Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.296
Filter
1.
World J Surg Oncol ; 22(1): 131, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760830

ABSTRACT

BACKGROUND: Liposarcomas are among the most common mesenchymal malignancies. However, the therapeutic options are still very limited and so far, targeted therapies had not yet been established. Immunotherapy, which has been a breakthrough in other oncological entities, seems to have no efficacy in liposarcoma. Complicating matters further, classification remains difficult due to the diversity of morphologies and nonspecific or absent markers in immunohistochemistry, leaving molecular pathology using FISH or sequencing as best options. Many liposarcomas harbor MDM2 gene amplifications. In close relation to the gene locus of MDM2, HER3 (ERBB3) gene is present and co-amplification could occur. Since the group of HER/EGFR receptor tyrosine kinases and its inhibitors/antibodies play a role in a broad spectrum of oncological diseases and treatments, and some HER3 inhibitors/antibodies are already under clinical investigation, we hypothesized that in case of HER3 co-amplifications a tumor might bear a further potential therapeutic target. METHODS: We performed FISH analysis (MDM2, DDIT3, HER3) in 56 archived cases and subsequently performed reclassification to confirm the diagnosis of liposarcoma. RESULTS: Next to 16 out of 56 cases needed to be re-classified, in 20 out of 54 cases, a cluster-amplification of HER3 could be detected, significantly correlating with MDM2 amplification. Our study shows that the entity of liposarcomas show specific molecular characteristics leading to reclassify archived cases by modern, established methodologies. Additionally, in 57.1% of these cases, HER3 was cluster-amplified profusely, presenting a putative therapeutic target for targeted therapy. CONCLUSION: Our study serves as the initial basis for further investigation of the HER3 gene as a putative therapeutic target in liposarcoma.


Subject(s)
Gene Amplification , Liposarcoma , Proto-Oncogene Proteins c-mdm2 , Receptor, ErbB-3 , Humans , Liposarcoma/genetics , Liposarcoma/pathology , Liposarcoma/metabolism , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , In Situ Hybridization, Fluorescence , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Male , Prognosis , Middle Aged , Aged , Molecular Targeted Therapy/methods , Adult
2.
Cell Rep Med ; 5(5): 101558, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38733986

ABSTRACT

The investigation of the mechanisms behind p53 mutations in acute myeloid leukemia (AML) has been limited by the lack of suitable mouse models, which historically have resulted in lymphoma rather than leukemia. This study introduces two new AML mouse models. One model induces mutant p53 and Mdm2 haploinsufficiency in early development, showing the role of Mdm2 in myeloid-biased hematopoiesis and AML predisposition, independent of p53. The second model mimics clonal hematopoiesis by inducing mutant p53 in adult hematopoietic stem cells, demonstrating that the timing of p53 mutation determines AML vs. lymphoma development. In this context, age-related changes in hematopoietic stem cells (HSCs) collaborate with mutant p53 to predispose toward myeloid transformation rather than lymphoma development. Our study unveils new insights into the cooperative impact of HSC age, Trp53 mutations, and Mdm2 haploinsufficiency on clonal hematopoiesis and the development of myeloid malignancies.


Subject(s)
Clonal Hematopoiesis , Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Mutation , Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Clonal Hematopoiesis/genetics , Mice , Mutation/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Mice, Inbred C57BL , Haploinsufficiency/genetics , Disease Models, Animal , Hematopoiesis/genetics
3.
Commun Biol ; 7(1): 606, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769442

ABSTRACT

Well-differentiated liposarcoma (WDLS) displays amplification of genes on chromosome 12 (Chr12) in supernumerary ring or giant marker chromosomes. These structures have been suggested to develop through chromothripsis, followed by circularization and breakage-fusion-bridge (BFB) cycles. To test this hypothesis, we compared WDLSs with Chr12 amplification in rod-shaped chromosomes with WDLSs with rings. Both types of amplicons share the same spectrum of structural variants (SVs), show higher SV frequencies in Chr12 than in co-amplified segments, have SVs that fuse the telomeric ends of co-amplified chromosomes, and lack interspersed deletions. Combined with the finding of cells with transient rod-shaped structures in tumors with ring chromosomes, this suggests a stepwise process starting with the gain of Chr12 material that, after remodeling which does not fit with classical chromothripsis, forms a dicentric structure with other chromosomes. Depending on if and when telomeres from other chromosomes are captured, circularized or linear gain of 12q sequences will predominate.


