Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Chemother ; 29(3): 150-153, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27347714

ABSTRACT

The increase in carbapenem-resistant gram-negative bacteria is a matter of concern due to the limited therapeutic options available. In severe infections caused by these isolates, the rapid detection of the mechanisms of resistance is vital. We described a slightly modified version of the Blue-Carba test, rapid Blue-Carba test, which allows the detection of carbapenemases at 4 h of incubation from a haze of bacterial growth obtained from a positive blood culture. It was able to detect carbapenemase-producing isolates (Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii) with a sensitivity and specificity of 98.1 and 100%, respectively. It is a rapid, easy-to-perform and an inexpensive technique that can be applied to routine laboratories, together with the simultaneous identification by mass spectrometry which would help to screen non-enzymatic carbapenem resistance; this method allows the detection of clinically relevant multidrug-resistant bacteria and the early implementation of accurate therapeutic interventions.


Subject(s)
Acinetobacter Infections/enzymology , Bacteremia/enzymology , Bacterial Proteins/blood , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections/enzymology , Pseudomonas Infections/enzymology , beta-Lactam Resistance , beta-Lactamases/blood , Acinetobacter Infections/diagnosis , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/isolation & purification , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Argentina , Bacteremia/diagnosis , Bacteremia/drug therapy , Bacteremia/microbiology , Bacterial Proteins/genetics , Carbapenems/metabolism , Carbapenems/pharmacology , Carbapenems/therapeutic use , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae/growth & development , Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/diagnosis , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Hospitals, University , Humans , Inactivation, Metabolic , Molecular Typing , Pseudomonas Infections/diagnosis , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/isolation & purification , Sensitivity and Specificity , Time Factors , beta-Lactamases/genetics
2.
PLoS Pathog ; 10(1): e1003817, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24391494

ABSTRACT

Pseudomonas aeruginosa is one of the most virulent and resistant non-fermenting Gram-negative pathogens in the clinic. Unfortunately, P. aeruginosa has acquired genes encoding metallo-ß-lactamases (MßLs), enzymes able to hydrolyze most ß-lactam antibiotics. SPM-1 is an MßL produced only by P. aeruginosa, while other MßLs are found in different bacteria. Despite similar active sites, the resistance profile of MßLs towards ß-lactams changes from one enzyme to the other. SPM-1 is unique among pathogen-associated MßLs in that it contains "atypical" second sphere residues (S84, G121). Codon randomization on these positions and further selection of resistance-conferring mutants was performed. MICs, periplasmic enzymatic activity, Zn(II) requirements, and protein stability was assessed. Our results indicated that identity of second sphere residues modulates the substrate preferences and the resistance profile of SPM-1 expressed in P. aeruginosa. The second sphere residues found in wild type SPM-1 give rise to a substrate selectivity that is observed only in the periplasmic environment. These residues also allow SPM-1 to confer resistance in P. aeruginosa under Zn(II)-limiting conditions, such as those expected under infection. By optimizing the catalytic efficiency towards ß-lactam antibiotics, the enzyme stability and the Zn(II) binding features, molecular evolution meets the specific needs of a pathogenic bacterial host by means of substitutions outside the active site.


Subject(s)
Mutation , Periplasm/enzymology , Pseudomonas aeruginosa/enzymology , beta-Lactamases/chemistry , Animals , Catalytic Domain , Enzyme Stability , Periplasm/genetics , Pseudomonas Infections/enzymology , Pseudomonas Infections/genetics , Pseudomonas aeruginosa/genetics , Rabbits , Substrate Specificity , beta-Lactam Resistance/physiology , beta-Lactamases/genetics , beta-Lactamases/metabolism
3.
Protein Expr Purif ; 71(2): 153-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20064618

ABSTRACT

Pseudomonas aeruginosa infections constitute a widespread health problem with high economical and social impact, and the phosphorylcholine phosphatase (PchP) of this bacterium is a potential target for antimicrobial treatment. However, drug design requires high-resolution structural information and detailed biophysical knowledge not available for PchP. An obstacle in the study of PchP is that current methods for its expression and purification are suboptimal and allowed only a preliminary kinetic characterization of the enzyme. Herein, we describe a new procedure for the efficient preparation of recombinant PchP overexpressed in Escherichia coli. The enzyme is purified from urea solubilized inclusion bodies and refolded by dialysis. The product of PchP refolding is a mixture of native PchP and a kinetically-trapped, alternatively-folded aggregate that is very slowly converted into the native state. The properly folded and fully active enzyme is isolated from the refolding mixture by size-exclusion chromatography. PchP prepared by the new procedure was subjected to chemical and biophysical characterization, and its basic optical, hydrodynamic, metal-binding, and catalytic properties are reported. The unfolding of the enzyme was also investigated, and its thermal stability was determined. The obtained information should help to compare PchP with other phosphatases and to obtain a better understanding of its catalytic mechanism. In addition, preliminary trials showed that PchP prepared by the new protocol is suitable for crystallization, opening the way for high-resolution studies of the enzyme structure.


Subject(s)
Biophysical Phenomena , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Phosphorylcholine/metabolism , Pseudomonas aeruginosa/enzymology , Catalysis , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Inclusion Bodies/chemistry , Inclusion Bodies/enzymology , Inclusion Bodies/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphorylcholine/analysis , Pseudomonas Infections/enzymology , Pseudomonas Infections/genetics , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL