Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Virol Sin ; 39(3): 390-402, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521412

ABSTRACT

The high risk of SARS-CoV-2 infection and reinfection and the occurrence of post-acute pulmonary sequelae have highlighted the importance of understanding the mechanism underlying lung repair after injury. To address this concern, comparative and systematic analyses of SARS-CoV-2 infection in COVID-19 patients and animals were conducted. In the lungs of nine patients who died of COVID-19 and one recovered from COVID-19 but died of unrelated disease in early 2020, damage-related transient progenitor (DATP) cells expressing CK8 marker proliferated significantly. These CK8+ DATP cells were derived from bronchial CK5+ basal cells. However, they showed different cell fate toward differentiation into type I alveolar cells in the deceased and convalescent patients, respectively. By using a self-limiting hamster infection model mimicking the dynamic process of lung injury remodeling in mild COVID-19 patients, the accumulation and regression of CK8+ cell marker were found to be closely associated with the disease course. Finally, we examined the autopsied lungs of two patients who died of infection by the recent Omicron variant and found that they only exhibited mild pathological injury with no CK8+ cell proliferation. These results indicate a clear pulmonary cell remodeling route and suggest that CK8+ DATP cells play a primary role in mediating alveolar remodeling, highlighting their potential applications as diagnostic markers and therapeutic targets.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Humans , Animals , Male , Middle Aged , Female , Cricetinae , Lung/pathology , Lung/virology , Lung/immunology , Adult , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology , Pulmonary Alveoli/immunology , Aged , Disease Models, Animal , Lung Injury/virology , Lung Injury/pathology , Lung Injury/immunology , Cell Proliferation , Cell Differentiation
2.
Signal Transduct Target Ther ; 6(1): 428, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34921131

ABSTRACT

SARS-CoV-2 infection-induced hyper-inflammation links to the acute lung injury and COVID-19 severity. Identifying the primary mediators that initiate the uncontrolled hypercytokinemia is essential for treatments. Mast cells (MCs) are strategically located at the mucosa and beneficially or detrimentally regulate immune inflammations. In this study, we showed that SARS-CoV-2-triggered MC degranulation initiated alveolar epithelial inflammation and lung injury. SARS-CoV-2 challenge induced MC degranulation in ACE-2 humanized mice and rhesus macaques, and a rapid MC degranulation could be recapitulated with Spike-RBD binding to ACE2 in cells; MC degranulation altered various signaling pathways in alveolar epithelial cells, particularly, the induction of pro-inflammatory factors and consequential disruption of tight junctions. Importantly, the administration of clinical MC stabilizers for blocking degranulation dampened SARS-CoV-2-induced production of pro-inflammatory factors and prevented lung injury. These findings uncover a novel mechanism for SARS-CoV-2 initiating lung inflammation, and suggest an off-label use of MC stabilizer as immunomodulators for COVID-19 treatments.


Subject(s)
COVID-19/metabolism , Cell Degranulation , Lung Injury/metabolism , Mast Cells/metabolism , Pulmonary Alveoli/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , Cell Line, Tumor , Female , Humans , Lung Injury/genetics , Lung Injury/virology , Macaca mulatta , Male , Mice, Inbred BALB C , Mice, Transgenic , Pulmonary Alveoli/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
Biochem Biophys Res Commun ; 579: 69-75, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34592572

ABSTRACT

N-glycosylation plays an important role in the pathogenesis of viral infections. However, the role of SARS-CoV-2 RBD N-glycosylation in viral entry remains elusive. In this study, we expressed and purified N331 and N343 N-glycosite mutants of SARS-CoV-2 RBD. We found that de-glycosylation at N331 and N343 drastically reduces the RBD binding to ACE2. More importantly, based on qualitative and quantitative virology research methods, we show that the mutation of RBD N-glycosites interfered with SARS-CoV-2 internalization rather than attachment potentially by decreasing RBD binding to the receptors. Also, the double N-glycosites mutant (N331 + N343) showed significantly increased sensitivity against the designated RBD neutralizing antibodies. Taken together, these results suggest that N-glycosylation of SARS-CoV-2 RBD is not only critical for viral internalization into respiratory epithelial cells but also shields the virus from neutralization. It may provide new insights into the biological process of early-stage SARS-CoV-2 infection with potential therapeutic implications.