Subject(s)
Gene Amplification , Liposarcoma , Proto-Oncogene Proteins c-mdm2 , Humans , Liposarcoma/genetics , Liposarcoma/pathology , Proto-Oncogene Proteins c-mdm2/genetics , Chromosomes, Human, Pair 12/genetics , Chromothripsis , Ring Chromosomes
4.
Mol Med ; 30(1): 67, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773379

ABSTRACT

BACKGROUND: Gouty arthritis (GA) is characterized by monosodium urate (MSU) crystal accumulation that instigates NLRP3-mediated pyroptosis; however, the underlying regulatory mechanisms have yet to be fully elucidated. The present research endeavors to elucidate the regulatory mechanisms underpinning this MSU-induced pyroptotic cascade in GA. METHODS: J774 cells were exposed to lipopolysaccharide and MSU crystals to establish in vitro GA models, whereas C57BL/6 J male mice received MSU crystal injections to mimic in vivo GA conditions. Gene and protein expression levels were evaluated using real-time quantitative PCR, Western blotting, and immunohistochemical assays. Inflammatory markers were quantified via enzyme-linked immunosorbent assays. Pyroptosis was evaluated using immunofluorescence staining for caspase-1 and flow cytometry with caspase-1/propidium iodide staining. The interaction between MDM2 and PPARγ was analyzed through co-immunoprecipitation assays, whereas the interaction between BRD4 and the MDM2 promoter was examined using chromatin immunoprecipitation and dual-luciferase reporter assays. Mouse joint tissues were histopathologically evaluated using hematoxylin and eosin staining. RESULTS: In GA, PPARγ was downregulated, whereas its overexpression mitigated NLRP3 inflammasome activation and pyroptosis. MDM2, which was upregulated in GA, destabilized PPARγ through the ubiquitin-proteasome degradation pathway, whereas its silencing attenuated NLRP3 activation by elevating PPARγ levels. Concurrently, BRD4 was elevated in GA and exacerbated NLRP3 activation and pyroptosis by transcriptionally upregulating MDM2, thereby promoting PPARγ degradation. In vivo experiments showed that BRD4 silencing ameliorated GA through this MDM2-PPARγ-pyroptosis axis. CONCLUSION: BRD4 promotes inflammation and pyroptosis in GA through MDM2-mediated PPARγ degradation, underscoring the therapeutic potential of targeting this pathway in GA management.


Subject(s)
Arthritis, Gouty , PPAR gamma , Proto-Oncogene Proteins c-mdm2 , Pyroptosis , Transcription Factors , Animals , PPAR gamma/metabolism , PPAR gamma/genetics , Arthritis, Gouty/metabolism , Arthritis, Gouty/genetics , Arthritis, Gouty/pathology , Arthritis, Gouty/chemically induced , Mice , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Male , Transcription Factors/metabolism , Transcription Factors/genetics , Disease Models, Animal , Proteolysis , Cell Line , Inflammasomes/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Uric Acid/metabolism , Bromodomain Containing Proteins , Nuclear Proteins
5.
Rev Esp Patol ; 57(2): 128-132, 2024.
Article in English | MEDLINE | ID: mdl-38599733

ABSTRACT

Primary hepatic liposarcoma is an extremely rare malignant tumour derived from adipocytes and is part of the group of mesenchymal tumours. We present the case of a 43-year-old Hispanic male patient with a pleomorphic hepatic liposarcoma and absence of MDM2 gene amplification. Two years and six months after surgery, the patient is asymptomatic. The present case is the first report of this entity with positive immunohistochemical testing for p16, p53, S100, vimentin and absence of MDM2 gene amplification.


Subject(s)
Liposarcoma , Proto-Oncogene Proteins c-mdm2 , Humans , Male , Adult , Proto-Oncogene Proteins c-mdm2/genetics , Liposarcoma/pathology , Adipocytes/pathology
6.
PLoS One ; 19(4): e0302407, 2024.
Article in English | MEDLINE | ID: mdl-38640125

