Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
PLoS Negl Trop Dis ; 13(9): e0007669, 2019 09.
Article in English | MEDLINE | ID: mdl-31498786

ABSTRACT

BACKGROUND: Identification of blood sources of hematophagous arthropods is crucial for understanding the transmission cycles of vector-borne diseases. Many different approaches towards host determination were proposed, including precipitin test, ELISA, DNA- and mass spectrometry-based methods; yet all face certain complications and limitations, mostly related to blood degradation. This study presents a novel method for blood meal identification, peptide mass mapping (PMM) analysis of host-specific hemoglobin peptides using MALDI-TOF mass spectrometry. METHODOLOGY/PRINCIPAL FINDINGS: To identify blood meal source, proteins from abdomens of engorged sand fly females were extracted, cleaved by trypsin and peptide fragments of host hemoglobin were sequenced using MALDI-TOF MS. The method provided correct host identification of 100% experimentally fed sand flies until 36h post blood meal (PBM) and for 80% samples even 48h PBM. In females fed on two hosts, both blood meal sources were correctly assigned for 60% of specimens until 36h PBM. In a validation study on field-collected females, the method yielded unambiguous host determination for 96% of specimens. The suitability of PMM-based MALDI-TOF MS was proven experimentally also on lab-reared Culex mosquitoes. CONCLUSIONS/SIGNIFICANCE: PMM-based MALDI-TOF MS analysis targeting host specific hemoglobin peptides represents a sensitive and cost-effective method with a fast and simple preparation protocol. As demonstrated here on phlebotomine sand flies and mosquitoes, it allows reliable and rapid blood source determination even 48h PBM with minimal material input and provides more robust and specific results than other currently used methods. This approach was also successfully tested on field-caught engorged females and proved to be a promising useful tool for large-scale screening of host preferences studies. Unlike other methods including MALDI-TOF protein profiling, it allows correct identification of mixed blood meals as was demonstrated on both experimentally fed and field-collected sand flies.


Subject(s)
Blood Chemical Analysis/methods , Psychodidae/physiology , Animals , Feeding Behavior , Hemoglobins/chemistry , Humans , Peptides/chemistry , Proof of Concept Study , Psychodidae/chemistry , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
2.
Acta Trop ; 194: 47-52, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30871992

ABSTRACT

Phlebotomine sand flies are vectors for many pathogens responsible for human and animal diseases worldwide. Their identification at species level is of importance in epidemiological studies and control programmes. MALDI-TOF MS has been increasingly investigated as an alternative approach to the conventional identification of arthropods species. To establish an in-house protein spectra database for a quick and reliable species identification of phlebotomine sand flies, 166 field-caught sand fly specimens, morphologically identified as Phlebotomus perniciosus (no = 56; 26 males and 30 females), Phlebotomus neglectus (no = 4 males), Phlebotomus sergenti (no = 6; 4 males and 2 females) and Sergentomyia minuta (no = 100; 45 males and 55 females), were subjected to MALDI-TOF MS analyses. Out of 166, 149 specimens (89.8%) produced consistent species-specific protein spectra. Good quality database for P. perniciosus and S. minuta were generated; no databases have yet constructed for P. neglectus and P. sergenti due to the low number of specimens examined. The identification of 80 sand flies (no = 20 P. perniciosus; no = 60 S. minuta) were confirmed using the new generated SuperSpectra as validation test. The results reported support the use of MALDI-TOF MS for rapid, simple and reliable phlebotomine sand fly species identification suggesting its usefulness in accurate survey studies, ultimately improving biological and epidemiological knowledge on these important vectors of pathogens.


Subject(s)
Databases, Factual , Insect Vectors/classification , Psychodidae/classification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Gene Library , Insect Vectors/chemistry , Insect Vectors/genetics , Mediterranean Region , Phylogeny , Psychodidae/chemistry , Psychodidae/genetics , Species Specificity
3.
PLoS Negl Trop Dis ; 12(12): e0007007, 2018 12.
Article in English | MEDLINE | ID: mdl-30566503

ABSTRACT

In South America, the Protist parasite that causes visceral leishmaniasis, a potentially fatal human disease, is transmitted by blood-feeding female Lutzomyia longipalpis sand flies. A synthetic copy of the male produced sex-aggregation pheromone offers new opportunities for vector control applications. We have previously shown that the pheromone placed in plastic sachets (lures) can attract both females and males to insecticide treated sites for up to 3 months. To use the pheromone lure in a control program we need to understand how the application of lures in the field can be optimised. In this study we investigated the effect of increasing the number of lures and their proximity to each other on their ability to attract Lu. longipalpis. Also for the first time we applied a Bayesian log-linear model rather than a classic simple (deterministic) log-linear model to fully exploit the field-collected data. We found that sand fly response to pheromone is significantly related to the quantity of pheromone and is not influenced by the proximity of other pheromone sources. Thus sand flies are attracted to the pheromone source at a non-linear rate determined by the amount of pheromone being released. This rate is independent of the proximity of other pheromone releasing traps and indicates the role of the pheromone in aggregation formation. These results have important implications for optimisation of the pheromone as a vector control tool and indicate that multiple lures placed in relatively close proximity to each other (5 m apart) are unlikely to interfere with one another.


