Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 695
Filter
1.
Sci Rep ; 14(1): 10507, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714727

ABSTRACT

Glioma, particularly glioblastomas (GBM), is incurable brain tumor. The most targeted receptor tyrosine kinase (RTKs) drugs did not bring benefit to GBM patients. The mechanism of glioma growth continues to be explored to find more effective treatment. Here, we reported that Ser/Thr protein kinase YANK2 (yet another kinase 2) is upregulated in glioma tissues and promotes the growth and proliferation of glioma in vitro and in vivo. Further, we confirmed that oncogene Fyn directly activated YANK2 through phosphorylation its Y110, and Fyn-mediated YANK2 phosphorylation at Y110 site promotes glioma growth by increasing its stability. Finally, YANK2 was proved to be a novel upstream kinase of p70S6K and promotes glioma growth by directly phosphorylating p70S6K at T389. Taken together, we found a new mTOR-independent p70S6K activation pathway, Fyn-YANK2-p70S6K, which promotes glioma growth, and YANK2 is a potential oncogene and serves as a novel therapeutic target for glioma.


Subject(s)
Cell Proliferation , Glioma , Proto-Oncogene Proteins c-fyn , Ribosomal Protein S6 Kinases, 70-kDa , Signal Transduction , TOR Serine-Threonine Kinases , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Humans , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins c-fyn/genetics , TOR Serine-Threonine Kinases/metabolism , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Animals , Cell Line, Tumor , Phosphorylation , Carcinogenesis/genetics , Carcinogenesis/metabolism , Mice , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Mice, Nude , Gene Expression Regulation, Neoplastic
2.
Adv Sci (Weinh) ; 11(19): e2308378, 2024 May.
Article in English | MEDLINE | ID: mdl-38483947

ABSTRACT

Nuclear receptors (NRs) are important transcriptional factors that mediate autophagy, preventing podocyte injury and the progression of diabetic kidney disease (DKD). However, the role of nuclear receptor coactivators that are powerful enhancers for the transcriptional activity of NRs in DKD remains unclear. In this study, a significant decrease in Nuclear Receptor Coactivator 3 (NCOA3) is observed in injured podocytes caused by high glucose treatment. Additionally, NCOA3 overexpression counteracts podocyte damage by improving autophagy. Further, Src family member, Fyn is identified to be the target of NCOA3 that mediates the podocyte autophagy process. Mechanistically, NCOA3 regulates the transcription of Fyn in a nuclear receptor, PPAR-γ dependent way. Podocyte-specific NCOA3 knockout aggravates albuminuria, glomerular sclerosis, podocyte injury, and autophagy in DKD mice. However, the Fyn inhibitor, AZD0530, rescues podocyte injury of NCOA3 knockout DKD mice. Renal NCOA3 overexpression with lentivirus can ameliorate podocyte damage and improve podocyte autophagy in DKD mice. Taken together, the findings highlight a novel target, NCOA3, that protects podocytes from high glucose injury by maintaining autophagy.


Subject(s)
Autophagy , Diabetic Nephropathies , Mice, Knockout , Nuclear Receptor Coactivator 3 , Podocytes , Animals , Podocytes/metabolism , Podocytes/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Mice , Autophagy/genetics , Nuclear Receptor Coactivator 3/metabolism , Nuclear Receptor Coactivator 3/genetics , Disease Models, Animal , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins c-fyn/genetics , Male , Mice, Inbred C57BL
3.
Bioorg Med Chem Lett ; 102: 129674, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38408513

ABSTRACT

Fyn, Blk, and Lyn are part of a group of proteins called Src family kinases. They are crucial in controlling cell communication and their response to the growth, changes, and immune system. Blocking these proteins with inhibitors can be a way to treat diseases where these proteins are too active. The primary mode of action of these inhibitors is to inhibit the phosphorylation of Fyn, Blk, and Lyn receptors, which in turn affects how signals pass within the cells. This review shows the structural and functional aspects of Fyn, Blk, and Lyn kinases, highlighting the significance of their dysregulation in diseases such as cancer and autoimmune disorders. The discussion encompasses the design strategies, SAR analysis, and chemical characteristics of effective inhibitors, shedding light on their specificity and potency. Furthermore, it explores the progress of clinical trials of these inhibitors, emphasizing their potential therapeutic applications.