ABSTRACT

Xinnaotongluo liquid has been used to improve the clinical symptoms of patients with myocardial infarction. However, the molecular mechanism of Xinnaotongluo liquid is not completely understood. H9c2 cells exposed to hypoxia/reoxygenation (H/R) was used to simulate damage to cardiomyocytes in myocardial infarction in vitro. The biological indicators of H9c2 cells were measured by cell counting kit-8, enzyme linked immunoabsorbent assay, and western blot assay. In H/R-induced H9c2 cells, a markedly reduced murine double minute 2 (MDM2) was observed. However, the addition of Xinnaotongluo liquid increased MDM2 expression in H/R-induced H9c2 cells. And MDM2 overexpression strengthened the beneficial effects of Xinnaotongluo liquid on H9c2 cells from the perspective of alleviating oxidative damage, cellular inflammation, apoptosis and ferroptosis of H/R-induced H9c2 cells. Moreover, MDM2 overexpression reduced the protein expression of p53 and Six-Transmembrane Epithelial Antigen of Prostate 3 (STEAP3). Whereas, STEAP3 overexpression hindered the function of MDM2-overexpression in H/R-induced H9c2 cells. Our results insinuated that Xinnaotongluo liquid could protect H9c2 cells from H/R-induced damage by regulating MDM2/STEAP3, which provide a potential theoretical basis for further explaining the working mechanism of Xinnaotongluo liquid.


Subject(s)
Drugs, Chinese Herbal , Hypoxia , Myocardial Infarction , Animals , Male , Apoptosis/drug effects , Cell Hypoxia , Hypoxia/drug therapy , Hypoxia/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Rats , Drugs, Chinese Herbal/pharmacology
7.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612758

ABSTRACT

The prevention of tumor recurrence by the successful targeting of glioma stem cells endowed with a tumor-initiating capacity is deemed the key to the long-term survival of glioblastoma patients. Glioma stem cells are characterized by their marked therapeutic resistance; however, recent evidence suggests that they have unique vulnerabilities that may be therapeutically targeted. We investigated MDM2 expression levels in glioma stem cells and their non-stem cell counterparts and the effects of the genetic and pharmacological inhibition of MDM2 on the viability of these cells as well as downstream molecular pathways. The results obtained showed that MDM2 expression was substantially higher in glioma stem cells than in their non-stem cell counterparts and also that the inhibition of MDM2, either genetically or pharmacologically, induced a more pronounced activation of the p53 pathway and apoptotic cell death in the former than in the latter. Specifically, the inhibition of MDM2 caused a p53-dependent increase in the expression of BAX and PUMA and a decrease in the expression of survivin, both of which significantly contributed to the apoptotic death of glioma stem cells. The present study identified the MDM2-p53 axis as a novel therapeutic vulnerability, or an Achilles' heel, which is unique to glioma stem cells. Our results, which suggest that non-stem, bulk tumor cells are less sensitive to MDM2 inhibitors, may help guide the selection of glioblastoma patients suitable for MDM2 inhibitor therapy.


Subject(s)
Glioblastoma , Glioma , Humans , Tumor Suppressor Protein p53/genetics , Glioma/drug therapy , Glioma/genetics , Apoptosis , Neoplastic Stem Cells , Proto-Oncogene Proteins c-mdm2/genetics
9.
J Biol Chem ; 300(4): 107209, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519029

ABSTRACT

FOXO1 is a transcription factor and potential tumor suppressor that is negatively regulated downstream of PI3K-PKB/AKT signaling. Paradoxically, FOXO also promotes tumor growth, but the detailed mechanisms behind this role of FOXO are not fully understood. In this study, we revealed a molecular cascade by which the Thr24 residue of FOXO1 is phosphorylated by AKT and is dephosphorylated by calcineurin, which is a Ca2+-dependent protein phosphatase. Curiously, single nucleotide somatic mutations of FOXO1 in cancer occur frequently at and near Thr24. Using a calcineurin inhibitor and shRNA directed against calcineurin, we revealed that calcineurin-mediated dephosphorylation of Thr24 regulates FOXO1 protein stability. We also found that FOXO1 binds to the promoter region of MDM2 and activates transcription, which in turn promotes MDM2-mediated ubiquitination and degradation of p53. FOXO3a and FOXO4 are shown to control p53 activity; however, the significance of FOXO1 in p53 regulation remains largely unknown. Supporting this notion, FOXO1 depletion increased p53 and p21 protein levels in association with the inhibition of cell proliferation. Taken together, these results indicate that FOXO1 is stabilized by calcineurin-mediated dephosphorylation and that FOXO1 supports cancer cell proliferation by promoting MDM2 transcription and subsequent p53 degradation.


