Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 337
Filter
Add more filters










Publication year range
1.
J Enzyme Inhib Med Chem ; 38(1): 2219038, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37259593

ABSTRACT

Ricin toxin A chain (RTA), from Ricinus communis, is a deadly protein that inactivates ribosomes by degrading an adenine residue at position 4324 in 28S rRNA. Recently, we have demonstrated that pterin-7-carboxamides with peptide pendants were potent RTA inhibitors. Among these, N-(pterin-7-carbonyl)glycyl-L-tyrosine (7PCGY) is the most potent RTA inhibitor as a small organic molecule. However, despite this fascinating inhibitory activity, the mode of interaction of 7PCGY with RTA remains elusive. This study aimed to elucidate the factors responsible for the high RTA inhibitory activity of 7PCGY based on X-ray crystallographic analysis. Herein, we report the successfully resolved X-ray crystal structure of 7PCGY/RTA complexes, revealing that the interaction between the phenolic hydroxy group in 7PCGY and Asn78 of RTA through a hydrogen bonding and the conformational change of Tyr80 and Asn122 are responsible for the high RTA inhibitory activity of 7PCGY.


Subject(s)
Ricin , Ricin/chemistry , Ricin/genetics , Ricin/metabolism , Pterins/chemistry , Pterins/pharmacology , Crystallography, X-Ray , Peptides
2.
Chemistry ; 29(29): e202300519, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36929221

ABSTRACT

Unconjugated pterins are ubiquitous molecules that participate in countless enzymatic processes and are potentially involved in the photosensitization of singlet oxygen, amino acids, and nucleotides. Following electronic excitation with UV-A light, some of these pterins degrade, producing hydrogen peroxide as the main side product. This process, which is known to take place in vivo, contributes to oxidative stress and melanocyte destruction in vitiligo. In this work, we present for the first time mechanistic insight into the formation of transient triplet species that simultaneously trigger Type I and Type II photosensitizing processes and the initiation of degradation processes. Our calculations reveal that photodegradation of 6-biopterin, which accumulates in the skin of vitiligo patients, leads to 6-formylpterin through a retro-aldol reaction, and subsequently to 6-carboxypterin through a water-mediated aldehyde oxidation. Additionally, we show that the changes in the photosensitizing potential of these systems with pH come from the modulation of their excited-state redox potentials.


Subject(s)
Vitiligo , Humans , Photolysis , Photosensitizing Agents/chemistry , Pterins/chemistry , Pterins/metabolism , Oxidation-Reduction
3.
Inorg Chem ; 61(35): 13728-13742, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36000991

ABSTRACT

The complex [TEA][Tp*MoIV(O)(S2BMOPP)] (1) [TEA = tetraethylammonium, Tp* = tris(3,5-dimethylpyrazolyl)hydroborate, and BMOPP = 6-(3-butynyl-2-methyl-2-ol)-2-pivaloyl pterin] is a structural analogue of the molybdenum cofactor common to all pyranopterin molybdenum enzymes because it possesses a pyranopterin-ene-1,2-dithiolate ligand (S2BMOPP) that exists primarily in the ring-closed pyrano structure as a resonance hybrid of ene-dithiolate and thione-thiolate forms. Compound 1, the protonated [Tp*MoIV(O)(S2BMOPP-H)] (1-H) and one-electron-oxidized [Tp*MoV(O)(S2BMOPP)] [1-Mo(5+)] species have been studied using a combination of electrochemistry, electronic absorption, and electron paramagnetic resonance (EPR) spectroscopy. Additional insight into the nature of these molecules has been derived from electronic structure computations. Differences in dithiolene C-S bond lengths correlate with relative contributions from both ene-dithiolate and thione-thiolate resonance structures. Upon protonation of 1 to form 1-H, large spectroscopic changes are observed with transitions assigned as Mo(xy) → pyranopterin metal-to-ligand charge transfer and dithiolene → pyranopterin intraligand charge transfer, respectively, and this underscores a dramatic change in electronic structure between 1 and 1-H. The changes in electronic structure that occur upon protonation of 1 are also reflected in a large >300 mV increase in the Mo(V/IV) redox potential for 1-H, resulting from the greater thione-thiolate resonance contribution and decreased charge donation that stabilize the Mo(IV) state in 1-H with respect to one-electron oxidation. EPR spin Hamiltonian parameters for one-electron-oxidized 1-Mo(5+) and uncyclized [Tp*MoV(O)(S2BDMPP)] [3-Mo(5+)] [BDMPP = 6-(3-butynyl-2,2-dimethyl)-2-pivaloyl pterin] are very similar to each other and to those of [Tp*MoVO(bdt)] (bdt = 1,2-ene-dithiolate). This indicates that the dithiolate form of the ligand dominates at the Mo(V) level, consistent with the demand for greater S → Mo charge donation and a corresponding increase in Mo-S covalency as the oxidation state of the metal is increased. Protonation of 1 represents a simple reaction that models how the transfer of a proton from neighboring acidic amino acid residues to the Mo cofactor at a nitrogen atom within the pyranopterin dithiolene (PDT) ligand in pyranopterin molybdenum enzymes can impact the electronic structure of the Mo-PDT unit. This work also illustrates how pyran ring-chain tautomerization drives changes in resonance contributions to the dithiolene chelate and may adjust the reduction potential of the Mo ion.


