Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Biomed Pharmacother ; 176: 116932, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870631

ABSTRACT

Hematopoietic cell kinase (Hck), a non-receptor tyrosine kinase belonging to the Src kinase family, is intricately linked to the pathogenesis of numerous human diseases, with a particularly pronounced association with cancer. Hck not only directly impacts the proliferation, migration, and apoptosis of cancer cells but also interacts with JAK/STAT, MEK/ERK, PI3K/AKT, CXCL12/CXCR4, and other pathways. Hck also influences the tumor microenvironment to facilitate the onset and progression of cancer. This paper delves into the functional role and regulatory mechanisms of Hck in various solid tumors. Additionally, it explores the implications of Hck in hematological malignancies. The review culminates with a summary of the current research status of Hck inhibitors, the majority of which are in the pre-clinical phase of investigation. Notably, these inhibitors are predominantly utilized in the therapeutic management of leukemia, with their combinatorial potential indicating promising avenues for future research. In conclusion, this review underscores the significance of the mechanism of Hck in solid tumors. This insight is crucial for comprehending the current research trends regarding Hck: targeted therapy against Hck shows great promise in both diagnosis and treatment of malignant tumors. Further investigation into the role of Hck in cancer, coupled with the development of specific inhibitors, has the potential to revolutionize approaches to cancer treatment.


Subject(s)
Disease Progression , Neoplasms , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-hck , Humans , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/pathology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Animals , Proto-Oncogene Proteins c-hck/metabolism , Proto-Oncogene Proteins c-hck/antagonists & inhibitors , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects , Tumor Microenvironment , Molecular Targeted Therapy
2.
Leukemia ; 38(7): 1570-1580, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38454120

ABSTRACT

Although Bruton's tyrosine kinase (BTK) inhibitors (BTKi) have significantly improved patient prognosis, mantle cell lymphoma (MCL) is still considered incurable due to primary and acquired resistance. We have recently shown that aberrant expression of the Src-family tyrosine kinase hematopoietic cell kinase (HCK) in MCL correlates with poor prognosis, and that genetic HCK perturbation impairs growth and integrin-mediated adhesion of MCL cells. Here, we show that KIN-8194, a dual inhibitor of BTK and HCK with in vivo activity against Myd88-L265P-driven diffuse large B-cell lymphoma and Waldenström Macroglobulinemia, has a potent growth inhibitory effect in MCL cell lines and primary MCL cells, irrespective of their sensitivity to BTKi (ibrutinib and acalabrutinib). In BTKi-resistant cells this is mediated by inhibition of HCK, which results in repression of AKT-S6 signaling. In addition, KIN-8194 inhibits integrin-mediated adhesion of BTKi-sensitive and insensitive MCL cells to fibronectin and stromal cells in an HCK-dependent manner. Finally, we show that MCL cells with acquired BTKi resistance retain their sensitivity to KIN-8194. Taken together, our data demonstrate that KIN-8194 inhibits growth and integrin-mediated adhesion of BTKi-sensitive MCL cells, as well as MCL cells with primary or acquired BTKi resistance. This renders KIN-8194 a promising novel treatment for MCL patients.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Cell Adhesion , Cell Proliferation , Drug Resistance, Neoplasm , Integrins , Lymphoma, Mantle-Cell , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-hck , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/pathology , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/genetics , Humans , Cell Adhesion/drug effects , Drug Resistance, Neoplasm/drug effects , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Proto-Oncogene Proteins c-hck/metabolism , Proto-Oncogene Proteins c-hck/genetics , Proto-Oncogene Proteins c-hck/antagonists & inhibitors , Integrins/metabolism , Cell Proliferation/drug effects , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Pyrimidines/pharmacology , Adenine/analogs & derivatives , Adenine/pharmacology , Signal Transduction/drug effects
3.
Nat Commun ; 14(1): 4297, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463911

ABSTRACT

Renal inflammation and fibrosis are the common pathways leading to progressive chronic kidney disease (CKD). We previously identified hematopoietic cell kinase (HCK) as upregulated in human chronic allograft injury promoting kidney fibrosis; however, the cellular source and molecular mechanisms are unclear. Here, using immunostaining and single cell sequencing data, we show that HCK expression is highly enriched in pro-inflammatory macrophages in diseased kidneys. HCK-knockout (KO) or HCK-inhibitor decreases macrophage M1-like pro-inflammatory polarization, proliferation, and migration in RAW264.7 cells and bone marrow-derived macrophages (BMDM). We identify an interaction between HCK and ATG2A and CBL, two autophagy-related proteins, inhibiting autophagy flux in macrophages. In vivo, both global or myeloid cell specific HCK-KO attenuates renal inflammation and fibrosis with reduces macrophage numbers, pro-inflammatory polarization and migration into unilateral ureteral obstruction (UUO) kidneys and unilateral ischemia reperfusion injury (IRI) models. Finally, we developed a selective boron containing HCK inhibitor which can reduce macrophage pro-inflammatory activity, proliferation, and migration in vitro, and attenuate kidney fibrosis in the UUO mice. The current study elucidates mechanisms downstream of HCK regulating macrophage activation and polarization via autophagy in CKD and identifies that selective HCK inhibitors could be potentially developed as a new therapy for renal fibrosis.