Subject(s)
Calcineurin , Cell Proliferation , Forkhead Box Protein O1 , Proteolysis , Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Calcineurin/metabolism , Calcineurin/genetics , Phosphorylation , Ubiquitination , Cell Line, Tumor , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Protein Stability
10.
Cancer Treat Rev ; 125: 102716, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492514

ABSTRACT

Well-differentiated liposarcomas (WDLPS) and dedifferentiated liposarcomas (DDLPS) account for 60 % of all liposarcomas, reflecting the heterogeneity of this type of sarcoma. Genetically, both types of liposarcomas are characterized by the amplification of MDM2 and CDK4 genes, which indicates an important molecular event with diagnostic and therapeutic relevance. In both localized WDLPS and DDLPS of the retroperitoneum and the extremities, between 25 % and 30 % of patients have local or distant recurrence, even when perioperatively treated, with clear margins present. The systemic treatment of WDLPS and DDLPS remains a challenge, with anthracyclines as the gold standard for first-line treatment. Several regimens have been tested with modest results regarding their efficacy. Herein we discuss the systemic treatment options for WDLPS and DDLPS and review their reported clinical efficacy results.


Subject(s)
Liposarcoma , Soft Tissue Neoplasms , Humans , Siblings , Liposarcoma/drug therapy , Liposarcoma/genetics , Soft Tissue Neoplasms/diagnosis , Treatment Outcome , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/therapeutic use
11.
Zhonghua Bing Li Xue Za Zhi ; 53(3): 237-242, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38433050

ABSTRACT

Objective: To investigate the diagnostic value of detecting MDM2 gene amplification by fluorescence in situ hybridization (FISH) in low-grade osteosarcoma (LGOS). Methods: Thirty cases of parosteal osteosarcoma (POS) and 14 cases of low-grade central osteosarcoma (LGCOS) from April 2009 to August 2022 at Beijing Jishuitan Hospital, Capital Medical University were analyzed for the presence of MDM2 gene amplification by FISH. Fifty-eight additional cases were used as negative controls (including 28 cases of fibrous dysplasia, 5 cases of giant cell tumor, 4 cases of conventional osteosarcoma, 2 cases each of periosteal osteosarcoma, reparative changes after fracture, pleomorphic undifferentiated sarcoma, low grade myofibroblastic sarcoma, fibrous dysplasia with malignant transformation, one case each of leiomyosarcoma, sclerosing epithelioid fibrosarcoma, malignant peripheral nerve sheath tumor, desmoplastic fibroma of bone, solitary fibrous tumor, aneurysmal bone cyst, clear cell chondrosarcoma, osteofibrous dysplasia, and 3 cases of unclassified spindle cell tumor). Results: Among the 30 patients with POS, 15 were male and 15 were female, ranging in age from 10 to 59 years (mean 35 years, median 30.5 years). Among the 14 patients with LGCOS, four were male and 10 were female, ranging in age from 15 to 56 years (mean 37 years, median 36 years). All except one case were successfully detected by FISH. MDM2 gene amplification was detected in 27 cases of POS (27/29,91.3%) and 8 cases of LGCOS (8/14). All the negative controls were negative for MDM2 gene amplification. The positive rate of MDM2 gene amplification was significantly different between the case group and the control group (P<0.05). The sensitivity and specificity of MDM2 gene amplification in diagnosing POS and LGCOS were 91.3% and 100.0%; and 57.1% and 100.0%, respectively. The sensitivity and specificity of MDM2 gene amplification in diagnosing LGOS (including POS and LGCOS) were 81.3% and 100.0%, respectively. In cases where MDM2 gene was amplified, the MDM2 amplified signal was clustered. Nine cases showed increased CEP12 signal different from polyploidy which was displayed as small and weak signal points or cloud flocculent and cluster signals. Conclusions: Detection of MDM2 gene amplification by FISH is a highly sensitive and specific marker for LGOS. The interpretation criteria for FISH detection of MDM2 amplification are currently not unified. The signal characteristics need more attention when interpreting.


Subject(s)
Bone Neoplasms , Fibrosarcoma , Osteosarcoma , Sarcoma , Humans , Female , Male , Child , Adolescent , Young Adult , Adult , Middle Aged , Gene Amplification , In Situ Hybridization, Fluorescence , Osteosarcoma/diagnosis , Osteosarcoma/genetics , Bone Neoplasms/diagnosis , Bone Neoplasms/genetics , Proto-Oncogene Proteins c-mdm2/genetics
12.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396916