Subject(s)
Protein-Tyrosine Kinases , Proto-Oncogene Proteins , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins/metabolism , src-Family Kinases , Phosphorylation
4.
Clin. transl. oncol. (Print) ; 25(10): 2852-2860, oct. 2023.
Article in English | IBECS | ID: ibc-225065

ABSTRACT

The tyrosine kinase Fyn is a member of the SRC family of kinases, and its sustained activation is closely linked to tumor cell migration, proliferation, and cell metabolism. Recently, Fyn has been found to be expressed in various tumor tissues, and the expression and function of Fyn vary between tumors, with Fyn acting as an oncogene to promote proliferation and metastasis in some tumors. This article summarizes the recent studies on the role of Fyn in different human tumors, focusing on the role of Fyn in melanoma, breast cancer, glioma, lung cancer, and peripheral T-cell lymphoma in order to provide a basis for future research and targeted therapy in different human tumors.(AU)


Subject(s)
Humans , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Neoplasms/metabolism , Protein-Tyrosine Kinases/metabolism , Gene Expression Regulation, Neoplastic , Phosphorylation
5.
Clin Transl Oncol ; 25(10): 2852-2860, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37093456

ABSTRACT

The tyrosine kinase Fyn is a member of the SRC family of kinases, and its sustained activation is closely linked to tumor cell migration, proliferation, and cell metabolism. Recently, Fyn has been found to be expressed in various tumor tissues, and the expression and function of Fyn vary between tumors, with Fyn acting as an oncogene to promote proliferation and metastasis in some tumors. This article summarizes the recent studies on the role of Fyn in different human tumors, focusing on the role of Fyn in melanoma, breast cancer, glioma, lung cancer, and peripheral T-cell lymphoma in order to provide a basis for future research and targeted therapy in different human tumors.


Subject(s)
Melanoma , Protein-Tyrosine Kinases , Humans , Phosphorylation , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism
6.
J Pharm Pharmacol ; 75(8): 1076-1085, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37095069

ABSTRACT

OBJECTIVES: Oxidative stress-mediated colistin's nephrotoxicity is associated with the diminished activity of nuclear factor erythroid 2-related factor 2 (Nrf2) that is primarily correlated with cellular PH domain and leucine-rich repeat protein phosphatase (PHLPP2) levels. This study investigated the possible modulation of PHLPP2/protein kinase B (Akt) trajectory as a critical regulator of Nrf2 stability by rosuvastatin (RST) to guard against colistin-induced oxidative renal damage in rats. METHODS: Colistin (300,000 IU/kg/day; i.p.) was injected for 6 consecutive days, and rats were treated simultaneously with RST orally at 10 or 20 mg/kg. KEY FINDINGS: RST enhanced renal nuclear Nrf2 translocation as revealed by immunohistochemical staining to boost the renal antioxidants, superoxide dismutase (SOD) and reduced glutathione (GSH) along with a marked reduction in caspase-3. Accordingly, rats treated with RST showed significant restoration of normal renal function and histological features. On the molecular level, RST effectively decreased the mRNA expression of PHLPP2 to promote Akt phosphorylation. Consequently, it deactivated GSK-3ß and reduced the gene expression of Fyn kinase in renal tissues. CONCLUSIONS: RST could attenuate colistin-induced oxidative acute kidney injury via its suppressive effect on PHLPP2 to endorse Nrf2 activity through modulating Akt/GSK3 ß/Fyn kinase trajectory.


Subject(s)
Acute Kidney Injury , Proto-Oncogene Proteins c-akt , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , NF-E2-Related Factor 2/metabolism , Rosuvastatin Calcium/pharmacology , Colistin/metabolism , Colistin/pharmacology , Signal Transduction , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/pharmacology , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Kidney , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins c-fyn/pharmacology
7.
J Nat Med ; 77(3): 464-475, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36884159