Subject(s)
Molybdenum , Thiones , Electron Spin Resonance Spectroscopy , Ligands , Molybdenum/chemistry , Pterins/chemistry
4.
Arch Biochem Biophys ; 729: 109378, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-35995215

ABSTRACT

Phenylalanine hydroxylase (PheH) is a pterin-dependent, mononuclear nonheme iron(II) oxygenase that uses the oxidative power of O2 to hydroxylate phenylalanine to form tyrosine. PheH is a member of a superfamily of O2-activating enzymes that utilizes a common metal binding motif: the 2-His-1-carboxylate facial triad. Like most members of this superfamily, binding of substrates to PheH results in a reorganization of its active site to allow O2 activation. Exploring the energetics of each step before O2 activation can provide mechanistic insight into the initial steps that support the highly specific O2 activation pathway carried out by this metalloenzyme. Here the thermal stability of PheH and its substrate complexes were investigated under an anaerobic environment by using differential scanning calorimetry. In context with known binding constants for PheH, a thermodynamic cycle associated with iron(II), tetrahydrobiopterin (BH4), and phenylalanine binding to the active site was generated, showing a distinctive cooperativity between the binding of BH4 and Phe. The addition of phenylalanine and BH4 to PheH·Fe increased the stability of this enzyme (ΔTm of 8.5 (±0.7) °C with an associated δΔH of 43.0 (±2.9) kcal/mol). The thermodynamic data presented here gives insight into the complicated interactions between metal center, cofactor, and substrate, and how this interplay sets the stage for highly specific, oxidative C-H activation in this enzyme.


Subject(s)
Metalloproteins , Phenylalanine Hydroxylase , Biopterins/analogs & derivatives , Chromobacterium , Ferrous Compounds , Iron/metabolism , Kinetics , Metalloproteins/metabolism , Phenylalanine/metabolism , Phenylalanine Hydroxylase/chemistry , Phenylalanine Hydroxylase/metabolism , Pterins/chemistry , Pterins/metabolism , Thermodynamics , Tyrosine
5.
J Inorg Biochem ; 235: 111907, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35932756

ABSTRACT

Resonance Raman spectroscopy (rR) is a powerful spectroscopic probe that is widely used for studying the geometric and electronic structure of metalloproteins. In this focused review, we detail how resonance Raman spectroscopy has contributed to a greater understanding of electronic structure, geometric structure, and the reaction mechanisms of pyranopterin molybdenum enzymes. The review focuses on the enzymes sulfite oxidase (SO), dimethyl sulfoxide reductase (DMSOR), xanthine oxidase (XO), and carbon monoxide dehydrogenase. Specifically, we highlight how Mo-Ooxo, Mo-Ssulfido, Mo-Sdithiolene, and dithiolene CC vibrational modes, isotope and heavy atom perturbations, resonance enhancement, and associated Raman studies of small molecule analogs have provided detailed insight into the nature of these metalloenzyme active sites.