Subject(s)
Nephritis , Renal Insufficiency, Chronic , Ureteral Obstruction , Animals , Humans , Mice , Autophagy , Fibrosis , Inflammation/pathology , Kidney/metabolism , Macrophage Activation , Mice, Inbred C57BL , Nephritis/metabolism , Proto-Oncogene Proteins c-hck/metabolism , Renal Insufficiency, Chronic/pathology , Ureteral Obstruction/metabolism
4.
Pathol Res Pract ; 247: 154534, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37201466

ABSTRACT

Laryngeal squamous cell carcinoma (LSCC) is the most lethal cancer in head and neck tumors. Although hematopoietic cell kinase (HCK) has been proven to be an oncogene in several solid tumors, its roles in LSCC remain obscure. This is the first study to evaluate the clinical value of HCK in LSCC, with the aim of exploring its expression status and potential molecular mechanisms underlying LSCC. LSCC tissue-derived gene chips and RNA-seq data were collected for a quantitive integration of HCK mRNA expression level. To confirm the protein expression level of HCK, a total of 82 LSCC tissue specimens and 56 non-tumor laryngeal epithelial controls were collected for in-house tissue microarrays and immunohistochemical staining. Kaplan-Meier curves were generated to determine the ability of HCK in predicting overall survival, progress-free survival, and disease-free survival of LSCC patients. LSCC overexpressed genes and HCK co-expressed genes were intersected to preliminarily explore the enriched signaling pathways of HCK. It was noticed that HCK mRNA was markedly overexpressed in 323 LSCC tissues compared with 196 non-LSCC controls (standardized mean difference = 0.81, p < 0.0001). Upregulated HCK mRNA displayed a moderate discriminatory ability between LSCC tissues and non-tumor laryngeal epithelial controls (area under the curve = 0.78, sensitivity = 0.76, specificity = 0.68). The higher expression level of HCK mRNA could predict worse overall survival and disease-free survival for LSCC patients (p = 0.041 and p = 0.013). Lastly, upregulated co-expression genes of HCK were significantly enriched in leukocyte cell-cell adhesion, secretory granule membrane, and extracellular matrix structural constituent. Immune-related pathways were the predominantly activated signals, such as cytokine-cytokine receptor interaction, Th17 cell differentiation, and Toll-like receptor signaling pathway. In conclusion, HCK was upregulated in LSCC tissues and could be utilized as a risk predictor. HCK may promote the development of LSCC by disturbing immune signaling pathways.


Subject(s)
Laryngeal Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Gene Expression Regulation, Neoplastic/genetics , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/pathology , Prognosis , Proto-Oncogene Proteins c-hck/genetics , Proto-Oncogene Proteins c-hck/metabolism , RNA, Messenger/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology
5.
J Exp Med ; 220(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37074415

ABSTRACT

Autoinflammatory diseases include a number of monogenic systemic inflammatory diseases, as well as acquired autoinflammatory diseases such as gout. Here, we show that the myeloid Src-family kinases Hck, Fgr, and Lyn are critical for experimental models of gout, as well as for genetically determined systemic inflammation in the Ptpn6me-v/me-v (motheaten viable) mouse model. The Hck-/-Fgr-/-Lyn-/- mutation abrogated various monosodium urate (MSU) crystal-induced pro-inflammatory responses of neutrophils, and protected mice from the development of gouty arthritis. The Src-family inhibitor dasatinib abrogated MSU crystal-induced responses of human neutrophils and reduced experimental gouty arthritis in mice. The Hck-/-Fgr-/-Lyn-/- mutation also abrogated spontaneous inflammation and prolonged the survival of the Ptpn6me-v/me-v mice. Spontaneous adhesion and superoxide release of Ptpn6me-v/me-v neutrophils were also abolished by the Hck-/-Fgr-/-Lyn-/- mutation. Excessive activation of tyrosine phosphorylation pathways in myeloid cells may characterize a subset of autoinflammatory diseases.