ABSTRACT

Tubulointerstitial fibrosis is a common pathological change in end-stage renal disease. However, limited treatment methods are developed, and unexplained potential mechanisms of renal diseases are urgent problems to be solved. In the present research, we first elucidated the role of podocarpusflavone (POD), a biflavone compound, in unilateral ureteral obstruction (UUO) in rodent model which is characterized by inflammation and fibrosis. The changes in histology and immunohistochemistry were observed that POD exerted renoprotective effects by retarding the infiltration of macrophage and aberrant deposition of ɑ-SMA, Col1a1, and fibronectin. Consistent with in vivo assay, POD treatment also ameliorated the process of fibrosis in TGF-ß1-stimulated renal tubular epithelial cells and inflammation in LPS-induced RAW264.7 cells in vitro. In terms of mechanism, our results showed that treatment with POD inhibited the aggravated activation of Fyn in the UUO group, and weakened the level of phosphorylation of Stat3 which indicated that POD may alleviate the process of fibrosis by the Fyn/Stat3 signaling pathway. Furthermore, the gain of function assay by lentivirus-mediated exogenous forced expression of Fyn abrogated the therapeutic effect of the POD on renal fibrosis and inflammation. Collectively, it can be concluded that POD exerted a protective effect on renal fibrosis by mediating Fyn/Stat3 signaling pathway.


Subject(s)
Kidney Diseases , Ureteral Obstruction , Mice , Fibrosis , Inflammation/metabolism , Kidney/metabolism , Kidney/pathology , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Proto-Oncogene Proteins c-fyn/drug effects , Proto-Oncogene Proteins c-fyn/metabolism , RAW 264.7 Cells/drug effects , RAW 264.7 Cells/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , Ureteral Obstruction/complications , Ureteral Obstruction/drug therapy , Ureteral Obstruction/metabolism , Animals
8.
J Transl Med ; 21(1): 84, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36740671

ABSTRACT

Src family protein kinases (SFKs) play a key role in cell adhesion, invasion, proliferation, survival, apoptosis, and angiogenesis during tumor development. In humans, SFKs consists of eight family members with similar structure and function. There is a high level of overexpression or hyperactivity of SFKs in tumor, and they play an important role in multiple signaling pathways involved in tumorigenesis. FYN is a member of the SFKs that regulate normal cellular processes. Additionally, FYN is highly expressed in many cancers and promotes cancer growth and metastasis through diverse biological functions such as cell growth, apoptosis, and motility migration, as well as the development of drug resistance in many tumors. Moreover, FYN is involved in the regulation of multiple cancer-related signaling pathways, including interactions with ERK, COX-2, STAT5, MET and AKT. FYN is therefore an attractive therapeutic target for various tumor types, and suppressing FYN can improve the prognosis and prolong the life of patients. The purpose of this review is to provide an overview of FYN's structure, expression, upstream regulators, downstream substrate molecules, and biological functions in tumors.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-fyn , Signal Transduction , Humans , Cell Movement , Neoplasms/genetics , Neoplasms/therapy , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , src-Family Kinases/metabolism
9.
Sci China Life Sci ; 66(6): 1245-1263, 2023 06.
Article in English | MEDLINE | ID: mdl-36763244

ABSTRACT

Although Src is one of the oldest and most investigated oncoproteins, its function in tumor malignancy remains to be defined further. In this study, we demonstrated that the inhibition of Src activity by ponatinib effectively suppressed several malignant phenotypes of esophageal squamous cell carcinoma (ESCC) both in vitro and in vivo, whereas it did not produce growth-inhibitory effects on normal esophageal epithelial cells (NEECs). Importantly, we combined phosphoproteomics and several cellular and molecular biologic strategies to identify that Src interacted with the members of Src-family kinases (SFKs), such as Fyn or Lyn, to form heterodimers. Src interactions with Fyn and Lyn phosphorylated the tyrosine sites in SH2 (Fyn Tyr185 or Lyn Tyr183) and kinase domains (Fyn Tyr420 or Lyn Tyr397), which critically contributed to ESCC development. By contrast, Src could not form heterodimers with Fyn or Lyn in NEECs. We used RNA sequencing to comprehensively demonstrate that the inhibition of Src activity effectively blocked several critical tumor-promoting pathways, such as JAK/STAT, mTOR, stemness-related, and metabolism-related pathways. Results of the real-time polymerase chain reaction (RT-PCR) assay confirmed that Lyn and Fyn were critical effectors for the Src-mediated expression of tumor growth or metastasis-related molecules. Furthermore, results of the clinical ESCC samples showed that the hyperactivation of pSrc Tyr419, Fyn Tyr185 or Tyr420, and Lyn Tyr183 or Tyr397 could be biomarkers of ESCC prognosis. This study illustrates that Src/Fyn and Src/Lyn heterodimers serve as targets for the treatment of ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins , Esophageal Squamous Cell Carcinoma/diagnosis , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , src-Family Kinases/genetics , src-Family Kinases/metabolism , Tyrosine/metabolism , Phosphorylation
10.
Mol Psychiatry ; 28(2): 946-962, 2023 02.
Article in English | MEDLINE | ID: mdl-36258016