ABSTRACT

Ameloblastoma is a rare tumor but represents the most common odontogenic neoplasm. It is localized in the jaws and, although it is a benign, slow-growing tumor, it has an aggressive local behavior and high recurrence rate. Therefore, alternative treatment options or complementary to surgery have been evaluated, with the most promising one among them being a targeted therapy with the v-Raf murine sarcoma viral oncogene homologue B (BRAF), as in ameloblastoma the activating mutation V600E in BRAF is common. Studies in other tumors have shown that the synchronous inhibition of BRAF and human murine double minute 2 homologue (MDM2 or HDM2) protein is more effective than BRAF monotherapy, particularly in the presence of wild type p53 (WTp53). To investigate the MDM2 protein expression and gene amplification in ameloblastoma, in association with BRAFV600E and p53 expression. Forty-four cases of ameloblastoma fixed in 10% buffered formalin and embedded in paraffin were examined for MDM2 overexpression and BRAFV600E and p53 expression by immunohistochemistry, and for MDM2 ploidy with fluorescence in situ hybridization. Sixteen of forty-four (36.36%) cases of ameloblastoma showed MDM2 overexpression. Seven of sixteen MDM2-positive ameloblastomas (43.75%) were BRAFV600E positive and fifteen of sixteen MDM2-positive ameloblastomas (93.75%) were p53 negative. All MDM2 overexpressing tumors did not show copy number alterations for MDM2. Overexpression of MDM2 in ameloblastomas is not associated with MDM2 amplification, but most probably with MAPK activation and WTp53 expression. Further verification of those findings could form the basis for the use of MDM2 expression as a marker of MAPK activation in ameloblastomas and the trial of dual BRAF/MDM2 inhibition in the management of MDM2-overexpressing/BRAFV600E-positive/WTp53 ameloblastomas.


Subject(s)
Ameloblastoma , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins c-mdm2 , Animals , Humans , Mice , Ameloblastoma/genetics , Ameloblastoma/metabolism , In Situ Hybridization, Fluorescence , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/genetics
13.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38301272

ABSTRACT

The transcription factor and cell cycle regulator p53 is marked for degradation by the ubiquitin ligase MDM2. The interaction between these 2 proteins is mediated by a conserved binding motif in the disordered p53 transactivation domain (p53TAD) and the folded SWIB domain in MDM2. The conserved motif in p53TAD from zebrafish displays a 20-fold weaker interaction with MDM2, compared to the interaction in human and chicken. To investigate this apparent difference, we tracked the molecular evolution of the p53TAD/MDM2 interaction among ray-finned fishes (Actinopterygii), the largest vertebrate clade. Intriguingly, phylogenetic analyses, ancestral sequence reconstructions, and binding experiments showed that different loss-of-affinity changes in the canonical binding motif within p53TAD have occurred repeatedly and convergently in different fish lineages, resulting in relatively low extant affinities (KD = 0.5 to 5 µM). However, for 11 different fish p53TAD/MDM2 interactions, nonconserved regions flanking the canonical motif increased the affinity 4- to 73-fold to be on par with the human interaction. Our findings suggest that compensating changes at conserved and nonconserved positions within the motif, as well as in flanking regions of low conservation, underlie a stabilizing selection of "functional affinity" in the p53TAD/MDM2 interaction. Such interplay complicates bioinformatic prediction of binding and calls for experimental validation. Motif-mediated protein-protein interactions involving short binding motifs and folded interaction domains are very common across multicellular life. It is likely that the evolution of affinity in motif-mediated interactions often involves an interplay between specific interactions made by conserved motif residues and nonspecific interactions by nonconserved disordered regions.


Subject(s)
Tumor Suppressor Protein p53 , Zebrafish , Animals , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Phylogeny , Protein Structure, Tertiary , Protein Binding , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism
14.
Hum Pathol ; 145: 63-70, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38423223