Subject(s)
Arthritis, Gouty , Gout , Hereditary Autoinflammatory Diseases , Mice , Humans , Animals , src-Family Kinases/metabolism , Neutrophils/metabolism , Proto-Oncogene Proteins c-hck/metabolism , Proto-Oncogene Proteins/metabolism , Arthritis, Gouty/metabolism , Gout/metabolism , Inflammation/metabolism , Hereditary Autoinflammatory Diseases/metabolism
6.
Biomed Pharmacother ; 160: 114339, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36736283

ABSTRACT

Hematopoietic cell kinase (Hck) is a member of the Src family and is expressed in hematopoietic cells. By regulating multiple signaling pathways, HCK can interact with multiple receptors to regulate signaling events involved in cell adhesion, proliferation, migration, invasion, apoptosis, and angiogenesis. However, aberrant expression of Hck in various hematopoietic cells and solid tumors plays a crucial role in tumor-related properties, including cell proliferation and epithelial-mesenchymal transition. In addition, Hck signaling regulates the function of immune cells such as macrophages, contributing to an immunosuppressive tumor microenvironment. The clinical success of various kinase inhibitors targeting the Src kinase family has validated the efficacy of targeting Src, and therapies with highly selective Hck kinase inhibitors are in clinical trials. This article reviews Hck inhibition as an emerging cancer treatment strategy, focusing on the expressions and functions of Hck in tumors and its impact on the tumor microenvironment. It also explores preclinical and clinical pharmacological strategies for Hck targeting to shed light on Hck-targeted tumor therapy.


Subject(s)
Neoplasms , src-Family Kinases , Humans , Proto-Oncogene Proteins c-hck/metabolism , src-Family Kinases/metabolism , Neoplasms/drug therapy , Signal Transduction , Cell Proliferation , Tumor Microenvironment
7.
Structure ; 30(11): 1508-1517.e3, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36115344

ABSTRACT

The Src-family kinase Fgr is expressed primarily in myeloid hematopoietic cells and contributes to myeloid leukemia. Here, we present X-ray crystal structures of Fgr bound to the ATP-site inhibitors A-419259 and TL02-59, which show promise as anti-leukemic agents. A-419259 induces a closed Fgr conformation, with the SH3 and SH2 domains engaging the SH2-kinase linker and C-terminal tail, respectively. In the Fgr:A-419259 complex, the activation loop of one monomer inserts into the active site of the other, providing a snapshot of trans-autophosphorylation. By contrast, TL02-59 binding induced SH2 domain displacement from the C-terminal tail and SH3 domain release from the linker. Solution studies using HDX MS were consistent with the crystal structures, with A-419259 reducing and TL02-59 enhancing solvent exposure of the SH3 domain. These structures demonstrate that allosteric connections between the kinase and regulatory domains of Src-family kinases are regulated by the ligand bound to the active site.


Subject(s)
Leukemia, Myeloid, Acute , src-Family Kinases , Humans , src-Family Kinases/chemistry , Proto-Oncogene Proteins c-hck/chemistry , Proto-Oncogene Proteins c-hck/metabolism , src Homology Domains , Leukemia, Myeloid, Acute/drug therapy , Adenosine Triphosphate
8.
Sci Signal ; 15(736): eabg5216, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35639855

ABSTRACT

The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib irreversibly binds BTK at Cys481, inhibiting its kinase activity and thus blocking transduction of B cell receptor (BCR) signaling. Although ibrutinib is durably effective in patients with B cell malignancies, many patients still develop ibrutinib-resistant disease. Resistance can arise because of mutations at the ibrutinib-binding site in BTK. Here, we characterized the mechanism by which two BTK mutations, C481F and C481Y, may lead to ibrutinib resistance. Both mutants lacked detectable kinase activity in in vitro kinase assays. Structural modeling suggested that bulky Phe and Tyr side chains at position 481 sterically hinder access to the ATP-binding pocket in BTK, contributing to loss of kinase activity. Nonetheless, BCR signaling still propagated through BTK C481F and C481Y mutants to downstream effectors, the phospholipase PLCγ2 and the transcription factor NF-κB. This maintenance of BCR signaling was partially achieved through the physical recruitment and kinase-independent activation of hematopoietic cell kinase (HCK). Upon BCR activation, BTK C481F or C481Y was phosphorylated by Src family kinases at Tyr551, which then bound to the SH2 domain of HCK. Modeling suggested that this binding disrupted an intramolecular autoinhibitory interaction in HCK. Activated HCK subsequently phosphorylated PLCγ2, which propagated BCR signaling and promoted clonogenic cell proliferation. This kinase-independent mechanism could inform therapeutic approaches to CLL bearing either the C481F or C481Y BTK mutants.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Piperidines , Proto-Oncogene Proteins c-hck , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Drug Resistance, Neoplasm , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Phospholipase C gamma/genetics , Piperidines/pharmacology , Proto-Oncogene Proteins c-hck/metabolism
9.
Blood Adv ; 6(11): 3332-3338, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35255496