Subject(s)
Psychodidae/drug effects , Psychodidae/physiology , Sex Attractants/pharmacology , Animals , Female , Insect Control/instrumentation , Kinetics , Male , Psychodidae/chemistry , Sex Attractants/chemical synthesis , Sex Attractants/chemistry
4.
Vaccine ; 35(48 Pt B): 6611-6619, 2017 12 04.
Article in English | MEDLINE | ID: mdl-29079105

ABSTRACT

Leishmaniasis is an arthropod vectored disease causing considerable human morbidity and mortality. Vaccination remains the most realistic and practical means to interrupt the growing number and diversity of sand fly vectors and reservoirs of Leishmania. Since transmission of Leishmania is achieved exclusively by sand fly vectors via immune-modulating salivary substances, conventional vaccination requiring an unmodified host immune response for success are potentially destined to fail unless immunomodulatory factors are somehow neutralized. Using cationic liposome DNA complexes (CLDC) as an adjuvant system along with Lu. longipalpis sand fly salivary component maxadilan (MAX) as antigen (Ag), we show that mice are protected from the MAX-induced exacerbation of infection with Leishmania major (Lm). The CLDC adjuvant and alum were comparable in terms of lesion induration and decreased parasite burden, however the alum adjuvant imposed more inflammation at the injection site. BALB/c, C3H and C57BL/6 mice vaccinated with MAX-CLDC containing either the full-length MAX or peptides spanning the N- and C-terminal regions of MAX are protected against footpad challenges with Lm co-injected with MAX. When compared to unvaccinated controls, all strains of mice immunized with CLDC containing either peptides encompassing the first 20 N-terminal AA or those spanning the last 15 AA of the C-terminal domain of MAX demonstrated decreased parasite burden after 9 or 18 weeks post challenge with Lm + MAX. MAX-CLDC immunized mice showed increased IFNγ-secreting and decreased IL-4-secreting CD4+ cells in footpad-draining lymph nodes. Antisera from C-terminal peptide (P11) MAX-CLDC-vaccinated animals was capable of recognizing FL-MAX and its C-terminal domain and also blocked MAX-mediated reprogramming of bone marrow-derived dendritic cells (BM-DC) in vitro. This peptide vaccine targeting sand fly MAX, improves host immunity against MAX-mediated immunomodulation.


Subject(s)
Insect Proteins/chemistry , Insect Proteins/immunology , Leishmaniasis, Cutaneous/prevention & control , Peptides/immunology , Saliva/chemistry , Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , Animals , CD4-Positive T-Lymphocytes/immunology , Cations , DNA/chemistry , Disease Models, Animal , Immunization , Insect Proteins/administration & dosage , Leishmania major/immunology , Leishmaniasis, Cutaneous/immunology , Liposomes/administration & dosage , Liposomes/chemistry , Liposomes/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Peptides/administration & dosage , Psychodidae/chemistry , Psychodidae/immunology
5.
Sci Rep ; 7(1): 3149, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28600554

ABSTRACT

Sand flies inject saliva while feeding in the vertebrate host and anti-saliva antibodies can be used as biomarkers of exposure to Leishmania vectors. We expressed recombinant salivary proteins from Lutzomyia intermedia, a vector of Leishmania braziliensis, and evaluated the seroreactivity in exposed individuals in search for exposure markers. We found a strong correlation among positive serology to recombinant proteins LinB-13, 26, 15, 21 and to salivary proteins: rLinB-13 was the top performing molecule; IgG4 was the most predominant antibody subclass and antibodies to rLinB-13 did not cross react with Lu. longipalpis salivary proteins. By evaluating a cohort of contacts of CL patients, we confirmed that rLinB-13, an antigen 5-related protein, is a marker of exposure to Lu. intermedia with high degree of accuracy. In a 5-year follow up, we determined that individuals who developed CL presented higher anti-rLinB13 IgG responses, before the appearance of clinical symptoms. They also presented a lower frequency of cellular responses to the parasite (DTH). Our results show that seroconversion to a salivary molecule, rLinB-13, is a marker of risk for CL development caused by Leishmania braziliensis. This highlight the possibility of developing tools based on vector molecules to manage the disease in endemic areas.


Subject(s)
Endemic Diseases , Immunoglobulin G/blood , Insect Proteins/blood , Insect Vectors/chemistry , Leishmaniasis, Cutaneous/diagnosis , Psychodidae/chemistry , Salivary Proteins and Peptides/blood , Animals , Biomarkers/blood , Brazil/epidemiology , Early Diagnosis , Humans , Immune Sera/chemistry , Immunoblotting/methods , Insect Proteins/genetics , Insect Proteins/immunology , Insect Vectors/immunology , Leishmania braziliensis/pathogenicity , Leishmania braziliensis/physiology , Leishmaniasis, Cutaneous/blood , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/immunology , Psychodidae/immunology , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Salivary Proteins and Peptides/genetics , Salivary Proteins and Peptides/immunology , Seroconversion
6.
PLoS Negl Trop Dis ; 11(3): e0005374, 2017 03.
Article in English | MEDLINE | ID: mdl-28278244

