Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.292
Filter
1.
Sci Rep ; 14(1): 10527, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719885

ABSTRACT

Plasmodium falciparum, the causative agent of malaria, poses a significant global health challenge, yet much of its biology remains elusive. A third of the genes in the P. falciparum genome lack annotations regarding their function, impeding our understanding of the parasite's biology. In this study, we employ structure predictions and the DALI search algorithm to analyse proteins encoded by uncharacterized genes in the reference strain 3D7 of P. falciparum. By comparing AlphaFold predictions to experimentally determined protein structures in the Protein Data Bank, we found similarities to known domains in 353 proteins of unknown function, shedding light on their potential functions. The lowest-scoring 5% of similarities were additionally validated using the size-independent TM-align algorithm, confirming the detected similarities in 88% of the cases. Notably, in over 70 P. falciparum proteins the presence of domains resembling heptatricopeptide repeats, which are typically involvement in RNA binding and processing, was detected. This suggests this family, which is important in transcription in mitochondria and apicoplasts, is much larger in Plasmodium parasites than previously thought. The results of this domain search provide a resource to the malaria research community that is expected to inform and enable experimental studies.


Subject(s)
Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Algorithms , Protein Domains , Databases, Protein , Models, Molecular
2.
Malar J ; 23(1): 151, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755636

ABSTRACT

BACKGROUND: Sporozoite invasion of hepatocytes is an essential step in the Plasmodium life-cycle and has similarities, at the cellular level, to merozoite invasion of erythrocytes. In the case of the Plasmodium blood-stage, efforts to identify host-pathogen protein-protein interactions have yielded important insights including vaccine candidates. In the case of sporozoite-hepatocyte invasion, the host-pathogen protein-protein interactions involved are poorly understood. METHODS: To gain a better understanding of the protein-protein interaction between the sporozoite ligands and host receptors, a systematic screen was performed. The previous Plasmodium falciparum and human surface protein ectodomain libraries were substantially extended, resulting in the creation of new libraries comprising 88 P. falciparum sporozoite protein coding sequences and 182 sequences encoding human hepatocyte surface proteins. Having expressed recombinant proteins from these sequences, a plate-based assay was used, capable of detecting low affinity interactions between recombinant proteins, modified for enhanced throughput, to screen the proteins for interactions. The novel interactions identified in the screen were characterized biochemically, and their essential role in parasite invasion was further elucidated using antibodies and genetically manipulated Plasmodium parasites. RESULTS: A total of 7540 sporozoite-hepatocyte protein pairs were tested under conditions capable of detecting interactions of at least 1.2 µM KD. An interaction between the human fibroblast growth factor receptor 4 (FGFR4) and the P. falciparum protein Pf34 is identified and reported here, characterizing its affinity and demonstrating the blockade of the interaction by reagents, including a monoclonal antibody. Furthermore, further interactions between Pf34 and a second P. falciparum rhoptry neck protein, PfRON6, and between human low-density lipoprotein receptor (LDLR) and the P. falciparum protein PIESP15 are identified. Conditional genetic deletion confirmed the essentiality of PfRON6 in the blood-stage, consistent with the important role of this protein in parasite lifecycle. Pf34 was refractory to attempted genetic modification. Antibodies to Pf34 abrogated the interaction and had a modest effect upon sporozoite invasion into primary human hepatocytes. CONCLUSION: Pf34 and PfRON6 may be members of a functionally important invasion complex which could be a target for future interventions. The modified interaction screening assay, protein expression libraries and P. falciparum mutant parasites reported here may be a useful tool for protein interaction discovery and antigen candidate screening which could be of wider value to the scientific community.