Subject(s)
Polysaccharides/metabolism , Pulmonary Alveoli/cytology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing , Binding Sites , COVID-19/metabolism , COVID-19/virology , Cell Line , Epithelial Cells , Glycosylation , Host-Pathogen Interactions/physiology , Humans , Mutation , Polysaccharides/chemistry , Pulmonary Alveoli/virology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Virus Attachment
4.
Elife ; 102021 08 13.
Article in English | MEDLINE | ID: mdl-34463615

ABSTRACT

Background: SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. Methods: We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Results: Infected ALO monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection, whereas distal alveolar differentiation (AT2→AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Conclusions: Findings validate a human lung model of COVID-19, which can be immediately utilized to investigate COVID-19 pathogenesis and vet new therapies and vaccines. Funding: This work was supported by the National Institutes for Health (NIH) grants 1R01DK107585-01A1, 3R01DK107585-05S1 (to SD); R01-AI141630, CA100768 and CA160911 (to PG) and R01-AI 155696 (to PG, DS and SD); R00-CA151673 and R01-GM138385 (to DS), R01- HL32225 (to PT), UCOP-R00RG2642 (to SD and PG), UCOP-R01RG3780 (to P.G. and D.S) and a pilot award from the Sanford Stem Cell Clinical Center at UC San Diego Health (P.G, S.D, D.S). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. L.C.A's salary was supported in part by the VA San Diego Healthcare System. This manuscript includes data generated at the UC San Diego Institute of Genomic Medicine (IGC) using an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929).


Subject(s)
Adult Stem Cells , COVID-19 , Lung/pathology , Models, Biological , Organoids , Adult Stem Cells/virology , COVID-19/pathology , COVID-19/virology , Female , Humans , Lung/cytology , Lung/virology , Male , Middle Aged , Organoids/virology , Pulmonary Alveoli/cytology , Pulmonary Alveoli/virology , Respiratory Mucosa/cytology , Respiratory Mucosa/virology
5.
Dis Model Mech ; 14(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-34219165

ABSTRACT

The COVID-19 pandemic has emphasised the need to develop effective treatments to combat emerging viruses. Model systems that poorly represent a virus' cellular environment, however, may impede research and waste resources. Collaborations between cell biologists and virologists have led to the rapid development of representative organoid model systems to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We believe that lung organoids, in particular, have advanced our understanding of SARS-CoV-2 pathogenesis, and have laid a foundation to study future pandemic viruses and develop effective treatments.


Subject(s)
COVID-19/virology , Lung/virology , Models, Biological , Organoids/virology , SARS-CoV-2 , Animals , COVID-19/epidemiology , Humans , Pandemics , Pulmonary Alveoli/virology , Research Design/trends , SARS-CoV-2/pathogenicity
6.
ACS Appl Mater Interfaces ; 13(21): 24477-24486, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-33961399

ABSTRACT

The pseudovirus strategy makes studies of highly pathogenic viruses feasible without the restriction of high-level biosafety facility, thus greatly contributing to virology and is used in the research studies of SARS-CoV-2. Here, we generated a dual-color pseudo-SARS-CoV-2 virus using a human immunodeficiency virus-1 pseudovirus production system and the SARS-CoV-2 spike (S) glycoprotein, of which the membrane was labeled with a lipophilic dye (DiO) and the genomic RNA-related viral protein R (Vpr) of the viral core was fused with mCherry. With this dual-color labeling strategy, not only the movement of the whole virus but also the fate of the labeled components can be traced. The pseudovirions were applied to track the viral entry at a single-particle level in four types of the human respiratory cells: nasal epithelial cells (HNEpC), pulmonary alveolar epithelial cells (HPAEpiC), bronchial epithelial cells (BEP-2D), and oral epithelial cells (HOEC). Pseudo-SARS-CoV-2 entered into the host cell and released the viral core into the cytoplasm, which clearly indicates that the host entry mainly occurred through endocytosis. The infection efficiency was found to be correlated with the expression of the known receptor of SARS-CoV-2, angiotensin-converting 2 (ACE2) on the host cell surface. We believe that the dual-color fluorescently labeled pseudovirus system created in this study can be applied as a useful tool for many purposes in SARS-CoV-2/COVID-19.


Subject(s)
Fluorescent Dyes/chemistry , Pulmonary Alveoli/virology , SARS-CoV-2/physiology , Virus Internalization , Angiotensin-Converting Enzyme 2/metabolism , Endocytosis , Epithelial Cells/virology , Fluorescence , HEK293 Cells , HIV-1/genetics , Humans , Nasal Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
7.
J Infect Dis ; 223(11): 1842-1854, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33837392