ABSTRACT

BACKGROUND: Immunity to the sand fly salivary protein SALO (Salivary Anticomplement of Lutzomyia longipalpis) protected hamsters against Leishmania infantum and L. braziliensis infection and, more recently, a vaccine combination of a genetically modified Leishmania with SALO conferred strong protection against L. donovani infection. Because of the importance of SALO as a potential component of a leishmaniasis vaccine, a plan to produce this recombinant protein for future scale manufacturing as well as knowledge of its structural characteristics are needed to move SALO forward for the clinical path. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant SALO was expressed as a soluble secreted protein using Pichia pastoris, rSALO(P), with yields of 1g/L and >99% purity as assessed by SEC-MALS and SDS-PAGE. Unlike its native counterpart, rSALO(P) does not inhibit the classical pathway of complement; however, antibodies to rSALO(P) inhibit the anti-complement activity of sand fly salivary gland homogenate. Immunization with rSALO(P) produces a delayed type hypersensitivity response in C57BL/6 mice, suggesting rSALO(P) lacked anti-complement activity but retained its immunogenicity. The structure of rSALO(P) was solved by S-SAD at Cu-Kalpha to 1.94 Å and refined to Rfactor 17%. SALO is ~80% helical, has no appreciable structural similarities to any human protein, and has limited structural similarity in the C-terminus to members of insect odorant binding proteins. SALO has three predicted human CD4+ T cell epitopes on surface exposed helices. CONCLUSIONS/SIGNIFICANCE: The results indicate that SALO as expressed and purified from P. pastoris is suitable for further scale-up, manufacturing, and testing. SALO has a novel structure, is not similar to any human proteins, is immunogenic in rodents, and does not have the anti-complement activity observed in the native salivary protein which are all important attributes to move this vaccine candidate forward to the clinical path.


Subject(s)
Psychodidae/chemistry , Recombinant Proteins/immunology , Salivary Proteins and Peptides/immunology , Animals , Gene Expression , Mice, Inbred C57BL , Pichia/genetics , Pichia/metabolism , Protein Conformation , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Salivary Proteins and Peptides/administration & dosage , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/genetics
7.
Mem Inst Oswaldo Cruz ; 112(2): 116-122, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28177045

ABSTRACT

BACKGROUND: Maxadilan (Max) is a salivary component in the sandfly Lutzomyia longipalpis (Lutz & Neiva 1912), a vector of visceral leishmaniasis. Max has a powerful vasodilatory effect and is a candidate vaccine that has been tested in experimental leishmaniasis. Nyssomyia neivai (Pinto 1926) is a vector of the pathogen responsible for American tegumentary leishmaniasis (ATL) in Brazil. OBJECTIVE: We searched for Max expression in Ny. neivai and for antibodies against Max in ATL patients. METHODS: cDNA and protein were extracted from the cephalic segment, including salivary glands, of Ny. neivai and analysed by polymerase chain reaction, DNA sequencing, and blotting assays. The results were compared with data obtained from Lu. longipalpis samples. We quantified antibodies against Max in serum samples from 41 patients with ATL (31 and 10 with the cutaneous and mucocutaneous forms, respectively) and 63 controls from the endemic northeastern region of São Paulo state, using enzyme-linked immunosorbent assay. FINDINGS: Recognition of a Max-simile peptide by specific antibodies confirmed expression of a Max sequence in Ny. neivai (GenBank EF601123.1). Compared to controls, patients with ATL presented higher levels of antibodies against Max (p = 0.004); 24.4% of the patients with ATL and 3.2% of the controls presented anti-Max levels above the cutoff index (p = 0.014). The anti-Max levels were not associated with the specific clinical form of ATL, leishmanin skin test response, absence or presence of amastigotes in histopathologic exam, results of indirect immunofluorescence testing for leishmaniasis, or duration of cutaneous form disease. MAIN CONCLUSION: High serum anti-Max levels did not protect patients against ATL, but confirmed previous natural exposure to Ny. neivai bites in this ATL endemic region.


Subject(s)
Antibodies/blood , Insect Proteins/analysis , Insect Vectors/chemistry , Leishmaniasis, Cutaneous/blood , Psychodidae/chemistry , Animals , Antibodies/immunology , Brazil , Case-Control Studies , Endemic Diseases , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoblotting , Insect Proteins/immunology , Insect Vectors/classification , Leishmaniasis, Cutaneous/immunology , Male , Polymerase Chain Reaction , Psychodidae/classification , Rabbits , Sequence Analysis, DNA
8.
Mem. Inst. Oswaldo Cruz ; 112(2): 116-122, Feb. 2017. tab, graf
Article in English | LILACS, Sec. Est. Saúde SP | ID: biblio-841765

