stress and related drugs. METHODS: Human AML cell lines and murine myeloid precursor cell line 32Dcl3 cells were infected with recombinant lentiviruses to knock down CEBPA expression or over-express the two isoforms of C/EBPα. Quantitative real-time PCR and western immunoblotting were employed to determine gene expression levels. Cell apoptosis rates were assessed by flow cytometry. CFU assays were utilized to evaluate the differentiation potential of 32Dcl3 cells. Luciferase reporter analysis, ChIP-seq and ChIP-qPCR were used to validate the transcriptional regulatory ability and affinity of each C/EBPα isoform to specific sites at DDIT3 promoter. Finally, an AML xenograft model was generated to evaluate the in vivo therapeutic effect of agents. RESULTS: We found a negative correlation between CEBPA expression and DDIT3 levels in AML cells. After knockdown of CEBPA, DDIT3 expression was upregulated, resulting in increased apoptotic rate of AML cells induced by ER stress. Cebpa knockdown in mouse 32Dcl3 cells also led to impaired cell viability due to upregulation of Ddit3, thereby preventing leukemogenesis since their differentiation was blocked. Then we discovered that the two isoforms of C/EBPα regulate DDIT3 transcription in the opposite way. C/EBPα-p30 upregulated DDIT3 transcription when C/EBPα-p42 downregulated it instead. Both isoforms directly bound to the promoter region of DDIT3. However, C/EBPα-p30 has a unique binding site with stronger affinity than C/EBPα-p42. These findings indicated that balance of two isoforms of C/EBPα maintains protein homeostasis and surveil leukemia, and at least partially explained why AML cells with disrupted C/EBPα-p42 and/or overexpressed C/EBPα-p30 exhibit better response to chemotherapy stress. Additionally, we found that a low C/EBPα p42/p30 ratio induces resistance in AML cells to the BCL2 inhibitor venetoclax since BCL2 is a major target of DDIT3. This resistance can be overcome by combining ER stress inducers, such as tunicamycin and sorafenib in vitro and in vivo. CONCLUSION: Our results indicate that AML patients with a low C/EBPα p42/p30 ratio (e.g., CEBPAbi) may not benefit from monotherapy with BCL2 inhibitors. However, this issue can be resolved by combining ER stress inducers.


Subject(s)
Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , Sulfonamides , Animals , Humans , Mice , Antineoplastic Agents/therapeutic use , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/therapeutic use , Leukemia, Myeloid, Acute/metabolism , Protein Isoforms , Proto-Oncogene Proteins c-bcl-2/genetics , Transcription Factor CHOP/genetics , Unfolded Protein Response
SELECTION OF CITATIONS
SEARCH DETAIL
...