Subject(s)
Hepatocytes , Plasmodium falciparum , Protozoan Proteins , Sporozoites , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Hepatocytes/parasitology , Humans , Sporozoites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Host-Pathogen Interactions , Membrane Proteins/genetics , Membrane Proteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Host-Parasite Interactions , Protein Binding
3.
Nat Commun ; 15(1): 4385, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782906

ABSTRACT

The parasite Toxoplasma gondii persists in its hosts by converting from replicating tachyzoites to latent bradyzoites housed in tissue cysts. The molecular mechanisms that mediate T. gondii differentiation remain poorly understood. Through a mutagenesis screen, we identified translation initiation factor eIF1.2 as a critical factor for T. gondii differentiation. A F97L mutation in eIF1.2 or the genetic ablation of eIF1.2 (∆eif1.2) markedly impeded bradyzoite cyst formation in vitro and in vivo. We demonstrated, at single-molecule level, that the eIF1.2 F97L mutation impacts the scanning process of the ribosome preinitiation complex on a model mRNA. RNA sequencing and ribosome profiling experiments unveiled that ∆eif1.2 parasites are defective in upregulating bradyzoite induction factors BFD1 and BFD2 during stress-induced differentiation. Forced expression of BFD1 or BFD2 significantly restored differentiation in ∆eif1.2 parasites. Together, our findings suggest that eIF1.2 functions by regulating the translation of key differentiation factors necessary to establish chronic toxoplasmosis.


Subject(s)
Toxoplasma , Toxoplasma/metabolism , Toxoplasma/genetics , Animals , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Toxoplasmosis/parasitology , Toxoplasmosis/metabolism , Mice , Mutation , Ribosomes/metabolism , Protein Biosynthesis , Female , RNA, Messenger/metabolism , RNA, Messenger/genetics , Cell Differentiation , Humans
4.
Parasit Vectors ; 17(1): 242, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812022

ABSTRACT

BACKGROUND: Proteases produced by Acanthamoeba spp. play an important role in their virulence and may be the key to understanding Acanthamoeba pathogenesis; thus, increasing attention has been directed towards these proteins. The present study aimed to investigate the lytic factors produced by Acanthamoeba castellanii during the first hours of in vitro co-culture with human corneal epithelial cells (HCECs). METHODS: We used one old and one recent Acanthamoeba isolate, both from patients with severe keratitis, and subsets of these strains with enhanced pathogenic potential induced by sequential passaging over HCEC monolayers. The proteolytic profiles of all strains and substrains were examined using 1D in-gel zymography. RESULTS: We observed the activity of additional proteases (ranging from 33 to 50 kDa) during the early interaction phase between amoebae and HCECs, which were only expressed for a short time. Based on their susceptibilities to protease inhibitors, these proteases were characterized as serine proteases. Protease activities showed a sharp decline after 4 h of co-incubation. Interestingly, the expression of Acanthamoeba mannose-binding protein did not differ between amoebae in monoculture and those in co-culture. Moreover, we observed the activation of matrix metalloproteinases in HCECs after contact with Acanthamoeba. CONCLUSIONS: This study revealed the involvement of two novel serine proteases in Acanthamoeba pathogenesis and suggests a pivotal role of serine proteases during Acanthamoeba-host cell interaction, contributing to cell adhesion and lysis.


Subject(s)
Acanthamoeba castellanii , Coculture Techniques , Epithelial Cells , Epithelium, Corneal , Peptide Hydrolases , Humans , Acanthamoeba castellanii/enzymology , Acanthamoeba castellanii/genetics , Epithelial Cells/parasitology , Epithelium, Corneal/parasitology , Epithelium, Corneal/enzymology , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Acanthamoeba Keratitis/parasitology , Serine Proteases/metabolism , Serine Proteases/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Virulence
5.
Protein J ; 43(3): 613-626, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38743189