ABSTRACT

BACKGROUND Maxadilan (Max) is a salivary component in the sandfly Lutzomyia longipalpis (Lutz & Neiva 1912), a vector of visceral leishmaniasis. Max has a powerful vasodilatory effect and is a candidate vaccine that has been tested in experimental leishmaniasis. Nyssomyia neivai (Pinto 1926) is a vector of the pathogen responsible for American tegumentary leishmaniasis (ATL) in Brazil. OBJECTIVE We searched for Max expression in Ny. neivai and for antibodies against Max in ATL patients. METHODS cDNA and protein were extracted from the cephalic segment, including salivary glands, of Ny. neivai and analysed by polymerase chain reaction, DNA sequencing, and blotting assays. The results were compared with data obtained from Lu. longipalpis samples. We quantified antibodies against Max in serum samples from 41 patients with ATL (31 and 10 with the cutaneous and mucocutaneous forms, respectively) and 63 controls from the endemic northeastern region of São Paulo state, using enzyme-linked immunosorbent assay. FINDINGS Recognition of a Max-simile peptide by specific antibodies confirmed expression of a Max sequence in Ny. neivai (GenBank EF601123.1). Compared to controls, patients with ATL presented higher levels of antibodies against Max (p = 0.004); 24.4% of the patients with ATL and 3.2% of the controls presented anti-Max levels above the cutoff index (p = 0.014). The anti-Max levels were not associated with the specific clinical form of ATL, leishmanin skin test response, absence or presence of amastigotes in histopathologic exam, results of indirect immunofluorescence testing for leishmaniasis, or duration of cutaneous form disease. MAIN CONCLUSION High serum anti-Max levels did not protect patients against ATL, but confirmed previous natural exposure to Ny. neivai bites in this ATL endemic region.


Subject(s)
Animals , Male , Female , Rabbits , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/blood , Insect Proteins/immunology , Insect Vectors/classification , Antibodies/immunology , Antibodies/blood , Psychodidae/chemistry , Brazil , Enzyme-Linked Immunosorbent Assay , Immunoblotting , Case-Control Studies , Polymerase Chain Reaction , Insect Proteins/analysis , Endemic Diseases
9.
Acta Trop ; 168: 50-53, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28109801

ABSTRACT

Sand flies are natural hosts of various microorganisms. Due to their epidemiological importance, sand fly colonies are kept in laboratories to be studied in terms of their biology and vector/host/parasite interactions. In order to investigate the presence of oviposition pheromones in Nyssomyia neivai, experiments using Solid Phase Microextraction (SPME) were performed. However, siloxanes which is an external class of contamination, present in breeding containers made by plaster used to maintain sand flies in colonies, may be hindered the experiments.


Subject(s)
Artifacts , Calcium Sulfate/chemistry , Oviposition , Pheromones/isolation & purification , Psychodidae/chemistry , Psychodidae/physiology , Siloxanes/analysis , Solid Phase Microextraction , Animals , Calcium Sulfate/analysis , Female , Psychodidae/parasitology
10.
Exp Parasitol ; 168: 31-8, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27264642

ABSTRACT

Leishmaniasis are worldwide diseases that occur in 98 countries including Brazil, transmitted by the bite of female phlebotomines during blood feeding. In Brazil it is known that some species of sand flies as Lutzomyia longipalpis sensun latum (vector of Leishmania infantum chagasi), Lutzomyia flaviscutellata (vector of Leishmania (Leishmania) amazonensis) and Lutzomyia antunesi [suspected vector of Leishmania (Viannia) lindenbergi] are incriminated of transmitting the parasite Leishmania for the vertebrate host. The phlebotomine-parasite is mediated by the attachment of the promastigote lipophosphoglycan (LPG) to the midgut epithelium. However, another mechanism that is LPG-independent and mediated by N-acetyl-galactosamine (GalNAc) seems to occur in some species of phlebotomines that are classified as permissive. The aim of this study was to characterize the carbohydrate residues that, probably, play a role in parasite attachment to the midgut of phlebotomine from colony and field populations from the Brazilian Amazonian region. We observed the presence of GalNAc, mannose, galactose and GlcNAc in all phlebotomine species. A binding assay between L. (L.) amazonensis and L. i.chagasi to the midguts of different species of phlebotomines was performed. The attachment of both Leishmania and vector species suggests the presence of GalNAc on the midgut surfaces. Thus, these results suggested that GalNAc is a possible binding sites of Leishmania in sand flies from the Brazilian Amazonian region.


Subject(s)
Acetylgalactosamine/metabolism , Carbohydrates/analysis , Glycoconjugates/metabolism , Glycosphingolipids/metabolism , Leishmania/physiology , Psychodidae/parasitology , Acetylglucosamine/metabolism , Animals , Brazil , Female , Galactose/metabolism , Mannose/metabolism , Psychodidae/chemistry , Psychodidae/physiology
11.
Parasit Vectors ; 8: 266, 2015 May 10.
Article in English | MEDLINE | ID: mdl-25957576