ABSTRACT

Fyn is a Src kinase that controls critical signalling cascades and has been implicated in learning and memory. Postsynaptic enrichment of Fyn underpins synaptotoxicity in dementias such as Alzheimer's disease and frontotemporal lobar degeneration with Tau pathology (FTLD-Tau). The FLTD P301L mutant Tau is associated with a higher propensity to undergo liquid-liquid phase separation (LLPS) and form biomolecular condensates. Expression of P301L mutant Tau promotes aberrant trapping of Fyn in nanoclusters within hippocampal dendrites by an unknown mechanism. Here, we used single-particle tracking photoactivated localisation microscopy to demonstrate that the opening of Fyn into its primed conformation promotes its nanoclustering in dendrites leading to increased Fyn/ERK/S6 downstream signalling. Preventing the auto-inhibitory closed conformation of Fyn through phospho-inhibition or through perturbation of its SH3 domain increased Fyn's nanoscale trapping, whereas inhibition of the catalytic domain had no impact. By combining pharmacological and genetic approaches, we demonstrate that P301L Tau enhanced both Fyn nanoclustering and Fyn/ERK/S6 signalling via its ability to form biomolecular condensates. Together, our findings demonstrate that Fyn alternates between a closed and an open conformation, the latter being enzymatically active and clustered. Furthermore, pathogenic immobilisation of Fyn relies on the ability of P301L Tau to form biomolecular condensates, thus highlighting the critical importance of LLPS in controlling nanoclustering and downstream intracellular signalling events.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , tau Proteins/genetics , tau Proteins/metabolism , Biomolecular Condensates , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Alzheimer Disease/genetics , Frontotemporal Lobar Degeneration/metabolism
11.
Cells ; 11(19)2022 09 29.
Article in English | MEDLINE | ID: mdl-36231023

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are important postsynaptic receptors that contribute to normal synaptic function and cell survival; however, when overactivated, as in Huntington's disease (HD), NMDARs cause excitotoxicity. HD-affected striatal neurons show altered NMDAR currents and augmented ratio of surface to internal GluN2B-containing NMDARs, with augmented accumulation at extrasynaptic sites. Fyn protein is a member of the Src kinase family (SKF) with an important role in NMDARs phosphorylation and synaptic localization and function; recently, we demonstrated that Fyn is reduced in several HD models. Thus, in this study, we aimed to explore the impact of HD-mediated altered Fyn levels at post-synaptic density (PSD), and their role in distorted NMDARs function and localization, and intracellular neuroprotective pathways in YAC128 mouse primary striatal neurons. We show that reduced synaptic Fyn levels and activity in HD mouse striatal neurons is related to decreased phosphorylation of synaptic GluN2B-composed NMDARs; this occurs concomitantly with augmented extrasynaptic NMDARs activity and currents and reduced cAMP response element-binding protein (CREB) activation, along with induction of cell death pathways. Importantly, expression of a constitutive active form of SKF reestablishes NMDARs localization, phosphorylation, and function at PSD in YAC128 mouse neurons. Enhanced SKF levels and activity also promotes CREB activation and reduces caspase-3 activation in YAC128 mouse striatal neurons. This work supports, for the first time, a relevant role for Fyn protein in PSD modulation, controlling NMDARs synaptic function in HD, and favoring neuroprotective pathways and cell survival. In this respect, Fyn Tyr kinase constitutes an important potential HD therapeutic target directly acting at PSD.


Subject(s)
Huntington Disease , Proto-Oncogene Proteins c-fyn/metabolism , Receptors, N-Methyl-D-Aspartate , Animals , Caspase 3/metabolism , Corpus Striatum/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Huntington Disease/metabolism , Mice , Receptors, N-Methyl-D-Aspartate/metabolism
12.
Front Immunol ; 13: 915274, 2022.
Article in English | MEDLINE | ID: mdl-36016954