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) patients manifest with pulmonary symptoms reflected by diffuse alveolar damage (DAD), excessive inflammation, and thromboembolism. The mechanisms mediating these processes remain unclear. METHODS: We performed multicolor staining for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins and lineage markers to define viral tropism and lung pathobiology in 5 autopsy cases. RESULTS: Lung parenchyma showed severe DAD with thromboemboli. Viral infection was found in an extensive range of cells including pneumocyte type II, ciliated, goblet, club-like, and endothelial cells. More than 90% of infiltrating immune cells were positive for viral proteins including macrophages, monocytes, neutrophils, natural killer (NK) cells, B cells, and T cells. Most but not all infected cells were angiotensin-converting enzyme 2 (ACE2) positive. The numbers of infected and ACE2-positive cells are associated with extensive tissue damage. Infected tissues exhibited high levels of inflammatory cells including macrophages, monocytes, neutrophils, and NK cells, and low levels of B cells but abundant T cells consisting of mainly T helper cells, few cytotoxic T cells, and no regulatory T cells. Robust interleukin-6 expression was present in most cells, with or without infection. CONCLUSIONS: In fatal COVID-19 lungs, there are broad SARS-CoV-2 cell tropisms, extensive infiltrated innate immune cells, and activation and depletion of adaptive immune cells, contributing to severe tissue damage, thromboemboli, excess inflammation, and compromised immune responses.


Subject(s)
COVID-19/pathology , Lung/pathology , SARS-CoV-2/physiology , Viral Tropism , Adult , Aged , COVID-19/immunology , COVID-19/virology , Female , Humans , Immunity, Innate , Lung/cytology , Lung/immunology , Lung/virology , Male , Middle Aged , Pulmonary Alveoli/immunology , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology , Viral Tropism/immunology
8.
Nature ; 595(7865): 107-113, 2021 07.
Article in English | MEDLINE | ID: mdl-33915569

ABSTRACT

COVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.


Subject(s)
COVID-19/pathology , COVID-19/virology , Kidney/pathology , Liver/pathology , Lung/pathology , Myocardium/pathology , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , Atlases as Topic , Autopsy , Biological Specimen Banks , COVID-19/genetics , COVID-19/immunology , Endothelial Cells , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Fibroblasts , Genome-Wide Association Study , Heart/virology , Humans , Inflammation/pathology , Inflammation/virology , Kidney/virology , Liver/virology , Lung/virology , Male , Middle Aged , Organ Specificity , Phagocytes , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology , RNA, Viral/analysis , Regeneration , SARS-CoV-2/immunology , Single-Cell Analysis , Viral Load
9.
Adv Colloid Interface Sci ; 290: 102400, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33713994

ABSTRACT

We review concepts involved in describing the chemodynamic features of nanoparticles and apply the framework to gain physicochemical insights into interactions between SARS-CoV-2 virions and airborne particulate matter (PM). Our analysis is highly pertinent given that the World Health Organisation acknowledges that SARS-CoV-2 may be transmitted by respiratory droplets, and the US Center for Disease Control and Prevention recognises that airborne transmission of SARS-CoV-2 can occur. In our theoretical treatment, the virion is assimilated to a core-shell nanoparticle, and contributions of various interaction energies to the virion-PM association (electrostatic, hydrophobic, London-van der Waals, etc.) are generically included. We review the limited available literature on the physicochemical features of the SARS-CoV-2 virion and identify knowledge gaps. Despite the lack of quantitative data, our conceptual framework qualitatively predicts that virion-PM entities are largely able to maintain equilibrium on the timescale of their diffusion towards the host cell surface. Comparison of the relevant mass transport coefficients reveals that virion biointernalization demand by alveolar host cells may be greater than the diffusive supply. Under such conditions both the free and PM-sorbed virions may contribute to the transmitted dose. This result points to the potential for PM to serve as a shuttle for delivery of virions to host cell targets. Thus, our critical review reveals that the chemodynamics of virion-PM interactions may play a crucial role in the transmission of COVID-19, and provides a sound basis for explaining reported correlations between episodes of air pollution and outbreaks of COVID-19.


Subject(s)
COVID-19/transmission , Epithelial Cells/virology , Particulate Matter/chemistry , SARS-CoV-2/chemistry , Virion/chemistry , Aerosols , Biomechanical Phenomena , COVID-19/virology , Diffusion , Humans , Hydrophobic and Hydrophilic Interactions , Models, Chemical , Nanoparticles/chemistry , Pulmonary Alveoli/virology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Static Electricity , Virion/metabolism , Virion/pathogenicity , Virus Internalization , Water/chemistry
10.
Cell Rep ; 34(11): 108872, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33730572

ABSTRACT

Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools among tissues, it is unclear whether different viruses infecting different tissues have adapted their codon usage toward their tropism. Here, we collect the coding sequences of 502 human-infecting viruses and determine that tropism explains changes in codon usage. Using the tRNA abundances across 23 human tissues from The Cancer Genome Atlas (TCGA), we build an in silico model of translational efficiency that validates the correspondence of the viral codon usage with the translational machinery of their tropism. For instance, we detect that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is specifically adapted to the upper respiratory tract and alveoli. Furthermore, this correspondence is specifically defined in early viral proteins. The observed tissue-specific translational efficiency could be useful for the development of antiviral therapies and vaccines.