ABSTRACT

BACKGROUND: Rapid, accurate and high-throughput identification of vector arthropods is of paramount importance in surveillance programmes that are becoming more common due to the changing geographic occurrence and extent of many arthropod-borne diseases. Protein profiling by MALDI-TOF mass spectrometry fulfils these requirements for identification, and reference databases have recently been established for several vector taxa, mostly with specimens from laboratory colonies. METHODS: We established and validated a reference database containing 20 phlebotomine sand fly (Diptera: Psychodidae, Phlebotominae) species by using specimens from colonies or field-collections that had been stored for various periods of time. RESULTS: Identical biomarker mass patterns ('superspectra') were obtained with colony- or field-derived specimens of the same species. In the validation study, high quality spectra (i.e. more than 30 evaluable masses) were obtained with all fresh insects from colonies, and with 55/59 insects deep-frozen (liquid nitrogen/-80 °C) for up to 25 years. In contrast, only 36/52 specimens stored in ethanol could be identified. This resulted in an overall sensitivity of 87 % (140/161); specificity was 100 %. Duration of storage impaired data counts in the high mass range, and thus cluster analyses of closely related specimens might reflect their storage conditions rather than phenotypic distinctness. A major drawback of MALDI-TOF MS is the restricted availability of in-house databases and the fact that mass spectrometers from 2 companies (Bruker, Shimadzu) are widely being used. We have analysed fingerprints of phlebotomine sand flies obtained by automatic routine procedure on a Bruker instrument by using our database and the software established on a Shimadzu system. The sensitivity with 312 specimens from 8 sand fly species from laboratory colonies when evaluating only high quality spectra was 98.3 %; the specificity was 100 %. The corresponding diagnostic values with 55 field-collected specimens from 4 species were 94.7 % and 97.4 %, respectively. CONCLUSIONS: A centralized high-quality database (created by expert taxonomists and experienced users of mass spectrometers) that is easily amenable to customer-oriented identification services is a highly desirable resource. As shown in the present work, spectra obtained from different specimens with different instruments can be analysed using a centralized database, which should be available in the near future via an online platform in a cost-efficient manner.


Subject(s)
Entomology/methods , Insect Proteins/analysis , Psychodidae/chemistry , Psychodidae/classification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Electron Transport Complex IV/genetics , Molecular Sequence Data , Sensitivity and Specificity , Sequence Analysis, DNA , Temperature
12.
PLoS Negl Trop Dis ; 9(3): e0003620, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25781320

ABSTRACT

BACKGROUND: American visceral leishmaniasis (AVL) is an emerging disease in the state of São Paulo, Brazil. Its geographical expansion and the increase in the number of human cases has been linked to dispersion of Lutzomyia longipalpis into urban areas. To produce more accurate risk maps we investigated the geographic distribution and routes of expansion of the disease as well as chemotype populations of the vector. METHODOLOGY/PRINCIPAL FINDINGS: A database, containing the annual records of municipalities which had notified human and canine AVL cases as well as the presence of the vector, was compiled. The chemotypes of L. longipalpis populations from municipalities in different regions of São Paulo State were determined by Coupled Gas Chromatography - Mass Spectrometry. From 1997 to June 2014, L. longipalpis has been reported in 166 municipalities, 148 of them in the Western region. A total of 106 municipalities were identified with transmission and 99 were located in the Western region, where all 2,204 autochthonous human cases occurred. Both the vector and the occurrence of human cases have expanded in a South-easterly direction, from the Western to central region, and from there, a further expansion to the North and the South. The (S)-9-methylgermacrene-B population of L. longipalpis is widely distributed in the Western region and the cembrene-1 population is restricted to the Eastern region. CONCLUSION/SIGNIFICANCE: The maps in the present study show that there are two distinct epidemiological patterns of AVL in São Paulo State and that the expansion of human and canine AVL cases through the Western region has followed the same dispersion route of only one of the two species of the L. longipalpis complex, (S)-9-methylgermacrene-B. Entomological vigilance based on the routes of dispersion and identification of the chemotype population could be used to identify at-risk areas and consequently define the priorities for control measures.


Subject(s)
Insect Vectors/growth & development , Leishmaniasis, Visceral/transmission , Psychodidae/growth & development , Animals , Brazil/epidemiology , Dogs , Gas Chromatography-Mass Spectrometry , Geographic Information Systems , Humans , Insect Vectors/chemistry , Insect Vectors/parasitology , Leishmaniasis, Visceral/epidemiology , Male , Psychodidae/chemistry , Psychodidae/parasitology
13.
Biochimie ; 112: 49-56, 2015 May.
Article in English | MEDLINE | ID: mdl-25724270

ABSTRACT

Sequence analysis of the Lutzomyia (Lu.) ayacuchensis salivary gland cDNA library identified a short peptide containing an RGD (Arg-Gly-Asp) sequence flanked by two cysteine residues in the C-terminal end as the most abundant transcript. In the present study, a recombinant protein of the RGD-containing peptide, designated ayadualin, was expressed in Escherichia coli and its activity was characterized. Ayadualin inhibited both collagen and ADP-induced platelet aggregations by interfering with the binding of integrin αIIbß3 to fibrinogen. The RGD sequence and cysteine residues located on both sides of the RGD sequence were essential for the inhibitory action. Moreover, ayadualin efficiently inhibited the intrinsic blood coagulation pathway irrespective of the RGD sequence. Measuring the enzymatic activity of coagulation factors using chromogenic substrates revealed that ayadualin efficiently inhibited factor XIIa (FXIIa) activity in a dose-dependent manner. In addition, pre-incubation of ayadualin with FXII inhibited FXIIa activity, while activated FXIIa was not affected by ayadualin, indicating that ayadualin inhibits the activation of FXII, but not enzymatic activity of FXIIa. These results indicated that ayadualin plays an important role in the blood feeding of Lu. ayacuchensis by inhibiting host hemostasis via dual mechanisms.