ABSTRACT

INTRODUCTION: Dedifferentiation occurs in approximately 10% of atypical lipomatous tumors/well-differentiated liposarcomas (ALT/WDLPS), primarily in retroperitoneal or deep-seated tumors, conferring metastatic potential. Superficial dedifferentiated liposarcoma (sDDLPS) is rare, and its progression and natural history are poorly documented. METHODS: We performed a 15-year retrospective review of our pathology database to identify cases of DDLPS in the skin or subcutaneous tissue. Diagnosis of primary sDDLPS required evidence of non-lipogenic sarcoma in the skin or subcutis, with concurrent ALT/WDLPS and/or MDM2 amplification. RESULTS: We identified 14 cases of DDLPS involving skin or subcutis: 7 primary sDDLPS and 7 secondary lesions (3 from recurrent deep DDLPS and 4 from metastasis). Primary sDDLPS cases (4 females, 3 males; median age: 74) mainly presented as undifferentiated spindle cell or pleomorphic sarcoma. Tumor grades were grade 2 (5 cases) and grade 3 (2 cases), with three cases also showing grade 1 areas. MDM2 amplification was confirmed in 6 sDDLPSs for which FISH was successfully performed. Follow-up available for 6 sDDLPS patients showed 2 local recurrences, treated with re-excision and radiation therapy, with all disease-free at last follow-up (5-126 months). Of the 7 secondary cases, 2 had ongoing disease after multiple recurrences, 1 was disease-free, and all 4 with cutaneous metastasis died of disease (follow-up range: 24-263 months). CONCLUSION: These findings emphasize the importance of distinguishing between primary sDDLPS and secondary lesions due to their distinct prognoses. Metastasis or superficial extensions from deep DDLP correlate with a considerably worse prognosis than those originating in superficial tissues.


Subject(s)
Lipoma , Liposarcoma , Sarcoma , Skin Neoplasms , Female , Male , Humans , Aged , Skin , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Liposarcoma/genetics , Proto-Oncogene Proteins c-mdm2/genetics
15.
J Biomed Sci ; 31(1): 17, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38281981

ABSTRACT

MDM2 has been established as a biomarker indicating poor prognosis for individuals undergoing immune checkpoint inhibitor (ICI) treatment for different malignancies by various pancancer studies. Specifically, patients who have MDM2 amplification are vulnerable to the development of hyperprogressive disease (HPD) following anticancer immunotherapy, resulting in marked deleterious effects on survival rates. The mechanism of MDM2 involves its role as an oncogene during the development of malignancy, and MDM2 can promote both metastasis and tumor cell proliferation, which indirectly leads to disease progression. Moreover, MDM2 is vitally involved in modifying the tumor immune microenvironment (TIME) as well as in influencing immune cells, eventually facilitating immune evasion and tolerance. Encouragingly, various MDM2 inhibitors have exhibited efficacy in relieving the TIME suppression caused by MDM2. These results demonstrate the prospects for breakthroughs in combination therapy using MDM2 inhibitors and anticancer immunotherapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Disease Progression , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/drug therapy , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/genetics , Tumor Microenvironment
16.
Nat Rev Cancer ; 24(3): 192-215, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38287107

ABSTRACT

Inactivation of the most important tumour suppressor gene TP53 occurs in most, if not all, human cancers. Loss of functional wild-type p53 is achieved via two main mechanisms: mutation of the gene leading to an absence of tumour suppressor activity and, in some cases, gain-of-oncogenic function; or inhibition of the wild-type p53 protein mediated by overexpression of its negative regulators MDM2 and MDMX. Because of its high potency as a tumour suppressor and the dependence of at least some established tumours on its inactivation, p53 appears to be a highly attractive target for the development of new anticancer drugs. However, p53 is a transcription factor and therefore has long been considered undruggable. Nevertheless, several innovative strategies have been pursued for targeting dysfunctional p53 for cancer treatment. In mutant p53-expressing tumours, the predominant strategy is to restore tumour suppressor function with compounds acting either in a generic manner or otherwise selective for one or a few specific p53 mutations. In addition, approaches to deplete mutant p53 or to target vulnerabilities created by mutant p53 expression are currently under development. In wild-type p53 tumours, the major approach is to protect p53 from the actions of MDM2 and MDMX by targeting these negative regulators with inhibitors. Although the results of at least some clinical trials of MDM2 inhibitors and mutant p53-restoring compounds are promising, none of the agents has yet been approved by the FDA. Alternative strategies, based on a better understanding of p53 biology, the mechanisms of action of compounds and treatment regimens as well as the development of new technologies are gaining interest, such as proteolysis-targeting chimeras for MDM2 degradation. Other approaches are taking advantage of the progress made in immune-based therapies for cancer. In this Review, we present these ongoing clinical trials and emerging approaches to re-evaluate the current state of knowledge of p53-based therapies for cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53 , Neoplasms/drug therapy , Neoplasms/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mutation
17.
J Exp Clin Cancer Res ; 43(1): 16, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200609