ABSTRACT

Glutathione-S-transferase enzymes (GSTs) are essential components of the phase II detoxification system and protect organisms from oxidative stress induced by xenobiotics and harmful toxins such as 1-chloro-2,4-dinitrobenzene (CDNB). In Tetrahymena thermophila, the TtGSTm34 gene was previously reported to be one of the most responsive GST genes to CDNB treatment (LD50 = 0.079 mM). This study aimed to determine the kinetic features of recombinantly expressed and purified TtGSTm34 with CDNB and glutathione (GSH). TtGSTm34-8xHis was recombinantly produced in T. thermophila as a 25-kDa protein after the cloning of the 660-bp full-length ORF of TtGSTm34 into the pIGF-1 vector. A three-dimensional model of the TtGSTm34 protein constructed by the AlphaFold and PyMOL programs confirmed that it has structurally conserved and folded GST domains. The recombinant production of TtGSTm34-8xHis was confirmed by SDS‒PAGE and Western blot analysis. A dual-affinity chromatography strategy helped to purify TtGSTm34-8xHis approximately 3166-fold. The purified recombinant TtGSTm34-8xHis exhibited significantly high enzyme activity with CDNB (190 µmol/min/mg) as substrate. Enzyme kinetic analysis revealed Km values of 0.68 mM with GSH and 0.40 mM with CDNB as substrates, confirming its expected high affinity for CDNB. The optimum pH and temperature were determined to be 7.0 and 25 °C, respectively. Ethacrynic acid inhibited fully TtGSTm34-8xHis enzyme activity. These results imply that TtGSTm34 of T. thermophila plays a major role in the detoxification of xenobiotics, such as CDNB, as a first line of defense in aquatic protists against oxidative damage.


Subject(s)
Cloning, Molecular , Glutathione Transferase , Protozoan Proteins , Recombinant Proteins , Tetrahymena thermophila , Glutathione Transferase/genetics , Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Tetrahymena thermophila/enzymology , Tetrahymena thermophila/genetics , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Kinetics , Dinitrochlorobenzene/chemistry , Dinitrochlorobenzene/metabolism , Gene Expression , Glutathione/metabolism , Glutathione/chemistry
6.
PLoS Negl Trop Dis ; 18(5): e0012179, 2024 May.
Article in English | MEDLINE | ID: mdl-38758959

ABSTRACT

BACKGROUND: During its life cycle, the human pathogen Trypanosoma cruzi must quickly adapt to different environments, in which the variation in the gene expression of the regulatory U-rich RNA-binding protein 1 (TcUBP1) plays a crucial role. We have previously demonstrated that the overexpression of TcUBP1 in insect-dwelling epimastigotes orchestrates an RNA regulon to promote differentiation to infective forms. METHODS: In an attempt to generate TcUBP1 knockout parasites by using CRISPR-Cas9 technology, in the present study, we obtained a variant transcript that encodes a protein with 95% overall identity and a modified N-terminal sequence. The expression of this mutant protein, named TcUBP1mut, was notably reduced compared to that of the endogenous form found in normal cells. TcUBP1mut-knockdown epimastigotes exhibited normal growth and differentiation into infective metacyclic trypomastigotes and were capable of infecting mammalian cells. RESULTS: We analyzed the RNA-Seq expression profiles of these parasites and identified 276 up- and 426 downregulated genes with respect to the wildtype control sample. RNA-Seq comparison across distinct developmental stages revealed that the transcriptomic profile of these TcUBP1mut-knockdown epimastigotes significantly differs not only from that of epimastigotes in the stationary phase but also from the gene expression landscape characteristic of infective forms. This is both contrary to and consistent with the results of our recent study involving TcUBP1-overexpressing cells. CONCLUSION: Together, our findings demonstrate that the genes exhibiting opposite changes under overexpression and knockdown conditions unveil key mRNA targets regulated by TcUBP1. These mostly encompass transcripts that encode for trypomastigote-specific surface glycoproteins and ribosomal proteins, supporting a role for TcUBP1 in determining the molecular characteristics of the infective stage.


Subject(s)
Protozoan Proteins , RNA-Binding Proteins , Trypanosoma cruzi , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Gene Expression Profiling , Animals , Gene Knockdown Techniques , Transcriptome , Humans , Mutation , Life Cycle Stages/genetics
7.
Sci Rep ; 14(1): 10039, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38693166