ABSTRACT

FYN is a non-receptor tyrosine kinase of the SRC family that facilitates virus entry across epithelial tight junctions. However, the role of FYN in mammalian testes in maintaining the blood-testis barrier (BTB) integrity and the adhesion of germ cells to Sertoli cells are not well defined. Here, we show that FYN is a component of the BTB and the apical ectoplasmic specialization (ES) at Sertoli-Sertoli and Sertoli-spermatid interfaces, respectively, and is expressed extensively in mouse testes during postnatal development. FYN was shown to be structurally linked to the actin and microtubule-based cytoskeletons. An in vivo model was used to explore the modulatory effect of FYN on BTB and apical ES dynamics within the testes when adult mice were treated intraperitoneally with CdCl2 (3 mg/kg body weight). The CdCl2-induced epithelial restructuring was associated with a transient increase in the interaction between FYN and the actin branching/nucleation protein Arp3, as well as an induction of Arp3 phosphorylation, which possibly lead to actin cytoskeleton remodeling, resulting in BTB damage and germ cell loss in the seminiferous epithelium. Based on the results, we propose a model in which FYN and Arp3 form a protein complex that is responsible for junction reorganization events at the apical ES and the BTB. It is also possible for viruses to break through the BTB and enter the immunoprivileged testicular microenvironment via this mechanism.


Subject(s)
Blood-Testis Barrier , Testis , Actins/metabolism , Animals , Blood-Testis Barrier/metabolism , Cell Adhesion , Male , Mammals/metabolism , Mice , Proto-Oncogene Proteins c-fyn/metabolism , Spermatogenesis , Testis/metabolism
13.
Exp Mol Med ; 54(8): 1086-1097, 2022 08.
Article in English | MEDLINE | ID: mdl-35918533

ABSTRACT

Src family kinases (SFKs) have been implicated in the pathogenesis of kidney fibrosis. However, the specific mechanism by which SFKs contribute to the progression of diabetic kidney disease (DKD) remains unclear. Our preliminary transcriptome analysis suggested that SFK expression was increased in diabetic kidneys and that the expression of Fyn (a member of the SFKs), along with genes related to unfolded protein responses from the endoplasmic reticulum (ER) stress signaling pathway, was upregulated in the tubules of human diabetic kidneys. Thus, we examined whether SFK-induced ER stress is associated with DKD progression. Mouse proximal tubular (mProx24) cells were transfected with Fyn or Lyn siRNA and exposed to high glucose and palmitate (HG-Pal). Streptozotocin-induced diabetic rats were treated with KF-1607, a novel pan-Src kinase inhibitor (SKI) with low toxicity. The effect of KF-1607 was compared to that of losartan, a standard treatment for patients with DKD. Among the SFK family members, the Fyn and Lyn kinases were upregulated under diabetic stress. HG-Pal induced p70S6 kinase and JNK/CHOP signaling and promoted tubular injury. Fyn knockdown but not Lyn knockdown inhibited this detrimental signaling pathway. In addition, diabetic rats treated with KF-1607 showed improved kidney function and decreased ER stress, inflammation, and fibrosis compared with those treated with losartan. Collectively, these findings indicate that Fyn kinase is a specific member of the SFKs implicated in ER stress activation leading to proximal tubular injury in the diabetic milieu and that pan-SKI treatment attenuates kidney injury in diabetic rats. These data highlight Fyn kinase as a viable target for the development of therapeutic agents for DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Endoplasmic Reticulum Stress , Fibrosis , Humans , Kidney/pathology , Losartan , Mice , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Rats , src-Family Kinases/metabolism
14.
J Biol Chem ; 298(8): 102248, 2022 08.
Article in English | MEDLINE | ID: mdl-35820485

ABSTRACT

Protein phosphatase 2A (PP2A) is a major phospho-Ser/Thr phosphatase and a key regulator of cellular signal transduction pathways. While PP2A dysfunction has been linked to human cancer and neurodegenerative disorders such as Alzheimer's disease (AD), PP2A regulation remains relatively poorly understood. It has been reported that the PP2A catalytic subunit (PP2Ac) is inactivated by a single phosphorylation at the Tyr307 residue by tyrosine kinases such as v-Src. However, multiple mass spectrometry studies have revealed the existence of other putative PP2Ac phosphorylation sites in response to activation of Src and Fyn, two major Src family kinases (SFKs). Here, using PP2Ac phosphomutants and novel phosphosite-specific PP2Ac antibodies, we show that cellular pools of PP2Ac are instead phosphorylated on both Tyr127 and Tyr284 upon Src activation, and on Tyr284 following Fyn activation. We found these phosphorylation events enhanced the interaction of PP2Ac with SFKs. In addition, we reveal SFK-mediated phosphorylation of PP2Ac at Y284 promotes dissociation of the regulatory Bα subunit, altering PP2A substrate specificity; the phosphodeficient Y127/284F and Y284F PP2Ac mutants prevented SFK-mediated phosphorylation of Tau at the CP13 (pSer202) epitope, a pathological hallmark of AD, and SFK-dependent activation of ERK, a major growth regulatory kinase upregulated in many cancers. Our findings demonstrate a novel PP2A regulatory mechanism that challenges the existing dogma on the inhibition of PP2A catalytic activity by Tyr307 phosphorylation. We propose dysregulation of SFK signaling in cancer and AD can lead to alterations in PP2A phosphorylation and subsequent deregulation of key PP2A substrates, including ERK and Tau.