Subject(s)
Blood Coagulation/drug effects , Factor XIIa/antagonists & inhibitors , Insect Proteins/pharmacology , Insect Vectors/chemistry , Leishmaniasis, Cutaneous , Oligopeptides/pharmacology , Psychodidae/chemistry , Animals , Dose-Response Relationship, Drug , Humans , Insect Proteins/chemistry , Oligopeptides/chemistry
14.
PLoS One ; 9(9): e107295, 2014.
Article in English | MEDLINE | ID: mdl-25207644

ABSTRACT

Salivary gland homogenate (SGH) from the female mosquitoes Anopheles gambiae, An. stephensi, An. freeborni, An. dirus and An. albimanus were found to exhibit hemagglutinating (lectin) activity. Lectin activity was not found for male An. gambiae, or female Ae aegypti, Culex quinquefasciatus, Phlebotomus duboscqi, and Lutzomyia longipalpis. With respect to species-specificity, An. gambiae SGH agglutinates red blood cells (RBC) from humans, horse, sheep, goat, pig, and cow; it is less active for rats RBC, and not detectable for guinea-pigs or chicken RBC. Notably, lectin activity was inhibited by low concentrations of dextran sulfate 50-500 K, fucoidan, heparin, laminin, heparin sulfate proteoglycan, sialyl-containing glycans (e.g. 3'-sialyl Lewis X, and 6'-sialyl lactose), and gangliosides (e.g. GM3, GD1, GD1b, GTB1, GM1, GQ1B), but not by simple sugars. These results imply that molecule(s) in the salivary gland target sulfated glycans. SGH from An. gambiae was also found to promote agglutination of HL-60 cells which are rich in sialyl Lewis X, a glycan that decorates PSGL-1, the neutrophils receptor that interacts with endothelial cell P-selectin. Accordingly, SGH interferes with HL-60 cells adhesion to immobilized P-selectin. Because An. gambiae SGH expresses galectins, one member of this family (herein named Agalectin) was expressed in E. coli. Recombinant Agalectin behaves as a non-covalent homodimer. It does not display lectin activity, and does not interact with 500 candidates tested in a Glycan microarray. Gel-filtration chromatography of the SGH of An. gambiae identified a fraction with hemagglutinating activity, which was analyzed by 1D PAGE followed by in-gel tryptic digestion, and nano-LC MS/MS. This approach identified several genes which emerge as candidates for a lectin targeting sulfated glycans, the first with this selectivity to be reported in the SGH of a blood-sucking arthropod. The role of salivary molecules (sialogenins) with lectin activity is discussed in the context of inflammation, and parasite-vector-host interactions.


Subject(s)
Anopheles/chemistry , Insect Proteins/chemistry , Insect Vectors/chemistry , Lectins/chemistry , Polysaccharides/chemistry , Salivary Glands/chemistry , Aedes/chemistry , Agglutination Tests , Amino Acid Sequence , Animals , Complex Mixtures/chemistry , Culex/chemistry , Erythrocytes/cytology , Erythrocytes/drug effects , Female , Gangliosides/chemistry , Gangliosides/pharmacology , HL-60 Cells , Humans , Immobilized Proteins/chemistry , Insect Proteins/isolation & purification , Insect Proteins/pharmacology , Lectins/isolation & purification , Lectins/pharmacology , Male , Molecular Sequence Data , P-Selectin/chemistry , Phlebotomus/chemistry , Protein Binding , Psychodidae/chemistry , Ruminants , Species Specificity , Sulfuric Acid Esters
15.
Arterioscler Thromb Vasc Biol ; 33(12): 2759-70, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24092749

ABSTRACT

OBJECTIVE: Polyphosphate and heparin are anionic polymers released by activated mast cells and platelets that are known to stimulate the contact pathway of coagulation. These polymers promote both the autoactivation of factor XII and the assembly of complexes containing factor XI, prekallikrein, and high-molecular-weight kininogen. We are searching for salivary proteins from blood-feeding insects that counteract the effect of procoagulant and proinflammatory factors in the host, including elements of the contact pathway. APPROACH AND RESULTS: Here, we evaluate the ability of the sand fly salivary proteins, PdSP15a and PdSP15b, to inhibit the contact pathway by disrupting binding of its components to anionic polymers. We attempt to demonstrate binding of the proteins to polyphosphate, heparin, and dextran sulfate. We also evaluate the effect of this binding on contact pathway reactions. We also set out to determine the x-ray crystal structure of PdSP15b and examine the determinants of relevant molecular interactions. Both proteins bind polyphosphate, heparin, and dextran sulfate with high affinity. Through this mechanism they inhibit the autoactivation of factor XII and factor XI, the reciprocal activation of factor XII and prekallikrein, the activation of factor XI by thrombin and factor XIIa, the cleavage of high-molecular-weight kininogen in plasma, and plasma extravasation induced by polyphosphate. The crystal structure of PdSP15b contains an amphipathic helix studded with basic side chains that forms the likely interaction surface. CONCLUSIONS: The results of these studies indicate that the binding of anionic polymers by salivary proteins is used by blood feeders as an antihemostatic/anti-inflammatory mechanism.