ABSTRACT

The SRC family kinase (SFK) HCK is transcriptionally upregulated and activated by mutated MYD88 (MYD88Mut), a key adaptor for Toll-receptor signaling. HCK activates BTK, AKT, and ERK in MYD88Mut lymphomas. SYK, a B-cell receptor (BCR) component, is activated in MYD88Mut lymphoma cells. Although the SFK LYN serves as a trigger for SYK activation in MYD88Mut ABC DLBCL cells, LYN activity is muted in MYD88Mut Waldenstrom macroglobulinemia (WM) cells. We therefore investigated a role for HCK in mediating SYK activation. Overexpression of wild-type (WT) (HCKWT) or gatekeeper mutated (HCKThr333Met) HCK in MYD88Mut lymphoma cells triggered SYK activation. Conversely, HCK knockdown reduced p-SYK in MYD88Mut lymphoma cells. Coimmunoprecipitation experiments showed that HCK was complexed with p-SYK in MYD88Mut BCWM.1 and TMD8 cells, but not in MYD88 WT Ramos cells. Rescue experiments in MYD88Mut lymphoma cells expressing HCKThr333Met led to persistent HCK and SYK activation and resistance to the HCK inhibitor A419259. Treatment of primary MYD88Mut WM cells with A419259 reduced p-HCK and p-SYK expression. Taken together, our findings show that SYK is activated by HCK in MYD88Mut B-cell lymphomas cells, broaden the prosurvival signaling generated by aberrant HCK expression in response to MYD88Mut, and help define HCK as an important therapeutic target in MYD88Mut B-cell lymphomas.


Subject(s)
Lymphoma, B-Cell , Myeloid Differentiation Factor 88 , Adaptor Proteins, Signal Transducing/metabolism , Humans , Lymphoma, B-Cell/enzymology , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Proto-Oncogene Proteins c-hck/metabolism , Syk Kinase/genetics , Syk Kinase/metabolism , src-Family Kinases/metabolism
10.
Biochem Biophys Res Commun ; 598: 15-19, 2022 04 02.
Article in English | MEDLINE | ID: mdl-35151199

ABSTRACT

Ponatinib is a multi-target tyrosine kinase inhibitor that targets ABL, SRC, FGFR, and so on. It was designed to overcome the resistance of BCR-ABL mutation to imatinib, especially the gatekeeper mutation ABLT315I. The molecular mechanism by which ponatinib overcomes mutations of BCR-ABL and some other targets has been explained, but little information is known about the characteristics of ponatinib binding to SRC. Here, we showed that ponatinib inhibited wild type SRC kinase but failed to inhibit SRC gatekeeper mutants in both biochemical and cellular assays. We determined the crystal structure of ponatinib in complex with the SRC kinase domain. In addition, by structural analysis, we provided a possible explanation for why ponatinib showed different effects on SRC and other kinases with gatekeeper mutations. The resistance mechanism of SRC gatekeeper mutations to ponatinib may provide meaningful information for designing inhibitors against SRC family kinases in the future.


Subject(s)
Imidazoles/chemistry , Imidazoles/pharmacology , Protein Kinase Inhibitors/chemistry , Pyridazines/chemistry , Pyridazines/pharmacology , src-Family Kinases/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Imidazoles/metabolism , Models, Molecular , Mutation , Protein Conformation , Protein Domains , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-hck/chemistry , Proto-Oncogene Proteins c-hck/metabolism , Pyridazines/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
11.
J Allergy Clin Immunol ; 149(4): 1464-1472.e3, 2022 04.
Article in English | MEDLINE | ID: mdl-34536415

ABSTRACT

BACKGROUND: Inborn errors of immunity are genetic disorders characterized by various degrees of immune dysregulation that can manifest as immune deficiency, autoimmunity, or autoinflammation. The routine use of next-generation sequencing in the clinic has facilitated the identification of an ever-increasing number of inborn errors of immunity, revealing the roles of immunologically important genes in human pathologies. However, despite this progress, treatment is still extremely challenging. OBJECTIVE: We sought to report a new monogenic autoinflammatory disorder caused by a de novo activating mutation, p.Tyr515∗, in hematopoietic cell kinase (HCK). The disease is characterized by cutaneous vasculitis and chronic pulmonary inflammation that progresses to fibrosis. METHODS: Whole-exome sequencing, Sanger sequencing, mass spectrometry, and western blotting were performed to identify and characterize the pathogenic HCK mutation. Dysregulation of mutant HCK was confirmed ex vivo in primary cells and in vitro in transduced cell lines. RESULTS: Mutant HCK lacking the C-terminal inhibitory tyrosine Tyr522 exhibited increased kinase activity and enhanced myeloid cell priming, migration and effector functions, such as production of the inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α, and production of reactive oxygen species. These aberrant functions were reflected by inflammatory leukocyte infiltration of the lungs and skin. Moreover, an overview of the clinical course of the disease, including therapies, provides evidence for the therapeutic efficacy of the Janus kinase 1/2 inhibitor ruxolitinib in inflammatory lung disease. CONCLUSIONS: We propose HCK-driven pulmonary and cutaneous vasculitis as a novel autoinflammatory disorder of inborn errors of immunity.