ABSTRACT

According to the World Health Organization, Chagas disease (CD) is the most prevalent poverty-promoting neglected tropical disease. Alarmingly, climate change is accelerating the geographical spreading of CD causative parasite, Trypanosoma cruzi, which additionally increases infection rates. Still, CD treatment remains challenging due to a lack of safe and efficient drugs. In this work, we analyze the viability of T. cruzi Akt-like kinase (TcAkt) as drug target against CD including primary structural and functional information about a parasitic Akt protein. Nuclear Magnetic Resonance derived information in combination with Molecular Dynamics simulations offer detailed insights into structural properties of the pleckstrin homology (PH) domain of TcAkt and its binding to phosphatidylinositol phosphate ligands (PIP). Experimental data combined with Alpha Fold proposes a model for the mechanism of action of TcAkt involving a PIP-induced disruption of the intramolecular interface between the kinase and the PH domain resulting in an open conformation enabling TcAkt kinase activity. Further docking experiments reveal that TcAkt is recognized by human inhibitors PIT-1 and capivasertib, and TcAkt inhibition by UBMC-4 and UBMC-6 is achieved via binding to TcAkt kinase domain. Our in-depth structural analysis of TcAkt reveals potential sites for drug development against CD, located at activity essential regions.


Subject(s)
Chagas Disease , Molecular Docking Simulation , Molecular Dynamics Simulation , Trypanosoma cruzi , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/drug effects , Chagas Disease/drug therapy , Chagas Disease/parasitology , Humans , Proto-Oncogene Proteins c-akt/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Binding
8.
Nat Commun ; 15(1): 3792, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710711

ABSTRACT

Infection with the apicomplexan protozoan Toxoplasma gondii can be life-threatening in immunocompromised hosts. Transmission frequently occurs through the oral ingestion of T. gondii bradyzoite cysts, which transition to tachyzoites, disseminate, and then form cysts containing bradyzoites in the central nervous system, resulting in latent infection. Encapsulation of bradyzoites by a cyst wall is critical for immune evasion, survival, and transmission. O-glycosylation of the protein CST1 by the mucin-type O-glycosyltransferase T. gondii (Txg) GalNAc-T3 influences cyst wall rigidity and stability. Here, we report X-ray crystal structures of TxgGalNAc-T3, revealing multiple features that are strictly conserved among its apicomplexan homologues. This includes a unique 2nd metal that is coupled to substrate binding and enzymatic activity in vitro and cyst wall O-glycosylation in T. gondii. The study illustrates the divergence of pathogenic protozoan GalNAc-Ts from their host homologues and lays the groundwork for studying apicomplexan GalNAc-Ts as therapeutic targets in disease.


Subject(s)
Protozoan Proteins , Toxoplasma , Toxoplasma/enzymology , Toxoplasma/genetics , Glycosylation , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Humans , Crystallography, X-Ray , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Cell Wall/metabolism , Animals
9.
Nat Commun ; 15(1): 3985, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734677

ABSTRACT

Pentamidine and melarsoprol are primary drugs used to treat the lethal human sleeping sickness caused by the parasite Trypanosoma brucei. Cross-resistance to these two drugs has recently been linked to aquaglyceroporin 2 of the trypanosome (TbAQP2). TbAQP2 is the first member of the aquaporin family described as capable of drug transport; however, the underlying mechanism remains unclear. Here, we present cryo-electron microscopy structures of TbAQP2 bound to pentamidine or melarsoprol. Our structural studies, together with the molecular dynamic simulations, reveal the mechanisms shaping substrate specificity and drug permeation. Multiple amino acids in TbAQP2, near the extracellular entrance and inside the pore, create an expanded conducting tunnel, sterically and energetically allowing the permeation of pentamidine and melarsoprol. Our study elucidates the mechanism of drug transport by TbAQP2, providing valuable insights to inform the design of drugs against trypanosomiasis.


Subject(s)
Aquaglyceroporins , Cryoelectron Microscopy , Melarsoprol , Molecular Dynamics Simulation , Pentamidine , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolism , Aquaglyceroporins/metabolism , Aquaglyceroporins/chemistry , Melarsoprol/metabolism , Melarsoprol/chemistry , Pentamidine/chemistry , Pentamidine/metabolism , Biological Transport , Trypanocidal Agents/chemistry , Trypanocidal Agents/metabolism , Trypanocidal Agents/pharmacology , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Humans
10.
Nat Commun ; 15(1): 3984, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734736