Subject(s)
Metalloproteins , Molybdenum , Coenzymes/chemistry , Metalloproteins/chemistry , Models, Molecular , Molybdenum/chemistry , Pterins/chemistry , Spectrum Analysis, Raman
6.
Photochem Photobiol Sci ; 21(9): 1647-1657, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35666464

ABSTRACT

Photoallergy is a photosensitivity disorder associated with a modified ability of the skin to react to the combined effect of drugs and sunlight. It has been attributed to the covalent conjugation of proteins with a photosensitizer, yielding modified macromolecules that can act as antigen provoking the immune system response. The potential role of some endogenous compounds as photoallergens has not been fully established. It has been previously proposed that pterins, which are endogenous photosensitizers present in human skin under pathological conditions, are able to covalently bind to proteins. Here, we evaluated the capability of pterin (Ptr) to form photoadducts with free Lysine (Lys) and poly-L-lysine (poly-Lys). The findings obtained using chromatographic and spectroscopic tools, confirm the formation of photoadducts of Ptr with Lys residues. With poly-Lys the resulting adduct retains the spectroscopic properties of the photosensitizer, suggesting that the aromatic Ptr structure is conserved. On the other hand, the photoproduct formed with free Lys does not behave like Ptr, which suggests that if this product is a photoadduct, a chemical modification may have occurred during the photochemical reaction that alters the pterin moiety.


Subject(s)
Dermatitis, Photoallergic , Humans , Lysine , Photosensitizing Agents/pharmacology , Pterins/chemistry , Skin
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121467, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35689845

ABSTRACT

Metal nanoclusters (NCs) are widely present today in biosensing, bioimaging, and diagnostics due to their small size, great biocompatibility, and sensitivity to the biomolecular environment. Silver (Ag) NCs often possess intense fluorescence, photostability, and low photobleaching, which is in high demand during the detection of organic molecules. Pterins are small compounds, which are used in medicine as biomarkers of oxidative stress, cardiovascular diseases, neurotransmitter synthesis, inflammation and immune system activation. It is experimentally possible to detect pterin (Ptr) through the adsorption on Ag colloid. We optimized geometries and evaluated the binding energy in Ptr-Agnq complexes (n = 1-6; q = 0, +1, +2) using quantum chemistry methods. Different Ptr atoms were preferential for silver attachment depending on NC charge and size. The highest Eb was obtained for the complexes between the Ptr0 and Ag32+ (-50.8 kcal mol-1), between Ptr-1 and Ag32+ (-64.8 kcal mol-1), which means that these complexes should be formed preferably in aqueous solutions in acidic and alkaline media, respectively. The colorimetric detection of pterin with silver clusters does not seem to be promising. However, intense S0→S1 transitions of Ag5+ complexes look promising for luminescent Ptr detection. SERS detection of pterin is better to be done at pH > 8 since deprotonated pterin Raman undergo more dramatic changes upon addition of Ag than the neutral pterin. The characteristics of absorption and vibrational spectra of silver-pterin should be exploited during biosensor development.


Subject(s)
Biosensing Techniques , Silver , Pterins/chemistry , Silver/chemistry , Spectrum Analysis , Water/chemistry
8.
Molecules ; 27(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35630801

ABSTRACT

Pterins are bicyclic heterocycles that are found widely across Nature and are involved in a variety of biological functions. Notably, pterins are found at the core of molybdenum cofactor (Moco) containing enzymes in the molybdopterin (MPT) ligand that coordinates molybdenum and facilitates cofactor activity. Pterins are diverse and can be widely functionalized to tune their properties. Herein, the general methods of synthesis, redox and spectroscopic properties of pterin are discussed to provide more insight into pterin chemistry and their importance to biological systems.


Subject(s)
Molybdenum Cofactors , Pterins , Molybdenum/chemistry , Oxidation-Reduction , Pterins/chemistry , Spectrum Analysis
9.
Photochem Photobiol ; 98(3): 687-695, 2022 05.
Article in English | MEDLINE | ID: mdl-34738644

ABSTRACT

In electron-transfer initiated photosensitization processes, molecular oxygen (O2 ) is not involved in the first bimolecular event, but almost always participates in subsequent steps giving rise to oxygenated products. An exception to this general behavior is the photosensitized dimerization of tyrosine (Tyr), where O2 does not participate as a reactant in any step of the pathway yielding Tyr dimers (Tyr2 ). In the pterin (Ptr) photosensitized oxidation of Tyr, O2 does not directly participate in the formation of Tyr2 and quenches the triplet excited state of Ptr, the reactive species that initiates the process. However, O2 is necessary for the dimerization, phenomenon that we have named as the oxygen paradox. Here, we review the literature on the photosensitized formation of Tyr2 and present results of steady-state and time resolved experiments, in search of a mechanistic model to explain the contradictory role of O2 in this photochemical reaction system.