Subject(s)
Vasculitis , src-Family Kinases , Humans , Lung , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-hck/genetics , Proto-Oncogene Proteins c-hck/metabolism , Vasculitis/genetics , Vasculitis/pathology , src-Family Kinases/genetics
12.
PLoS Pathog ; 17(11): e1009728, 2021 11.
Article in English | MEDLINE | ID: mdl-34780577

ABSTRACT

The accessory protein Nef of human and simian immunodeficiency viruses (HIV and SIV) is an important pathogenicity factor known to interact with cellular protein kinases and other signaling proteins. A canonical SH3 domain binding motif in Nef is required for most of these interactions. For example, HIV-1 Nef activates the tyrosine kinase Hck by tightly binding to its SH3 domain. An archetypal contact between a negatively charged SH3 residue and a highly conserved arginine in Nef (Arg77) plays a key role here. Combining structural analyses with functional assays, we here show that Nef proteins have also developed a distinct structural strategy-termed the "R-clamp"-that favors the formation of this salt bridge via buttressing Arg77. Comparison of evolutionarily diverse Nef proteins revealed that several distinct R-clamps have evolved that are functionally equivalent but differ in the side chain compositions of Nef residues 83 and 120. Whereas a similar R-clamp design is shared by Nef proteins of HIV-1 groups M, O, and P, as well as SIVgor, the Nef proteins of SIV from the Eastern chimpanzee subspecies (SIVcpzP.t.s.) exclusively utilize another type of R-clamp. By contrast, SIV of Central chimpanzees (SIVcpzP.t.t.) and HIV-1 group N strains show more heterogenous R-clamp design principles, including a non-functional evolutionary intermediate of the aforementioned two classes. These data add to our understanding of the structural basis of SH3 binding and kinase deregulation by Nef, and provide an interesting example of primate lentiviral protein evolution.


Subject(s)
Evolution, Molecular , HIV Infections/metabolism , Lentivirus/genetics , Proto-Oncogene Proteins c-hck/metabolism , Simian Acquired Immunodeficiency Syndrome/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , src Homology Domains , Amino Acid Sequence , Animals , HIV Infections/genetics , HIV Infections/virology , HIV-1/physiology , Humans , Proto-Oncogene Proteins c-hck/genetics , Sequence Homology, Amino Acid , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , nef Gene Products, Human Immunodeficiency Virus/genetics
13.
J Virol ; 95(17): e0047121, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34106001

ABSTRACT

Human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection causes myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+) through largely unknown cellular and molecular pathways. The mouse cells thought to be equivalent to human CD14+ CD16+ cells are CD11b+ Gr1+ myeloid-derived suppressor cells (MDSC). We used HIV transgenic (Tg) mouse models to study MDSC, namely, CD4C/Nef Tg mice expressing nef in dendritic cells (DC), pDC, CD4+ T, and other mature and immature myeloid cells and CD11c/Nef Tg mice with a more restricted expression, mainly in DC and pDC. Both Tg strains showed expansion of granulocytic and CD11b+ Gr1low/int cells with MDSC characteristics. Fetal liver cell transplantation revealed that this expansion was stroma-independent and abrogated in mixed Tg/non-Tg 50% chimera. Tg bone marrow (BM) erythroid progenitors were decreased and myeloid precursors increased, suggesting an aberrant differentiation likely driving CD11b+ Gr1+ cell expansion, apparently cell autonomously in CD4C/Nef Tg mice and likely through a bystander effect in CD11c/Nef Tg mice. Hck was activated in Tg spleen, and Nef-mediated CD11b+ Gr1+ cell expansion was abrogated in Hck/Lyn-deficient Nef Tg mice, indicating a requirement of Hck/Lyn for this Nef function. IL-17 and granulocyte colony-stimulating factor (G-CSF) were elevated in Nef Tg mice. Increased G-CSF levels were normalized in Tg mice treated with anti-IL-17 antibodies. Therefore, Nef expression in myeloid precursors causes severe BM failure, apparently cell autonomously. More cell-restricted expression of Nef in DC and pDC appears sufficient to induce BM differentiation impairment, granulopoiesis, and expansion of MDSC at the expense of erythroid maturation, with IL-17→G-CSF as one likely bystander contributor. IMPORTANCE HIV-1 and SIV infection often lead to myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+), with the latter likely involved in neuroAIDS. We found that some transgenic (Tg) mouse models of AIDS also develop accumulation of mature and immature cells of the granulocytic lineage, decreased erythroid precursors, and expansion of MDSC (equivalent to human CD14+ CD16+ cells). We identified Nef as being responsible for these phenotypes, and its expression in mouse DC appears sufficient for their development through a bystander mechanism. Nef expression in myeloid progenitors may also favor myeloid cell expansion, likely in a cell-autonomous way. Hck/Lyn is required for the Nef-mediated accumulation of myeloid cells. Finally, we identified G-CSF under the control of IL-17 as one bystander mediator of MDSC expansion. Our findings provide a framework to determine whether the Nef>Hck/Lyn>IL-17>G-CSF pathway is involved in human AIDS and whether it represents a valid therapeutic target.