ABSTRACT

Greenbeard genetic elements encode rare perceptible signals, signal recognition ability, and altruism towards others that display the same signal. Putative greenbeards have been described in various organisms but direct evidence for all the properties in one system is scarce. The tgrB1-tgrC1 allorecognition system of Dictyostelium discoideum encodes two polymorphic membrane proteins which protect cells from chimerism-associated perils. During development, TgrC1 functions as a ligand-signal and TgrB1 as its receptor, but evidence for altruism has been indirect. Here, we show that mixing wild-type and activated tgrB1 cells increases wild-type spore production and relegates the mutants to the altruistic stalk, whereas mixing wild-type and tgrB1-null cells increases mutant spore production and wild-type stalk production. The tgrB1-null cells cheat only on partners that carry the same tgrC1-allotype. Therefore, TgrB1 activation confers altruism whereas TgrB1 inactivation causes allotype-specific cheating, supporting the greenbeard concept and providing insight into the relationship between allorecognition, altruism, and exploitation.


Subject(s)
Dictyostelium , Protozoan Proteins , Dictyostelium/genetics , Dictyostelium/metabolism , Dictyostelium/physiology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Spores, Protozoan/genetics , Spores, Protozoan/metabolism , Signal Transduction , Mutation , Altruism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Chemotaxis/genetics
11.
PLoS One ; 19(5): e0292152, 2024.
Article in English | MEDLINE | ID: mdl-38753846

ABSTRACT

In the protozoan parasite Leishmania, most genes encoding for ribosomal proteins (RPs) are present as two or more copies in the genome. However, their untranslated regions (UTRs) are predominantly divergent and might be associated with a distinct regulation of the expression of paralogous genes. Herein, we investigated the expression profiles of two RPs (S16 and L13a) encoded by duplicated genes in Leishmania major. The genes encoding for the S16 protein possess identical coding sequences (CDSs) and divergent UTRs, whereas the CDSs of L13a diverge by two amino acids and by their UTRs. Using CRISPR/Cas9 genome editing, we generated knockout (Δ) and endogenously tagged transfectants for each paralog of L13a and S16 genes. Combining tagged and Δ cell lines we found evidence of differential expression of both RPS16 and RPL13a isoforms throughout parasite development, with one isoform consistently more abundant than its respective copy. In addition, compensatory expression was observed for each paralog upon deletion of the corresponding isoform, suggesting functional conservation between these proteins. This differential expression pattern relates to post-translational processes, given compensation occurs at the level of the protein, with no alterations detected at transcript level. Ribosomal profiles for RPL13a indicate a standard behavior for these paralogues suggestive of interaction with heavy RNA-protein complexes, as already reported for other RPs in trypanosomatids. We identified paralog-specific bound to their 3'UTRs which may be influential in regulating paralog expression. In support, we identified conserved cis-elements within the 3'UTRs of RPS16 and RPL13a; cis-elements exclusive to the UTR of the more abundant paralog or to the less abundant ones were identified.


Subject(s)
Leishmania major , Protozoan Proteins , Ribosomal Proteins , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Leishmania major/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , CRISPR-Cas Systems , Gene Expression Regulation , Protein Isoforms/genetics , Protein Isoforms/metabolism
12.
Adv Clin Chem ; 120: 169-190, 2024.
Article in English | MEDLINE | ID: mdl-38762241

ABSTRACT

Developing molecular strategies to manipulate gene expression in trypanosomatids is challenging, particularly with respect to the unique gene expression mechanisms adopted by these unicellular parasites, such as polycistronic mRNA transcription and multi-gene families. In the case of Trypanosoma cruzi (T. cruzi), the causative agent of Chagas Disease, the lack of RNA interference machinery further complicated functional genetic studies important for understanding parasitic biology and developing biomarkers and potential therapeutic targets. Therefore, alternative methods of performing knockout and/or endogenous labelling experiments were developed to identify and understand the function of proteins for survival and interaction with the host. In this review, we present the main tools for the genetic manipulation of T. cruzi, focusing on the Clustered Regularly Interspaced Short Palindromic Repeats Cas9-associated system technique widely used in this organism. Moreover, we highlight the importance of using these tools to elucidate the function of uncharacterized and glycosylated proteins. Further developments of these technologies will allow the identification of new biomarkers, therapeutic targets and potential vaccines against Chagas disease with greater efficiency and speed.