Subject(s)
Oxygen , Tyrosine , Dimerization , Oxidation-Reduction , Pterins/chemistry , Singlet Oxygen/chemistry , Tyrosine/chemistry
10.
Phys Chem Chem Phys ; 23(34): 19043-19053, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34612442

ABSTRACT

Reaction pathway of prebiotic reactions for formation of the pteridines: pterin, xanthopterine, isoxanthopterine and leucopterine, as well as the purine nucleobase guanine from pure formamide are presented. In these reactions, formamide or its tautomer, formimidic acid, play the role of proton-carrying catalyst. All required raw materials, such as hydrogen cyanide, ammonia, water, formic acid, urea, 2-aminomalononitrile, glyoxal, glyoxylic acid and oxalic acid needed in the self-catalyzed reactions are obtained by partial decomposition of formamide. We show that the prebiotic formation of nucleobases and pterins is closely linked and they probably coexisted at the beginning of chemical evolution.


Subject(s)
Formamides/chemistry , Guanine/chemical synthesis , Prebiotics , Pterins/chemical synthesis , Catalysis , Density Functional Theory , Evolution, Chemical , Guanine/chemistry , Pterins/chemistry , Temperature
11.
Molecules ; 26(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34299660

ABSTRACT

Arthrobacter nicotinovorans decomposes nicotine through the pyridine pathway. 6-hydroxypseudooxynicotine 2-oxidoreductase (also named ketone dehydrogenase, Kdh) is an important enzyme in nicotine degradation pathway of A. nicotinovorans, and is responsible for the second hydroxylation of nicotine. Kdh belongs to the molybdenum hydroxylase family, and catalyzes the oxidation of 6-hydroxy-pseudooxynicotine (6-HPON) to 2,6-dihydroxy-pseudooxynicotine (2,6-DHPON). We determined the crystal structure of the Kdh holoenzyme from A. nicotinovorans, with its three subunits KdhL, KdhM, and KdhS, and their associated cofactors molybdopterin cytosine dinucleotide (MCD), two iron-sulfur clusters (Fe2S2), and flavin adenine dinucleotide (FAD), respectively. In addition, we obtained a structural model of the substrate 6-HPON-bound Kdh through molecular docking, and performed molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) calculations to unveil the catalytic mechanism of Kdh. The residues Glu345, Try551, and Glu748 of KdhL were found to participate in substrate binding, and Phe269 and Arg383 of KdhL were found to contribute to stabilize the MCD conformation. Furthermore, site-directed mutagenesis and enzymatic activity assays were performed to support our structural and computational results, which also revealed a trend of increasing catalytic efficiency with the increase in the buffer pH. Lastly, our electrochemical results demonstrated electron transfer among the various cofactors of Kdh. Therefore, our work provides a comprehensive structural, mechanistic, and functional study on the molybdenum hydroxylase Kdh in the nicotine degradation pathway of A. nicotinovorans.


Subject(s)
Bacterial Proteins/chemistry , Micrococcaceae/enzymology , Mixed Function Oxygenases/chemistry , Molecular Docking Simulation , Molybdenum/chemistry , Nicotine/chemistry , Bacterial Proteins/genetics , Cloning, Molecular , Cytosine Nucleotides/chemistry , Cytosine Nucleotides/genetics , Micrococcaceae/genetics , Mixed Function Oxygenases/genetics , Molybdenum/metabolism , Nicotine/metabolism , Pterins/chemistry , Structure-Activity Relationship
12.
Int J Biol Macromol ; 182: 959-967, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33872614

ABSTRACT

Dihydromethanopterin reductase (DmrB), is a naturally occurring cage protein found in various archaeal and a few bacterial species. It exists as 24mer with cubic geometry where 8 trimeric subunits are present at the corners of each cube. Each trimer is made up of three monomeric units and six FMN, where two molecules of FMN are present at the interface of each monomer. DmrB is involved in the conversion of dihydromethanopterin to tetrahydromethanopterin using FMN as a redox equivalent. In the present study, we have used spectroscopic and biochemical techniques along with complementary bio-informatic work to understand the assembly principles of the DmrB. Our results show a concentration dependant self-assembly of DmrB which is mediated by ionic interactions. The co-factor FMN stabilizes and preserves the secondary and quaternary structure of DmrB against thermal insult, indicating that the higher order assembly of DmrB is very thermostable. Our work provides an interesting piece of information regarding the role of the co-factors in the thermostability of these classes of cage proteins. The understanding of the assembly and disassembly of this thermostable cage would enable the downstream usage of this system in various nano-biotechnological applications.