ABSTRACT

BACKGROUND: As a novel necrosis manner, ferroptosis has been increasingly reported to play a role in tumor progression and treatment, however, the specific mechanisms underlying its development in prostate cancer remain unclear. Growing evidence showed that peroxisome plays a key role in ferroptosis. Herein, we identified a novel mechanism for the involvement of ferroptosis in prostate cancer progression, which may provide a new strategy for clinical treatment of prostate cancer. METHODS: Label-Free Mass spectrometry was used to screen and identify candidate proteins after ferroptosis inducer-ML210 treatment. Immunohistochemistry was undertaken to explore the protein expression of AGPS in prostate cancer tissues compared with normal tissues. Co-immunoprecipitation and GST pull-down were used to identify the directly binding of AGPS to MDM2 in vivo and in vitro. CCK8 assay and colony formation assay were used to illustrate the key role of AGPS in the progression of prostate cancer in vitro. The xenograft model was established to verify the key role of AGPS in the progression of prostate cancer in vivo. RESULTS: AGPS protein expression was downregulated in prostate cancer tissues compared with normal tissues from the first affiliated hospital of Zhengzhou University dataset. Lower expression was correlated with poorer overall survival of patients compared to those with high expression of AGPS. In addition, AGPS can promote ferroptosis by modulating the function of peroxisome-resulting in the lower survival of prostate cancer cells. Furthermore, it was shown that AGPS can be ubiquitinated and degraded by the E3 ligase-MDM2 through the proteasomal pathway. Meanwhile, kinase TrkA can promote the combination of AGPS and MDM2 by phosphorylating AGPS at Y451 site. It was verified that kinase TrkA inhibitor-Larotrectinib can increase the susceptibility of prostate cancer cells to ferroptosis, which leads to the inhibition of prostate cancer proliferation to a great extent in vitro and in vivo. CONCLUSION: Based on these findings, we proposed the combination of ferroptosis inducer and TrkA inhibitor to synergistically exert anti-tumor effects, which may provide a new strategy for the clinical treatment of prostate cancer.


Subject(s)
Prostatic Neoplasms , Humans , Male , Prostate , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Receptor Protein-Tyrosine Kinases , Ubiquitin , Ubiquitination
18.
Zhonghua Bing Li Xue Za Zhi ; 53(2): 168-173, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38281785

ABSTRACT

Objective: To investigate the clinicopathological and molecular genetic characteristics of well-differentiated/dedifferentiated liposarcoma (WDLPS/DDLPS) with myxoid-like morphology, and to distinguish them from myxofibrosarcoma (MFS) with similar morphology. Methods: Twenty-nine cases of myxoid-like liposarcoma and 5 cases of MFS were collected from Henan Provincial People's Hospital, Zhengzhou, China and the First Medical Center of PLA General Hospital, Beijing, China from January 2015 to March 2023. Relevant markers were detected using immunohistochemistry and fluorescence in situ hybridization (FISH). The literature was also reviewed. Results: There were 24 males and 10 females, with ages ranging from 41 to 73 years. The tumor sites included retroperitoneum (n=17), abdomen (n=9), lower limbs (n=5), scrotum (n=1), upper limb (n=1) and axilla (n=1). WDLPS was commonly seen as lipomatoid type (12 cases), while the dedifferentiated components of DDLPS included low-grade (13 cases) and high-grade (2 cases) morphology, with low-high grade myxofibrosarcoma, dermatofibrosarcoma protuberans, and low-grade fibrosarcoma structures. Twenty-nine liposarcomas had various proportions of myxoid-like morphology, while 16 showed various degrees of tumor necrosis. The myxoid-like component showed myxoid pleomorphic liposarcoma (MLPS)-like morphology, lobulated growth, characteristic slender, ramified capillary network,"chicken claw-like"morphology, mucus-rich stroma and lung edema-like morphology. Tumor cells were spindle and oval, with many variable vacuolar lipoblasts. MDM2 gene amplification was detected using FISH and present in all tested cases (29/29). DDIT3 break-apart mutation was not detected, but its cluster amplification was present (24/29). Among the MFS cases, one showed cluster amplification (1/5), but no cases showed break-apart or amplification of MDM2 gene. Conclusions: WDLPS/DDLPS with myxoid-like morphology is most commonly seen in the retroperitoneum and abdominal cavity and mostly harbors DDIT3 break-apart probe amplification, while this amplification is not specific to liposarcoma. For core biopsy specimens or very rare tumors in the limbs, when histology has mucinous stroma and MLPS-like morphology, misdiagnosis of MLPS or other non-lipomatous neoplasms with myxoid morphology should be avoided.