Subject(s)
Gene Expression Regulation , Trypanosoma cruzi , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism , Humans , Chagas Disease , CRISPR-Cas Systems , Animals , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
13.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739798

ABSTRACT

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Subject(s)
Peptides , Plasmodium falciparum , Protozoan Proteins , Ubiquitin Thiolesterase , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Plasmodium falciparum/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics , Humans , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/antagonists & inhibitors , Antimalarials/pharmacology , Antimalarials/chemistry , Ubiquitin/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/drug therapy
14.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38743010

ABSTRACT

Basal bodies (BBs) are conserved eukaryotic structures that organize cilia. They are comprised of nine, cylindrically arranged, triplet microtubules (TMTs) connected to each other by inter-TMT linkages which stabilize the structure. Poc1 is a conserved protein important for BB structural integrity in the face of ciliary forces transmitted to BBs. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. The full localization of the inner scaffold protein Fam161A requires Poc1. As ciliary forces are increased, Fam161A is reduced, indicative of a force-dependent molecular remodeling of the inner scaffold. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.


Subject(s)
Basal Bodies , Cilia , Microtubules , Protozoan Proteins , Tetrahymena thermophila , Basal Bodies/metabolism , Cilia/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Protein Binding , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Tetrahymena thermophila/metabolism , Tetrahymena thermophila/genetics
15.
Elife ; 132024 May 23.
Article in English | MEDLINE | ID: mdl-38780415

ABSTRACT

Stramenopiles form a clade of diverse eukaryotic organisms, including multicellular algae, the fish and plant pathogenic oomycetes, such as the potato blight Phytophthora, and the human intestinal protozoan Blastocystis. In most eukaryotes, glycolysis is a strictly cytosolic metabolic pathway that converts glucose to pyruvate, resulting in the production of NADH and ATP (Adenosine triphosphate). In contrast, stramenopiles have a branched glycolysis in which the enzymes of the pay-off phase are located in both the cytosol and the mitochondrial matrix. Here, we identify a mitochondrial carrier in Blastocystis that can transport glycolytic intermediates, such as dihydroxyacetone phosphate and glyceraldehyde-3-phosphate, across the mitochondrial inner membrane, linking the cytosolic and mitochondrial branches of glycolysis. Comparative analyses with the phylogenetically related human mitochondrial oxoglutarate carrier (SLC25A11) and dicarboxylate carrier (SLC25A10) show that the glycolytic intermediate carrier has lost its ability to transport the canonical substrates malate and oxoglutarate. Blastocystis lacks several key components of oxidative phosphorylation required for the generation of mitochondrial ATP, such as complexes III and IV, ATP synthase, and ADP/ATP carriers. The presence of the glycolytic pay-off phase in the mitochondrial matrix generates ATP, which powers energy-requiring processes, such as macromolecular synthesis, as well as NADH, used by mitochondrial complex I to generate a proton motive force to drive the import of proteins and molecules. Given its unique substrate specificity and central role in carbon and energy metabolism, the carrier for glycolytic intermediates identified here represents a specific drug and pesticide target against stramenopile pathogens, which are of great economic importance.


All living organisms breakdown food molecules to generate energy for processes, such as growing, reproducing and movement. The series of chemical reactions that breakdown sugars into smaller molecules ­ known as glycolysis ­ is so important that it occurs in all life forms, from bacteria to humans. In higher organisms, such as fungi and animals, these reactions take place in the cytosol, the space surrounding the cell's various compartments. A transport protein then shuttles the end-product of glycolysis ­ pyruvate ­ into specialised compartments, known as the mitochondria, where most energy is produced. However, recently it was discovered that a group of living organisms, called the stramenopiles, have a branched glycolysis in which the enzymes involved in the second half of this process are located in both the cytosol and mitochondrial matrix. But it was not known how the intermediate molecules produced after the first half of glycolysis enter the mitochondria. To answer this question, Pyrihová et al. searched for transport protein(s) that could link the two halves of the glycolysis pathway. Computational analyses, comparing the genetic sequences of many transport proteins from several different species, revealed a new group found only in stramenopiles. Pyrihová et al. then used microscopy to visualise these new transport proteins ­ called GIC-1 and GIC-2 ­ in the parasite Blastocystis, which infects the human gut, and observed that they localise to mitochondria. Further biochemical experiments showed that GIC-1 and GIC-2 can physically bind these intermediate molecules, but only GIC-2 can transport them across membranes. Taken together, these observations suggest that GIC-2 links the two halves of glycolysis in Blastocystis. Further analyses could reveal corresponding transport proteins in other stramenopiles, many of which have devastating effects on agriculture, such as Phytophthora, which causes potato blight, or Saprolegnia, which causes skin infections in farmed salmon. Since human cells do not have equivalent transporters, they could be new drug targets not only for Blastocystis, but for these harmful pathogens as well.