Subject(s)
Bacterial Proteins/chemistry , Oxidoreductases Acting on CH-NH Group Donors/chemistry , Protein Multimerization , Pterins/chemistry , Bacterial Proteins/metabolism , Enzyme Stability , Osmolar Concentration
13.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876764

ABSTRACT

The pterin-dependent nonheme iron enzymes hydroxylate aromatic amino acids to perform the biosynthesis of neurotransmitters to maintain proper brain function. These enzymes activate oxygen using a pterin cofactor and an aromatic amino acid substrate bound to the FeII active site to form a highly reactive FeIV = O species that initiates substrate oxidation. In this study, using tryptophan hydroxylase, we have kinetically generated a pre-FeIV = O intermediate and characterized its structure as a FeII-peroxy-pterin species using absorption, Mössbauer, resonance Raman, and nuclear resonance vibrational spectroscopies. From parallel characterization of the pterin cofactor and tryptophan substrate-bound ternary FeII active site before the O2 reaction (including magnetic circular dichroism spectroscopy), these studies both experimentally define the mechanism of FeIV = O formation and demonstrate that the carbonyl functional group on the pterin is directly coordinated to the FeII site in both the ternary complex and the peroxo intermediate. Reaction coordinate calculations predict a 14 kcal/mol reduction in the oxygen activation barrier due to the direct binding of the pterin carbonyl to the FeII site, as this interaction provides an orbital pathway for efficient electron transfer from the pterin cofactor to the iron center. This direct coordination of the pterin cofactor enables the biological function of the pterin-dependent hydroxylases and demonstrates a unified mechanism for oxygen activation by the cofactor-dependent nonheme iron enzymes.


Subject(s)
Iron/metabolism , Neurotransmitter Agents/biosynthesis , Nuclear Proteins/metabolism , Pterins/chemistry , Zinc Finger Protein Gli2/metabolism , Humans , Iron/chemistry , Nuclear Proteins/chemistry , Oxygen/metabolism , Pterins/metabolism , Tryptophan/chemistry , Tryptophan/metabolism , Zinc Finger Protein Gli2/chemistry
14.
Bioorg Med Chem ; 29: 115847, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33199204

ABSTRACT

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a key enzyme in the folate biosynthesis pathway. It catalyzes pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP). HPPK is essential for microorganisms but absent in mammals; therefore, it is an attractive target for developing novel antimicrobial agents. Previously, based on our studies of the structure and mechanism of HPPK, we created first-generation bisubstrate inhibitors by linking 6-hydroxymethylpterin to adenosine through phosphate groups, and developed second-generation inhibitors by replacing the phosphate bridge with a linkage that contains a piperidine moiety. Here, we report third-generation inhibitors designed based on the piperidine-containing inhibitor, mimicking the transition state. We synthesized two such inhibitors, characterized their protein-binding and enzyme inhibition properties, and determined their crystal structures in complex with HPPK, advancing the development of such bisubstrate analog inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Piperidines/pharmacology , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Binding Sites/drug effects , Crystallography, X-Ray , Diphosphotransferases , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli/enzymology , Models, Molecular , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Pterins/chemistry , Pterins/metabolism , Structure-Activity Relationship
15.
Photochem Photobiol Sci ; 19(11): 1538-1547, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33029609

ABSTRACT

Given the prevalence of fluorescence spectroscopy in biological systems, and the prevalence of pterin derivatives throughout biological systems, presented here is an assessment of the two-photon absorption spectroscopy as it applies to a range of the most commonly studied pterin derivatives. QR-CAMB3LYP//ccpVTZ calculations suggest that the use of two-photon spectroscopic methods would enable a more capable differentiation between closely related derivatives in comparison to the one-photon spectra, which show minimal qualitative deviation. Study of short tail derivatives shows that, in most cases, two-photon accessible states solely involve the π* LUMO as the particle orbital, with biopterin, neopterin, and 6-(hydroxymethyl)pterin presenting exceptional potential for targetting. Investigation of derivatives in which the tail contains an aromatic ring resulted in the observation of a series of two-photon accessible states involving charge transfer from the tail to the pterin moiety, the cross sections of which are highly dependent on the adoption of a planar geometry. The observation of these states presents a novel method for tracking the substitution of biologically important molecules such as folic acid and 5-methenyltetrahydrofolylpolyglutamate.