Subject(s)
Anticoagulants/pharmacology , Blood Coagulation/drug effects , Dextran Sulfate/metabolism , Heparin/metabolism , Insect Proteins/pharmacology , Polyphosphates/metabolism , Psychodidae/chemistry , Saliva/chemistry , Animals , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Anticoagulants/metabolism , Blood Coagulation Tests , Capillary Permeability/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Factor XIIa/antagonists & inhibitors , Factor XIIa/metabolism , Factor XIa/antagonists & inhibitors , Factor XIa/metabolism , Humans , Insect Proteins/chemistry , Insect Proteins/isolation & purification , Insect Proteins/metabolism , Kininogen, High-Molecular-Weight/antagonists & inhibitors , Kininogen, High-Molecular-Weight/metabolism , Mice , Models, Molecular , Prekallikrein/antagonists & inhibitors , Prekallikrein/metabolism , Protein Conformation , Structure-Activity Relationship , Thrombin/metabolism , Time Factors
16.
Arterioscler Thromb Vasc Biol ; 32(9): 2185-98, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22796577

ABSTRACT

OBJECTIVE: Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. METHODS AND RESULTS: Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl(3)-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. CONCLUSIONS: Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Factor Xa Inhibitors , Fibrinolytic Agents/pharmacology , Inflammation/prevention & control , Insect Proteins/pharmacology , Psychodidae/chemistry , Receptor, PAR-2/antagonists & inhibitors , Salivary Glands/chemistry , Thrombosis/prevention & control , Amino Acid Sequence , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Blood Coagulation/drug effects , Calorimetry , Cell Line, Tumor , Chlorides , Cloning, Molecular , Disease Models, Animal , Dose-Response Relationship, Drug , Factor Xa/metabolism , Female , Ferric Compounds , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/isolation & purification , HEK293 Cells , Humans , Inflammation/blood , Inflammation/metabolism , Insect Proteins/chemistry , Insect Proteins/isolation & purification , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Molecular Weight , Partial Thromboplastin Time , Protein Binding , Prothrombin Time , Rats , Receptor, PAR-2/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Surface Plasmon Resonance , Thromboplastin/antagonists & inhibitors , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/chemically induced , Thrombosis/metabolism , Time Factors
17.
J Vector Borne Dis ; 49(1): 8-14, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22585236

ABSTRACT

BACKGROUND & OBJECTIVES: The saliva of the Phlebotominae is highly immunogenic to the vertebrate host and is a determining factor in the Leishmania infection. The aim of this work was to study the saliva of Lutzomyia ovallesi as a possible risk marker for the transmission of Leishmania. METHODS: Two populations of L. ovallesi from different geographical areas and subjected to different environmental conditions were compared by geometric morphometry of the wings, by protein profile analysis of salivary glands and by assessing the presence of anti-saliva protein in human sera confronted with laboratory L. ovallesi saliva. RESULTS: The results showed differences in the isometric size and structure of the wings but no allometric effects. Protein profiles of salivary glands of both the L. ovallesi populations studied were found to be similar, based on 11 protein bands with molecular weights ranging from 16 to 99 kDa. Anti-saliva antibodies were present in human sera, but human sera infected and uninfected with leishmaniasis could not be differentiated. INTERPRETATION & CONCLUSION: We conclude that the saliva of laboratory-reared L. ovallesi is representative of that of the wild population. It is suggested to study the presence of anti-saliva antibodies in other species of sandflies and mosquitoes.


Subject(s)
Antibodies/blood , Biomarkers/blood , Insect Proteins/analysis , Insect Proteins/immunology , Psychodidae/chemistry , Adolescent , Adult , Animals , Female , Humans , Male , Saliva/chemistry , Salivary Proteins and Peptides/analysis , Venezuela
18.
Microvasc Res ; 83(2): 185-93, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22036674

ABSTRACT

Experiments were designed to determine if the vasodilatory peptides maxadilan and pituitary adenylate cyclase-activating peptide (PACAP-38) may cause plasma leakage through activation of leukocytes and to what extent these effects could be due to PAC1 and CXCR1/2 receptor stimulation. Intravital microscopy of hamster cheek pouches utilizing FITC-dextran and rhodamine, respectively, as plasma and leukocyte markers was used to measure arteriolar diameter, plasma leakage and leukocyte accumulation in a selected area (5mm(2)) representative of the hamster cheek pouch microcirculation. Our studies showed that the sand fly vasodilator maxadilan and PACAP-38 induced arteriolar dilation, leukocyte accumulation and plasma leakage in postcapillary venules. The recombinant mutant of maxadilan M65 and an antagonist of CXCR1/2 receptors, reparixin, and an inhibitor of CD11b/CD18 up-regulation, ropivacaine, inhibited all these effects as induced by maxadilan. Dextran sulfate, a complement inhibitor with heparin-like anti-inflammatory effects, inhibited plasma leakage and leukocyte accumulation but not arteriolar dilation as induced by maxadilan and PACAP-38. In vitro studies with isolated human neutrophils showed that maxadilan is a potent stimulator of neutrophil migration comparable with fMLP and leukotriene B(4) and that M65 and reparixin inhibited such migration. The data suggest that leukocyte accumulation and plasma leakage induced by maxadilan involves a mechanism related to PAC1- and CXCR1/2-receptors on leukocytes and endothelial cells.