Subject(s)
Protein Phosphatase 2 , Proto-Oncogene Proteins c-fyn , src-Family Kinases , Alzheimer Disease/metabolism , Humans , Phosphoprotein Phosphatases , Phosphorylation , Protein Phosphatase 2/metabolism , Proto-Oncogene Proteins c-fyn/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Tyrosine/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism , tau Proteins/metabolism
15.
Eur J Pharm Sci ; 175: 106236, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35710078

ABSTRACT

Current pathophysiological findings indicate that damage to the alveolar epithelium plays a decisive role in the development of idiopathic pulmonary fibrosis (IPF). The available pharmacological interventions (i.e., oral pirfenidone and nintedanib) only slow down progression of the disease, but do not offer a cure. In order to develop new drug candidates, the pathophysiology of IPF needs to be better understood on a molecular level. It has previously been reported that a loss of caveolin-1 (Cav-1) contributes to profibrotic processes by causing reduced alveolar barrier function and fibrosis-like alterations of the lung-parenchyma. Conversely, overexpression of caveolin-1 appears to counteract the development of fibrosis by inhibiting the inflammasome NLRP3 and the associated expression of interleukin-1ß. In this study, the interaction between Fyn-kinase and caveolin-1 in the alveolar epithelium of various bleomycin (BLM)/TGF-ß damage models using precision-cut lung slices (PCLS), wildtype (WT) and caveolin-1 knockout (KO) mice as well as the human NCI-H441 cell line, were investigated. In WT mouse lung tissues, strong signals for Fyn-kinase were detected in alveolar epithelial type I cells, whereas in caveolin-1 KO animals, expression shifted to alveolar epithelial type II cells. Caveolin-1 and Fyn-kinase were found to be co-localized in isolated lipid rafts of NCI-H441 cell membrane fractions. These findings were corroborated by co-immunoprecipitation studies in which a co-localization of Cav-1 and Fyn-kinase was detected in the cell membrane of the alveolar epithelium. After TGF-ß and BLM-induced damage to the alveolar epithelium both in PCLS and cell culture experiments, a decrease in caveolin-1 and Fyn-kinase was found. Furthermore, TEER (transepithelial electrical resistance) measurements indicated that TGF-ß and BLM have a damaging effect on cell-cell contacts and thus impair the barrier function in NCI-H441 cell monolayers. This effect was attenuated after co-incubation with the Fyn-kinase inhibitor, PP-2. Our data suggest an involvement of Fyn-kinase and caveolin-1 in TGF-ß/bleomycin-induced impairment of alveolar barrier function and thus a possible role in the early stages of pulmonary fibrosis. Fyn-kinase and/or its complex with caveolin-1 might, therefore, be novel therapeutic targets in IPF.


Subject(s)
Alveolar Epithelial Cells , Caveolin 1 , Idiopathic Pulmonary Fibrosis , Proto-Oncogene Proteins c-fyn , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Animals , Bleomycin/pharmacology , Caveolin 1/metabolism , Fibrosis , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-fyn/metabolism , Transforming Growth Factor beta/metabolism
16.
Int J Neuropsychopharmacol ; 25(7): 600-612, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35353146