Subject(s)
Fibrosarcoma , Lipoma , Liposarcoma, Myxoid , Liposarcoma , Male , Female , Adult , Humans , In Situ Hybridization, Fluorescence , Liposarcoma/pathology , Lipoma/pathology , Molecular Biology , Proto-Oncogene Proteins c-mdm2/genetics , Liposarcoma, Myxoid/genetics , Liposarcoma, Myxoid/pathology
19.
J Biol Chem ; 300(2): 105651, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237679

ABSTRACT

Mouse Double Minute 2 (MDM2) is a key negative regulator of the tumor suppressor protein p53. MDM2 overexpression occurs in many types of cancer and results in the suppression of WT p53. The 14-3-3 family of adaptor proteins are known to bind MDM2 and the 14-3-3σ isoform controls MDM2 cellular localization and stability to inhibit its activity. Therefore, small molecule stabilization of the 14-3-3σ/MDM2 protein-protein interaction (PPI) is a potential therapeutic strategy for the treatment of cancer. Here, we provide a detailed biophysical and structural characterization of the phosphorylation-dependent interaction between 14-3-3σ and peptides that mimic the 14-3-3 binding motifs within MDM2. The data show that di-phosphorylation of MDM2 at S166 and S186 is essential for high affinity 14-3-3 binding and that the binary complex formed involves one MDM2 di-phosphorylated peptide bound to a dimer of 14-3-3σ. However, the two phosphorylation sites do not simultaneously interact so as to bridge the 14-3-3 dimer in a 'multivalent' fashion. Instead, the two phosphorylated MDM2 motifs 'rock' between the two binding grooves of the dimer, which is unusual in the context of 14-3-3 proteins. In addition, we show that the 14-3-3σ-MDM2 interaction is amenable to small molecule stabilization. The natural product fusicoccin A forms a ternary complex with a 14-3-3σ dimer and an MDM2 di-phosphorylated peptide resulting in the stabilization of the 14-3-3σ/MDM2 PPI. This work serves as a proof-of-concept of the drugability of the 14-3-3/MDM2 PPI and paves the way toward the development of more selective and efficacious small molecule stabilizers.


Subject(s)
14-3-3 Proteins , Proto-Oncogene Proteins c-mdm2 , Peptides/metabolism , Protein Binding , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism
20.
Int J Surg Pathol ; 32(1): 46-57, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37131332

ABSTRACT

Background. Lipomas are common superficial soft tissue tumors of mature adipocytes. In contrast, well-differentiated/dedifferentiated liposarcoma typically presents in the retroperitoneum as large masses. We provide clinicopathologic and follow-up details of 9 retroperitoneal/intra-abdominal benign lipomatous tumors (BLT) and discuss the utility of ancillary fluorescence in situ hybridization (FISH) in distinguishing from their malignant counterparts. Design. Clinicopathologic details and histology of 9 intra-abdominal and retroperitoneal lipomas were studied along with ancillary CD10 immunohistochemistry (IHC) and FISH for MDM2 and CDK4 amplification. Results. There were 6 females and 3 males. Median age at diagnosis was 52 years (range 36-81 years). Seven were identified incidentally and 2 presented with primary complaints. On imaging, 7 were considered suspicious for liposarcoma. Grossly, the tumors ranged from 3.4 to 41.2 cm (median 16.5 cm). Histologically, all cases showed well-differentiated BLT, further classified as lipoma (n = 7; 1 with metaplastic ossification, 2 with prominent vessels, and 4 ordinary lipomas) and lipoma-like hibernoma (n = 2)-the latter 2 showed intramuscular lesions with interspersed brown fat. CD10 IHC showed strong staining in the 2 hibernomas, whereas the staining was weak in the remaining. MDM2 and CDK4 amplification were negative by FISH in all. Follow-up (median 18 months) did not show recurrence on clinical or imaging evaluation. Conclusion. Retroperitoneal/intra-abdominal BLT are extremely rare and are indistinguishable clinically and radiographically from liposarcoma. This necessitates molecular confirmation even when the histology is convincingly benign, for a confident diagnosis. Our cohort shows that conservative excision without removal of abutted organs is sufficient in most cases.


Subject(s)
Lipoma , Liposarcoma , Male , Female , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , In Situ Hybridization, Fluorescence/methods , Proto-Oncogene Proteins c-mdm2/genetics , Cyclin-Dependent Kinase 4/genetics , Biomarkers, Tumor , Liposarcoma/diagnosis , Liposarcoma/genetics , Lipoma/diagnosis , Lipoma/genetics , Lipoma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...