Subject(s)
Capillary Permeability/drug effects , Cheek/blood supply , Insect Proteins/pharmacology , Psychodidae , Receptors, Interleukin-8A/drug effects , Receptors, Interleukin-8B/drug effects , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/drug effects , Signal Transduction/drug effects , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Cells, Cultured , Chemotaxis, Leukocyte/drug effects , Cricetinae , Dextrans/metabolism , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/metabolism , Fluorescent Dyes/metabolism , Humans , Insect Proteins/genetics , Insect Proteins/isolation & purification , Microscopy, Fluorescence , Microscopy, Video , Mutation , Neutrophils/drug effects , Neutrophils/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Psychodidae/chemistry , Receptors, Interleukin-8A/metabolism , Receptors, Interleukin-8B/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Recombinant Proteins/pharmacology , Rhodamines/metabolism , Time Factors , Vasodilator Agents/isolation & purification , Venules/drug effects , Venules/metabolism
19.
PLoS Negl Trop Dis ; 5(5): e1169, 2011.
Article in English | MEDLINE | ID: mdl-21655303

ABSTRACT

BACKGROUND: Leishmania transmission occurs in the presence of insect saliva. Immunity to Phlebotomus papatasi or Lutzomyia longipalpis saliva or salivary components confers protection against an infection by Leishmania in the presence of the homologous saliva. However, immunization with Lutzomyia intermedia saliva did not protect mice against Leishmania braziliensis plus Lu. intermedia saliva. In the present study, we have studied whether the immunization with Lu. longipalpis saliva or a DNA plasmid coding for LJM19 salivary protein would be protective against L. braziliensis infection in the presence of Lu. intermedia saliva, the natural vector for L. braziliensis. METHODOLOGY/PRINCIPAL FINDINGS: Immunization with Lu. longipalpis saliva or with LJM19 DNA plasmid induced a Delayed-Type Hypersensitivity (DTH) response against Lu. longipalpis as well as against a Lu. intermedia saliva challenge. Immunized and unimmunized control hamsters were then intradermally infected in the ears with L. braziliensis in the presence of Lu. longipalpis or Lu. intermedia saliva. Animals immunized with Lu. longipalpis saliva exhibited smaller lesion sizes as well as reduced disease burdens both at lesion site and in the draining lymph nodes. These alterations were associated with a significant decrease in the expression levels of IL-10 and TGF-ß. Animals immunized with LJM19 DNA plasmid presented similar findings in protection and immune response and additionally increased IFN-γ expression. CONCLUSIONS/SIGNIFICANCE: Immunization with Lu. longipalpis saliva or with a DNA plasmid coding LJM19 salivary protein induced protection in hamsters challenged with L. braziliensis plus Lu. intermedia saliva. These findings point out an important role of immune response against saliva components, suggesting the possibility to develop a vaccine using a single component of Lu. longipalpis saliva to generate protection against different species of Leishmania, even those transmitted by a different vector.


Subject(s)
Disease Transmission, Infectious/prevention & control , Leishmania braziliensis/immunology , Leishmaniasis, Cutaneous/prevention & control , Protozoan Vaccines/immunology , Psychodidae/chemistry , Salivary Proteins and Peptides/immunology , Vaccines, DNA/immunology , Animals , Cricetinae , Female , Interferon-gamma/metabolism , Interleukin-10/metabolism , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/pathology , Leishmaniasis, Cutaneous/transmission , Lymph Nodes/pathology , Male , Mesocricetus , Protozoan Vaccines/administration & dosage , Saliva/chemistry , Saliva/immunology , Salivary Proteins and Peptides/isolation & purification , Skin/parasitology , Skin/pathology , Vaccines, DNA/administration & dosage
20.
Mem Inst Oswaldo Cruz ; 105(7): 928-30, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21120366

ABSTRACT

Lutzomyia longipalpis s.l. is the primary vector of Leishmania (L.) infantum in the New World. In this study, male Lutzomyia longipalpis specimens from Posadas, Argentina were characterized for two polymorphic markers: the male sex pheromone and the period (per) gene. The male sex pheromone was identified as (S)-9-methylgermacrene-B, the same compound produced by Lu. longipalpis from Paraguay and many populations from Brazil. The analysis of per gene sequences revealed that the population from Argentina is significantly differentiated from previously studied Brazilian populations. Marker studies could contribute to the understanding of the distribution and spread of urban American visceral leishmaniasis, thus aiding in the design of regional surveillance and control strategies.


Subject(s)
Insect Vectors/chemistry , Psychodidae/chemistry , Sesquiterpenes, Germacrane/genetics , Sex Attractants/genetics , Animals , Argentina , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...