ABSTRACT

BACKGROUND: Schizophrenia is a psychiatric disorder including multiple clinical symptoms such as severe psychosis and cognitive dysfunction. DHF-7 is a novel dihydroflavanone derivative that was designed and synthesized to treat schizophrenia. This study aimed to investigate the effects and mechanisms of DHF-7 in a mouse model of schizophrenia induced by a combination of cuprizone and MK-801. METHODS: After intragastric administration of DHF-7 for 7 weeks, open field, Y-maze, and novel object recognition tests were performed to detect behavioral changes in the mouse model. White matter lesions and myelin loss were determined using transmission electron microscopy and oil red O staining. Western blotting and immunohistochemistry were used to detect the expression of the related proteins. RESULTS: The results showed that DHF-7 treatment significantly improved cognitive impairment and positive symptoms in the model mice. Moreover, DHF-7 alleviated white matter lesions and demyelination and promoted the differentiation and maturation of oligodendrocytes for remyelination in the corpus callosum of model mice. The mechanistic study showed that DHF-7 increased the expression of brain-derived neurotrophic factor and phosphorylated Fyn, thus activating the tyrosine kinase receptor B (Trk B)/Fyn/N-methyl-D-aspartate receptor subunit 2 B (NMDAR2B) and Raf/mitogen-activated protein kinase (MEK)/ extracellular signal-related kinase (ERK) signaling pathways. CONCLUSIONS: Our results provide an experimental basis for the development of DHF-7 as a novel therapeutic agent for schizophrenia.


Subject(s)
Brain-Derived Neurotrophic Factor , Proto-Oncogene Proteins c-fyn , Schizophrenia , White Matter , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cuprizone/toxicity , Disease Models, Animal , Dizocilpine Maleate/toxicity , Humans , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-fyn/metabolism , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Schizophrenia/metabolism , White Matter/metabolism
17.
Integr Cancer Ther ; 21: 15347354221086900, 2022.
Article in English | MEDLINE | ID: mdl-35297710

ABSTRACT

Triple-negative breast cancer is an aggressive subtype of breast cancer with poor clinical outcomes and poor prognosis. Hesperetin is an active component extracted from Citrus fruits and Traditional Chinese Medicine has a wide range of pharmacological effects. Here, we assessed the anti-migration and anti-invasive effects and explored inhibitory mechanisms of hesperetin on metastasis of human triple negative breast cancer MDA-MB-231 cells. Cell viability experiments revealed that 200 µM hesperetin has a clear inhibitory effect on MDA-MB-231 cells. TGF-ß1 treatment induces apparent tumor progression in MDA-MB-231 cells including aberrant wound-healing and invasion ability, which is effectively suppressed by hesperetin co-treatment. Additionally, hesperetin inhibited the TGF-ß1-mediated actin stress fiber formation. Western blot results showed that hesperetin suppressed the TGF-ß1-mediated (i) activation of Fyn, (ii) phosphorylation of paxillin at Y31, Y88, and Y118 sites, (iii) the increased expression of RhoA, and (iv) activation of Rho-kinase. We demonstrated the increased interaction of Fyn with paxillin and RhoA protein in the TGF-ß1-induced metastasis of MDA-MB-231 cells. Small interfering RNA Fyn inhibited phosphorylation of paxillin (Y31) and activation of Rho-kinase induced by TGF-ß1. In conclusion, hesperetin has a significant inhibitory effect on migration and invasion of MDA-MB-231 cells induced by TGF-ß1, which might be attributed to inhibiting the Fyn/paxillin/RhoA pathway.


Subject(s)
Hesperidin , Paxillin , Proto-Oncogene Proteins c-fyn , Triple Negative Breast Neoplasms , rhoA GTP-Binding Protein , Cell Line, Tumor , Cell Movement , Female , Hesperidin/pharmacology , Humans , Paxillin/metabolism , Proto-Oncogene Proteins c-fyn/metabolism , Transforming Growth Factor beta1/pharmacology , Triple Negative Breast Neoplasms/drug therapy , rhoA GTP-Binding Protein/metabolism
18.
J Cell Biol ; 221(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35238864

ABSTRACT

The epidermal growth factor (EGF) receptor (EGFR) controls many aspects of cell physiology. EGF binding to EGFR elicits the membrane recruitment and activation of phosphatidylinositol-3-kinase, leading to Akt phosphorylation and activation. Concomitantly, EGFR is recruited to clathrin-coated pits (CCPs), eventually leading to receptor endocytosis. Previous work uncovered that clathrin, but not receptor endocytosis, is required for EGF-stimulated Akt activation, and that some EGFR signals are enriched in CCPs. Here, we examine how CCPs control EGFR signaling. The signaling adaptor TOM1L1 and the Src-family kinase Fyn are enriched within a subset of CCPs with unique lifetimes and protein composition. Perturbation of TOM1L1 or Fyn impairs EGF-stimulated phosphorylation of Akt2 but not Akt1. EGF stimulation also triggered the TOM1L1- and Fyn-dependent recruitment of the phosphoinositide 5-phosphatase SHIP2 to CCPs. Thus, the recruitment of TOM1L1 and Fyn to a subset of CCPs underlies a role for these structures in the support of EGFR signaling leading to Akt activation.