Subject(s)
Granulocyte Colony-Stimulating Factor/metabolism , HIV Infections/immunology , Interleukin-17/metabolism , Myeloid-Derived Suppressor Cells/immunology , Proto-Oncogene Proteins c-hck/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , src-Family Kinases/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Differentiation , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/virology , Female , Granulocyte Colony-Stimulating Factor/genetics , Granulocytes/immunology , Granulocytes/metabolism , Granulocytes/pathology , HIV Infections/metabolism , HIV Infections/virology , HIV-1/immunology , Humans , Interleukin-17/genetics , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Monocytes/immunology , Monocytes/metabolism , Monocytes/virology , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/virology , Proto-Oncogene Proteins c-hck/genetics , nef Gene Products, Human Immunodeficiency Virus/genetics , src-Family Kinases/genetics
14.
J Exp Clin Cancer Res ; 40(1): 210, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34167558

ABSTRACT

BACKGROUND: Leukaemia stem cells (LSCs) are responsible for the initiation, maintenance, and recurrence of acute myeloid leukaemia (AML), an aggressive haematological malignancy associated with drug resistance and relapse. Identifying therapeutic LSC targets is critical to curing AML. METHODS: Bioinformatics databases were used to identify therapeutic LSC targets. The conditional knockout mice were used to analyse the role of HCK in leukaemogenesis or normal haematopoiesis. Colony-forming assays, cell counting, and flow cytometry were used to detect the viability and function of leukaemia cells. RT-PCR, western blotting, and RNA sequencing were used to detect mRNA and protein expression. RESULT: HCK is expressed at higher levels in LSCs than in haematopoietic stem cells (HSCs), and high HCK levels are correlated with reduced survival time in AML patients. Knockdown of HCK leads to cell cycle arrest, which results in a dramatic decrease in the proliferation and colony formation in human AML cell lines. Moreover, HCK is required for leukemogenesis and leukaemia maintenance in vivo and in vitro. HCK is necessary for the self-renewal of LSCs during serial transplantation and limiting dilution assay. The phenotypes resulting from HCK deficiency can be rescued by CDK6 overexpression in the human cell line. RNA sequencing and gene expression have demonstrated that HCK may sustain cell cycle entry and maintain the self-renewal ability of LSCs through activating the ERK1/2-c-Myc-CDK6 signalling axis. In contrast, HCK deletion does not affect normal haematopoiesis or haematopoietic reconstruction in mice. CONCLUSIONS: HCK maintains the self-renewal of leukaemia stem cells via CDK6 in AML and may be an ideal therapeutic target for eradicating LSCs without influencing normal haematopoiesis.


Subject(s)
Cyclin-Dependent Kinase 6/metabolism , Leukemia, Myeloid, Acute/pathology , Proto-Oncogene Proteins c-hck/genetics , Proto-Oncogene Proteins c-hck/metabolism , Animals , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cell Self Renewal , Databases, Genetic , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Humans , K562 Cells , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Knockout , Neoplasm Transplantation
15.
Microvasc Res ; 136: 104172, 2021 07.
Article in English | MEDLINE | ID: mdl-33894273

ABSTRACT

BACKGROUND: VSMC proliferation and migration pathways play important roles in plaque formation in the vessel stenosis and re-stenosis processes. The microRNAs affect the expression of many genes that regulate these cellular processes. The aim of this study was to investigate the effects of miR-181b, miR-204, and miR-599 on the gene and protein expression levels of hematopoietic cell kinase (HCK) in VSMCs. METHODS: miR-181b, miR-204 were predicted for the suppression of HCK in the chemokine signaling pathway using bioinformatics tools. Then, the VSMCs were transfected by PEI-containing microRNAs. The HCK gene and protein expression levels were evaluated using RT-qPCR and Western blotting techniques, respectively. Moreover, the cellular proliferation and migration were evaluated by MTT and scratch assay methods. RESULTS: The miR-181b and miR-204 decreased significantly the HCK gene and (total and phosphorylated) protein expression levels. Also, the miR-599 did not show any significant effects on the HCK gene and protein levels. The data also showed that miR-181b, miR-204, and miR-599 prevent significantly the proliferation and migration of VSMCs. CONCLUSION: The downregulation of HCK by miR-181b and miR-204 suppressed the VSMC proliferation and migration.