Subject(s)
Blastocystis , Cytosol , Glycolysis , Mitochondria , Blastocystis/metabolism , Blastocystis/genetics , Humans , Mitochondria/metabolism , Cytosol/metabolism , Biological Transport , Protozoan Proteins/metabolism , Protozoan Proteins/genetics
16.
Sci Rep ; 14(1): 11242, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755230

ABSTRACT

The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.


Subject(s)
Erythrocytes , Plasmodium falciparum , Proteomics , Protozoan Proteins , Erythrocytes/parasitology , Erythrocytes/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Humans , Proteomics/methods , Malaria, Falciparum/parasitology , Malaria, Falciparum/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Ascorbate Peroxidases/metabolism , Protein Binding , Biotinylation , Endonucleases , Peptides , Proteins , Multifunctional Enzymes
17.
Sci Rep ; 14(1): 11250, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755233

ABSTRACT

The patterns of Formin B and of the Arp2/3 complex formed during mitosis were studied in a mutant of Dictyostelium discoideum that produces multinucleate cells, which divide by the ingression of unilateral cleavage furrows. During cytokinesis the cells of this mutant remain spread on a glass surface where they generate a planar pattern based on the sorting-out of actin-binding proteins. During anaphase, Formin B and Arp2/3 became localized to the regions of microtubule asters around the centrosomes; Formin B in particular in the form of round, quite uniformly covered areas. These areas have been shown to be depleted of myosin II and the actin-filament crosslinker cortexillin, and to be avoided by cleavage furrows on their path into the cell.


Subject(s)
Dictyostelium , Microfilament Proteins , Microtubules , Mitosis , Microtubules/metabolism , Dictyostelium/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Actin-Related Protein 2-3 Complex/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protein Transport , Cytokinesis , Actins/metabolism
18.
PLoS Biol ; 22(5): e3002634, 2024 May.
Article in English | MEDLINE | ID: mdl-38713739

ABSTRACT

Toxoplasma gondii resides in its intracellular niche by employing a series of specialized secretory organelles that play roles in invasion, host cell manipulation, and parasite replication. Rab GTPases are major regulators of the parasite's secretory traffic that function as nucleotide-dependent molecular switches to control vesicle trafficking. While many of the Rab proteins have been characterized in T. gondii, precisely how these Rabs are regulated remains poorly understood. To better understand the parasite's secretory traffic, we investigated the entire family of Tre2-Bub2-Cdc16 (TBC) domain-containing proteins, which are known to be involved in vesicle fusion and secretory protein trafficking. We first determined the localization of all 18 TBC domain-containing proteins to discrete regions of the secretory pathway or other vesicles in the parasite. Second, we use an auxin-inducible degron approach to demonstrate that the protozoan-specific TgTBC9 protein, which localizes to the endoplasmic reticulum (ER), is essential for parasite survival. Knockdown of TgTBC9 results in parasite growth arrest and affects the organization of the ER and mitochondrial morphology. TgTBC9 knockdown also results in the formation of large lipid droplets (LDs) and multi-membranous structures surrounded by ER membranes, further indicating a disruption of ER functions. We show that the conserved dual-finger active site in the TBC domain of the protein is critical for its GTPase-activating protein (GAP) function and that the Plasmodium falciparum orthologue of TgTBC9 can rescue the lethal knockdown. We additionally show by immunoprecipitation and yeast 2 hybrid analyses that TgTBC9 preferentially binds Rab2, indicating that the TBC9-Rab2 pair controls ER morphology and vesicular trafficking in the parasite. Together, these studies identify the first essential TBC protein described in any protozoan and provide new insight into intracellular vesicle trafficking in T. gondii.