Subject(s)
Density Functional Theory , Photons , Pterins/metabolism , Humans , Molecular Structure , Pterins/chemistry , Spectrometry, Fluorescence
16.
J Nat Prod ; 83(10): 3156-3165, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33030894

ABSTRACT

Fourteen aromatic metabolites (6-19) were isolated from an aqueous extract of the solitary tunicate Cnemidocarpa irene collected in Hokkaido, Japan. The structures of the metabolites were determined based on the spectroscopic interpretations, including one- and two-dimensional NMR, mass spectra, UV, and circular dichroism data. The biopterin analogue 10 modulated the behavior of mice after intracerebroventricular injection and showed a weak affinity to ionotropic glutamate receptor subtypes. Analyses of fluorescent coelomic fluid of the tunicate revealed that pterin 12 was responsible for the fluorescence of the blood cells, while ß-carbolines 1 and 3 were fluorescent compounds in the serum. The metabolic profiles in adults, juveniles, larvae, and eggs of the animal differed substantially, suggesting that the metabolism of the animal, especially biosynthesis of aromatic secondary metabolites, changes over different life stages.


Subject(s)
Hydrocarbons, Aromatic/metabolism , Urochordata/chemistry , Urochordata/metabolism , Animals , Behavior, Animal/drug effects , Biopterins/analogs & derivatives , Biopterins/chemistry , Biopterins/pharmacology , Carbolines/chemistry , Carbolines/pharmacology , Cholinesterase Inhibitors/pharmacology , Circular Dichroism , HeLa Cells/drug effects , Humans , Injections, Intraventricular , Larva , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mice , Molecular Structure , Nucleosides/chemistry , Nucleosides/pharmacology , Ovum/metabolism , Pterins/chemistry , Pterins/isolation & purification , Pterins/pharmacology , Receptors, Ionotropic Glutamate/drug effects , Spectrophotometry, Ultraviolet , Tyramine/chemistry , Tyramine/pharmacology , Urochordata/growth & development
17.
Anal Sci ; 36(12): 1529-1533, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-32830162

ABSTRACT

Monitoring the changes in the level of KRAS point mutation (the concentration fraction of the KRAS point mutated DNA to the total DNA) in clinical treatment progress can guide and greatly improve the personalized therapy and therapeutic evaluation of patients with cancer. In this work, based on FRET fluorescence quenching and apyrimidinic site-induced guanine/pterin specific binding, we developed a pterin-FAM-TAMRA tri-color fluorescence sensing system to assess the level of KRAS point mutation in one step. The responses from TAMRA displayed good and similar linear correlations in the range from 60 nM to 2 µM for all four types of DNA, resulting in a common linear equation related to the T-DNA concentration (NΔFTAMRA = 2.908cT-DNA + 0.364). Meanwhile, the responses from pterin showed excellent selectivity to W-DNA and an excellent linear correlation to the W-DNA in the concentration range from 60 nM to 1 µM (NΔFpterin = -0.364cgDNA-G + 0.034). This biosensor has an effective concentration range for detecting KRAS point mutations. Especially, because the apyrimidinic site-induced guanine/pterin binding is selective for the detection of wild-type DNA, the sensing system can be applied for clinical mutation level detection of all kinds of KRAS point mutations (G → A, G → C and G → T) in blood samples, which is crucial for the personalized therapy and therapeutic evaluation of patients with most KRAS-related cancer types.


Subject(s)
Biosensing Techniques/methods , Fluorescence , Point Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Pterins/chemistry , Rhodamines/chemistry , Cell Line, Tumor , Humans , Limit of Detection
18.
Environ Microbiol ; 22(6): 2007-2026, 2020 06.
Article in English | MEDLINE | ID: mdl-32239579

ABSTRACT

The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5'-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.