Subject(s)
Cell Movement , Cell Proliferation , MicroRNAs/metabolism , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Proto-Oncogene Proteins c-hck/metabolism , Cells, Cultured , Down-Regulation , Humans , MicroRNAs/genetics , Muscle, Smooth, Vascular/ultrastructure , Myocytes, Smooth Muscle/ultrastructure , Proto-Oncogene Proteins c-hck/genetics , Signal Transduction
16.
J Biol Chem ; 296: 100449, 2021.
Article in English | MEDLINE | ID: mdl-33617879

ABSTRACT

Hck, a Src family nonreceptor tyrosine kinase (SFK), has recently been established as an attractive pharmacological target to improve pulmonary function in COVID-19 patients. Hck inhibitors are also well known for their regulatory role in various malignancies and autoimmune diseases. Curcumin has been previously identified as an excellent DYRK-2 inhibitor, but curcumin's fate is tainted by its instability in the cellular environment. Besides, small molecules targeting the inactive states of a kinase are desirable to reduce promiscuity. Here, we show that functionalization of the 4-arylidene position of the fluorescent curcumin scaffold with an aryl nitrogen mustard provides a stable Hck inhibitor (Kd = 50 ± 10 nM). The mustard curcumin derivative preferentially interacts with the inactive conformation of Hck, similar to type-II kinase inhibitors that are less promiscuous. Moreover, the lead compound showed no inhibitory effect on three other kinases (DYRK2, Src, and Abl). We demonstrate that the cytotoxicity may be mediated via inhibition of the SFK signaling pathway in triple-negative breast cancer and murine macrophage cells. Our data suggest that curcumin is a modifiable fluorescent scaffold to develop selective kinase inhibitors by remodeling its target affinity and cellular stability.


Subject(s)
Curcumin/pharmacology , Drug Design , Epithelial Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-hck/antagonists & inhibitors , Animals , Cell Line, Tumor , Cloning, Molecular , Curcumin/analogs & derivatives , Curcumin/chemical synthesis , Drug Stability , Epithelial Cells/enzymology , Epithelial Cells/pathology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , HT29 Cells , Humans , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism , Proto-Oncogene Proteins c-hck/chemistry , Proto-Oncogene Proteins c-hck/genetics , Proto-Oncogene Proteins c-hck/metabolism , RAW 264.7 Cells , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , src-Family Kinases/genetics , src-Family Kinases/metabolism , Dyrk Kinases
17.
J Virol ; 95(9)2021 04 12.
Article in English | MEDLINE | ID: mdl-33597213

ABSTRACT

Chronic immune activation is an important driver of human immunodeficiency virus type 1 (HIV-1) pathogenesis and has been associated with the presence of tumor necrosis factor-α converting enzyme (TACE) in extracellular vesicles (EVs) circulating in infected individuals. We have recently shown that activation of the Src-family tyrosine kinase hematopoietic cell kinase (Hck) by HIV-1 Nef can trigger the packaging of TACE into EVs via an unconventional protein secretion pathway. Using a panel of HIV-1 Nef mutants and natural HIV-2 and simian immunodeficiency virus (SIV) Nef alleles, we now show that the capacity to promote TACE secretion depends on the superior ability of HIV-1-like Nef alleles to induce Hck kinase activity, whereas other Nef effector functions are dispensable. Strikingly, among the numerous Src-family downstream effectors, serine/threonine kinase Raf-1 was found to be necessary and alone sufficient to trigger the secretion of TACE into EVs. These data reveal the involvement of Raf-1 in regulation of unconventional protein secretion and highlight the importance of Raf-1 as a cellular effector of Nef, thereby suggesting a novel rationale for testing pharmacological inhibitors of the Raf-MAPK pathway to treat HIV-associated immune activation.IMPORTANCE Chronic immune activation contributes to the immunopathogenesis of human immunodeficiency virus type 1 (HIV-1) infection and is associated with poor recovery of the immune system despite potent antiretroviral therapy, which is observed in 10% to 40% drug-treated patients depending on the definition of immune reconstitution. We have previously shown that the HIV pathogenicity factor Nef can promote loading of the proinflammatory protease TACE into extracellular vesicles (EVs), and the levels of such TACE-containing EVs circulating in the blood correlate with low CD4 lymphocyte counts in HIV patients receiving antiretroviral therapy. Here, we show that Nef promotes uploading of TACE into EVs by triggering unconventional secretion via activation of the Hck/Raf/mitogen-activated protein kinase (MAPK) cascade. We find that several pharmaceutical inhibitors of these kinases that are currently in clinical use for other diseases can potently suppress this pathogenic deregulation and could thus provide a novel strategy for treating HIV-associated immune activation.