Subject(s)
Adaptor Proteins, Signal Transducing , Clathrin , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-fyn , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Clathrin/metabolism , Endocytosis , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Signal Transduction
19.
J Neurotrauma ; 39(7-8): 520-529, 2022 04.
Article in English | MEDLINE | ID: mdl-35109711

ABSTRACT

Our previous studies demonstrated that traumatic brain injury (TBI) and ventricular administration of thrombin caused hippocampal neuron loss and cognitive dysfunction via activation of Src family kinases (SFKs). Based on SFK localization in brain, we hypothesized SFK subtypes Fyn and c-Src, as well as SFK downstream molecule Rho-associated protein kinase (ROCK), contribute to cell death and cognitive dysfunction after TBI. We administered nanoparticle wrapped small interfering RNA (siRNA)-Fyn and siRNA-c-Src, or ROCK inhibitor Y-27632 to adult rats subjected to moderate lateral fluid percussion (LFP)-induced TBI. Spatial memory function was assessed from 12 to 16 days, and NeuN stained hippocampal neurons were assessed 16 days after TBI. The combination of siRNA-Fyn and siRNA-c-Src, but neither alone, prevented hippocampal neuron loss and spatial memory deficits after TBI. The ROCK inhibitor Y-27632 also prevented hippocampal neuronal loss and spatial memory deficits after TBI. The data suggest that the combined actions of three kinases (Fyn, c-Src, ROCK) mediate hippocampal neuronal cell death and spatial memory deficits produced by LFP-TBI, and that inhibiting this pathway prevents the TBI-induced cell death and memory deficits.


Subject(s)
Brain Injuries, Traumatic , Spatial Memory , Animals , Hippocampus , Neurons/metabolism , Proto-Oncogene Proteins c-fyn/metabolism , Rats , Rats, Sprague-Dawley
20.
Biochem Biophys Res Commun ; 592: 60-66, 2022 02 12.
Article in English | MEDLINE | ID: mdl-35033869

ABSTRACT

BACKGROUND AND AIMS: Atherosclerosis is driven by an inflammatory process of the vascular wall. The novel orphan G-protein coupled receptor 5B of family C (GPRC5B) is involved in drosophila sugar and lipid metabolism as well as mice adipose tissue inflammation. Here, we investigated the role of GPRC5B in the pro-atherogenic mechanisms of hyperglycemia and vascular inflammation. METHODS: Immortalized and primary endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) were used for stimulation with high glucose or different cytokines. Adenoviral- or plasmid-driven GPRC5B overexpression and siRNA-mediated knockdown were performed in these cells to analyze functional and mechanistic pathways of GPRC5B. RESULTS: In ECs and VSMCs, stimulation with high glucose, TNFα or LPS induced a significant upregulation of endogenous GPRC5B mRNA and protein levels. GPRC5B overexpression and knockdown increased and attenuated, respectively, the expression of the pro-inflammatory cytokines TNFα, IL-1ß, IL-6 as well as the pro-atherogenic vascular adhesion molecules ICAM-1 and VCAM-1. Furthermore, the expression and activity of the metalloproteinase MMP-9, a component of atherosclerotic plaque stabilization, were significantly enhanced by GPRC5B overexpression. Mechanistically, GPRC5B increased the phosphorylation of ERK1/2 and activated NFκB through a direct interaction with the tyrosine kinase Fyn. CONCLUSIONS: Our findings demonstrate that GPRC5B is upregulated in response to high glucose and pro-inflammatory signaling. GPRC5B functionally modulates the inflammatory activity in cells of the vascular wall, suggesting a pro-atherogenic GPRC5B-dependent positive feedback loop via Fyn and NFκB. Thus, GPRC5B warrants further attention as a novel pharmacological target for the treatment of vascular inflammation and possibly atherogenesis.


Subject(s)
Blood Vessels/metabolism , Blood Vessels/pathology , Inflammation/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-fyn/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Blood Vessels/drug effects , Cell Adhesion Molecules/metabolism , Cytokines/adverse effects , Enzyme Activation/drug effects , Glucose/toxicity , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hyperglycemia/pathology , Inflammation/pathology , Matrix Metalloproteinases/metabolism , Mice , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...