Subject(s)
Coenzymes/biosynthesis , Escherichia coli/metabolism , Metalloproteins/biosynthesis , Coenzymes/chemistry , Metalloproteins/chemistry , Molybdenum/metabolism , Molybdenum Cofactors , Organophosphorus Compounds , Pteridines/chemistry , Pterins/chemistry
19.
Chem Res Toxicol ; 32(11): 2250-2259, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31588735

ABSTRACT

The main goal of the present work was to investigate the damages photoinduced by pterin (Ptr), an endogenous photosensitizer present in human skin under pathological conditions, on a globular protein such as ubiquitin (Ub). Particular attention has been paid on the formation of covalent adducts between Ptr and the protein that can behave as photoantigen and provoke an immune system response. Here, a multifaceted approach including UV-visible spectrophotometry, fluorescence spectroscopy, electrophoresis, size exclusion chromatography, and mass spectrometry is used to establish the Ub changes triggered by UV-A irradiation in the presence of Ptr. Under anaerobic conditions, the only reaction corresponds to the formation of a covalently bound Ptr-Ub adduct that retains the spectroscopic properties of the free photosensitizer. A more complex scheme is observed in air-equilibrated solutions with the occurrence of three different processes, that is, formation of a Ptr-Ub adduct, dimerization, and fragmentation of the protein.


Subject(s)
Pterins/chemistry , Pterins/radiation effects , Ubiquitin/chemistry , Ubiquitin/radiation effects , Ultraviolet Rays , Oxygen/chemistry , Photolysis
20.
Molecules ; 24(15)2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31357400

ABSTRACT

In this work, we aimed to improve the encapsulation efficiency of sepiapterin (SP), the natural precursor of the essential cofactor tetrahydrobiopterin (BH4) that displays mild water-solubility and a short biological half-life, within methoxy-poly(ethylene-glycol)-poly(epsilon-caprolactone)(mPEG-PCL) nanoparticles (NPs) by means of its complexation and hydrophobization with 2,3,6-triacetyl-ß-cyclodextrin (TAßCD). For this, SP/TAßCD complexes were produced by spray-drying of SP/TAßCD binary solutions in ethanol using the Nano Spray Dryer B-90 HP. Dry powders were characterized by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and transmission and scanning electron microscopy (TEM and SEM, respectively) and compared to the pristine components and their physical mixtures (PMs). Next, SP was encapsulated within mPEG-PCL NPs by nano-precipitation of an SP/TAßCD complex/mPEG-PCL solution. In addition to the nano-encapsulation of a preformed complex within the polymeric NPs, we assessed an alternative encapsulation approach called drying with copolymer (DWC) in which pristine SP, TAßCD, and mPEG-PCL were co-dissolved in a mixture of acetone and methanol at the desired weight ratio, dried under vacuum, re-dissolved, and nano-precipitated in water. The dissolution-drying step was aimed to promote the formation of molecular hydrophobic interactions between SP, TAßCD, and the PCL blocks in the copolymer. SP-loaded mPEG-PCL NPs were characterized by dynamic light scattering (DLS) and SEM. NPs with a size of 74-75 nm and standard deviation (S.D., a measure of the peak width) of 21-22 nm were obtained when an SP:TAßCD (1:1 molar ratio) spray-dried complex was used for the nano-encapsulation and SEM analysis revealed the absence of free SP crystals. The encapsulation efficiency (%EE) and drug loading (%DL) were 85% and 2.6%, respectively, as opposed to the much lower values (14% and 0.6%, respectively) achieved with pristine SP. Moreover, the NPs sustained the SP release with relatively low burst effect of 20%. Overall, our results confirmed that spray-drying of SP/TAßCD solutions at the appropriate molar ratio leads to the hydrophobization of the relatively hydrophilic SP molecule, enabling its encapsulation within mPEG-PCL NPs and paves the way for the use of this strategy in the development of novel drug delivery systems of this vital biological precursor.


Subject(s)
Drug Carriers/chemistry , Drug Compounding , Nanoparticles/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Pterins/chemistry , beta-Cyclodextrins/chemistry , Drug Delivery Systems , Molecular Structure , Nanoparticles/ultrastructure , Pterins/administration & dosage , Spectrum Analysis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...