Subject(s)
Endoplasmic Reticulum , Protozoan Proteins , Secretory Pathway , Toxoplasma , rab2 GTP-Binding Protein , Toxoplasma/metabolism , Toxoplasma/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Endoplasmic Reticulum/metabolism , rab2 GTP-Binding Protein/metabolism , rab2 GTP-Binding Protein/genetics , Protein Domains , Protein Transport , Lipid Droplets/metabolism , Animals , Humans
19.
Commun Biol ; 7(1): 596, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762629

ABSTRACT

Apicomplexan parasites harbor a complex endomembrane system as well as unique secretory organelles. These complex cellular structures require an elaborate vesicle trafficking system, which includes Rab GTPases and their regulators, to assure the biogenesis and secretory of the organelles. Here we exploit the model apicomplexan organism Toxoplasma gondii that encodes a family of Rab GTPase Activating Proteins, TBC (Tre-2/Bub2/Cdc16) domain-containing proteins. Functional profiling of these proteins in tachyzoites reveals that TBC9 is the only essential regulator, which is localized to the endoplasmic reticulum (ER) in T. gondii strains. Detailed analyses demonstrate that TBC9 is required for normal distribution of proteins targeting to the ER, and the Golgi apparatus in the parasite, as well as for the normal formation of daughter inner membrane complexes (IMCs). Pull-down assays show a strong protein interaction between TBC9 and specific Rab GTPases (Rab11A, Rab11B, and Rab2), supporting the role of TBC9 in daughter IMC formation and early vesicular transport. Thus, this study identifies the only essential TBC domain-containing protein TBC9 that regulates early vesicular transport and IMC formation in T. gondii and potentially in closely related protists.


Subject(s)
Endoplasmic Reticulum , GTPase-Activating Proteins , Protozoan Proteins , Toxoplasma , rab GTP-Binding Proteins , Toxoplasma/metabolism , Toxoplasma/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Endoplasmic Reticulum/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Golgi Apparatus/metabolism , Protein Transport , Animals , Transport Vesicles/metabolism
20.
Sci Rep ; 14(1): 11575, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773273

ABSTRACT

Leishmaniasis is a disease caused by a protozoan of the genus Leishmania, affecting millions of people, mainly in tropical countries, due to poor social conditions and low economic development. First-line chemotherapeutic agents involve highly toxic pentavalent antimonials, while treatment failure is mainly due to the emergence of drug-resistant strains. Leishmania arginase (ARG) enzyme is vital in pathogenicity and contributes to a higher infection rate, thus representing a potential drug target. This study helps in designing ARG inhibitors for the treatment of leishmaniasis. Py-CoMFA (3D-QSAR) models were constructed using 34 inhibitors from different chemical classes against ARG from L. (L.) amazonensis (LaARG). The 3D-QSAR predictions showed an excellent correlation between experimental and calculated pIC50 values. The molecular docking study identified the favorable hydrophobicity contribution of phenyl and cyclohexyl groups as substituents in the enzyme allosteric site. Molecular dynamics simulations of selected protein-ligand complexes were conducted to understand derivatives' interaction modes and affinity in both active and allosteric sites. Two cinnamide compounds, 7g and 7k, were identified, with similar structures to the reference 4h allosteric site inhibitor. These compounds can guide the development of more effective arginase inhibitors as potential antileishmanial drugs.


Subject(s)
Arginase , Enzyme Inhibitors , Leishmania , Molecular Docking Simulation , Molecular Dynamics Simulation , Arginase/antagonists & inhibitors , Arginase/chemistry , Arginase/metabolism , Leishmania/enzymology , Leishmania/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Quantitative Structure-Activity Relationship , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Allosteric Site , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Catalytic Domain
SELECTION OF CITATIONS
SEARCH DETAIL
...