Subject(s)
ADAM17 Protein/metabolism , Extracellular Vesicles/metabolism , HIV Infections/virology , HIV-1/physiology , Proto-Oncogene Proteins c-raf/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , HEK293 Cells , HIV-2/physiology , Humans , Proto-Oncogene Proteins c-hck/metabolism , Simian Immunodeficiency Virus/physiology , THP-1 Cells , Viral Regulatory and Accessory Proteins/metabolism
18.
Leukemia ; 35(3): 881-886, 2021 03.
Article in English | MEDLINE | ID: mdl-32591642

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive non-Hodgkin lymphoma subtype arising from naïve B cells. Although novel therapeutics have improved patient prognosis, drug resistance remains a key problem. Here, we show that the SRC-family tyrosine kinase hematopoietic cell kinase (HCK), which is primarily expressed in the hematopoietic lineage but not in mature B cells, is aberrantly expressed in MCL, and that high expression of HCK is associated with inferior prognosis of MCL patients. HCK expression is controlled by the toll-like receptor (TLR) adaptor protein MYD88 and can be enhanced by TLR agonists in MCL cell lines and primary MCL. In line with this, primary MCL with high HCK expression are enriched for a TLR-signaling pathway gene set. Silencing of HCK expression results in cell cycle arrest and apoptosis. Furthermore, HCK controls integrin-mediated adhesion of MCL cells to extracellular matrix and stromal cells. Taken together, our data indicate that TLR/MYD88-controlled aberrant expression of HCK plays a critical role in MCL proliferation and survival as well as in retention of the malignant cells in the growth- and survival-supporting lymphoid organ microenvironment, thereby contributing to lymphomagenesis. These novel insights provide a strong rationale for therapeutic targeting of HCK in MCL.


Subject(s)
Biomarkers, Tumor/metabolism , Lymphoma, Mantle-Cell/pathology , Proto-Oncogene Proteins c-hck/metabolism , Tumor Microenvironment , Biomarkers, Tumor/genetics , Humans , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/metabolism , Prognosis , Proto-Oncogene Proteins c-hck/genetics , Signal Transduction
19.
Biosci Rep ; 40(6)2020 06 26.
Article in English | MEDLINE | ID: mdl-32484210

ABSTRACT

The hematopoietic cell kinase (HCK), a member of the Src family protein-tyrosine kinases (SFKs), is primarily expressed in cells of the myeloid and B lymphocyte lineages. Nevertheless, the roles of HCK in glioblastoma (GBM) remain to be examined. Thus, we aimed to investigate the effects of HCK on GBM development both in vitro and in vivo, as well as the underlying mechanism. The present study found that HCK was highly expressed in both tumor tissues from patients with GBM and cancer cell lines. HCK enhanced cell viability, proliferation, and migration, and induced cell apoptosis in vitro. Tumor xenografts results also demonstrated that HCK knockdown significantly inhibited tumor growth. Interestingly, gene set enrichment analysis (GSEA) showed HCK was closed associated with epithelial mesenchymal transition (EMT) and TGFß signaling in GBM. In addition, we also found that HCK accentuates TGFß-induced EMT, suggesting silencing HCK inhibited EMT through the inactivation of Smad signaling pathway. In conclusion, our findings indicated that HCK is involved in GBM progression via mediating EMT process, and may be served as a promising therapeutic target for GBM.


Subject(s)
Brain Neoplasms/enzymology , Epithelial-Mesenchymal Transition , Glioblastoma/enzymology , Proto-Oncogene Proteins c-hck/metabolism , Transforming Growth Factor beta/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Apoptosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Proto-Oncogene Proteins c-hck/genetics , Signal Transduction , Tumor Burden
20.
Int J Mol Sci ; 21(8)2020 Apr 12.
Article in English | MEDLINE | ID: mdl-32290615

ABSTRACT

Runx2 is required for chondrocyte proliferation and maturation. In the search of Runx2 target genes in chondrocytes, we found that Runx2 up-regulated the expression of hematopoietic cell kinase (Hck), which is a member of the Src tyrosine kinase family, in chondrocytes, that Hck expression was high in cartilaginous limb skeletons of wild-type mice but low in those of Runx2-/- mice, and that Runx2 bound the promoter region of Hck. To investigate the functions of Hck in chondrocytes, transgenic mice expressing a constitutively active form of Hck (HckCA) were generated using the Col2a1 promoter/enhancer. The hind limb skeletons were fused, the tibia became a large, round mass, and the growth plate was markedly disorganized. Chondrocyte maturation was delayed until E16.5 but accelerated thereafter. BrdU-labeled, but not terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive, chondrocytes were increased. Furthermore, Hck knock-down reduced the proliferation of primary chondrocytes. In microarray and real-time RT-PCR analyses using hind limb RNA from HckCA transgenic mice, the expression of Wnt (Wnt10b, Tcf7, Lef1, Dkk1) and hedgehog (Ihh, Ptch1, and Gli1) signaling pathway genes was upregulated. These findings indicated that Hck, whose expression is regulated by Runx2, is highly expressed in chondrocytes, and that HckCA activates Wnt and hedgehog signaling pathways, and promotes chondrocyte proliferation without increasing apoptosis.


Subject(s)
Cell Proliferation/physiology , Chondrocytes/metabolism , Chondrocytes/physiology , Hedgehog Proteins/metabolism , Proto-Oncogene Proteins c-hck/metabolism , Signal Transduction/physiology , Wnt Signaling Pathway/physiology , Animals , Apoptosis/physiology , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...