Subject(s)
Protein Biosynthesis/genetics , Virus Diseases/genetics , Viruses/genetics , Cell Line , Cell Line, Tumor , Codon Usage/genetics , Genes, Neoplasm/genetics , HCT116 Cells , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Pulmonary Alveoli/virology , RNA, Transfer/genetics , Respiratory Tract Infections/virology , Tropism/genetics , Viral Proteins/genetics , Virus Diseases/virology
11.
Virchows Arch ; 479(4): 827-833, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33411031

ABSTRACT

We present results from clinical, radiologic, gas exchange, lung mechanics, and fibre-optic bronchoscopy-guided transbronchial biopsies in a case of acute respiratory failure due to SARS-CoV-2 (Covid-19). This report highlights the pulmonary, immunological, and inflammatory changes found during acute diffuse alveolar damage and the later organizing phase. An early diffuse alveolar damage pattern with predominant epithelial involvement with active recruitment of T cells and monocytes was observed followed by a late organizing pattern with pneumocyte hyperplasia, inflammatory infiltration, prominent endotheliitis, and secondary germinal centers. The patient's deterioration paralleling the late immuno-pathological findings based the decision to administer intravenous corticosteroids, resulting in clinical, gasometric, and radiologic improvement. We believe that real-time clinicopathological correlation, along with the description of the immunological processes at play, will contribute to the full clinical picture of Covid-19 and might lead to a more rational approach in the precise timing of anti-inflammatory, anti-cytokine, or steroid therapies.


Subject(s)
Bronchi/pathology , COVID-19 Drug Treatment , Steroids/therapeutic use , Aged , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Biopsy/methods , Bronchi/virology , COVID-19/pathology , COVID-19/virology , Humans , Lung/pathology , Male , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/virology , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/pathology , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification
12.
J Leukoc Biol ; 109(1): 35-47, 2021 01.
Article in English | MEDLINE | ID: mdl-33242368

ABSTRACT

The SARS-CoV-2 pandemic has led to hundreds of thousands of deaths and billions of dollars in economic damage. The immune response elicited from this virus is poorly understood. An alarming number of cases have arisen where COVID-19 patients develop complications on top of the symptoms already associated with SARS, such as thrombosis, injuries of vascular system, kidney, and liver, as well as Kawasaki disease. In this review, a bioinformatics approach was used to elucidate the immune response triggered by SARS-CoV-2 infection in primary human lung epithelial and transformed human lung alveolar. Additionally, examined the potential mechanism behind several complications that have been associated with COVID-19 and determined that a specific cytokine storm is leading to excessive neutrophil recruitment. These neutrophils are directly leading to thrombosis, organ damage, and complement activation via neutrophil extracellular trap release.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Signal Transduction/immunology , Thrombosis/immunology , Vascular System Injuries/immunology , COVID-19/pathology , Cytokines/immunology , Humans , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/pathology , Mucocutaneous Lymph Node Syndrome/virology , Pulmonary Alveoli/immunology , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology , Thrombosis/pathology , Thrombosis/virology , Vascular System Injuries/pathology , Vascular System Injuries/virology
13.
J Med Virol ; 93(3): 1443-1448, 2021 03.
Article in English | MEDLINE | ID: mdl-32880993

ABSTRACT

Our study intended to longitudinally explore the prediction effect of immunoglobulin A (IgA) on pulmonary exudation progression in COVID-19 patients. The serum IgA was tested with chemiluminescence method. Autoregressive moving average model was used to extrapolate the IgA levels before hospital admission. The positive rate of IgA and IgG in our cohort was 97% and 79.0%, respectively. In this study, the IgA levels peaks within 10-15 days after admission, while the IgG levels peaks at admission. We found that the time difference between their peaks was about 10 days. Viral RNA detection results showed that the positive rate in sputum and feces were the highest. Blood gas analysis showed that deterioration of hypoxia with the enlargement of pulmonary exudation area. And alveolar-arterial oxygen difference and oxygenation index were correlated with IgA and IgG. The results of biopsy showed that the epithelium of lung was exfoliated and the mucosa was edematous. In severe COVID-19 patients, the combination of IgA and IgG can predict the progress of pulmonary lesions and is closely related to hypoxemia and both also play an important defense role in invasion and destruction of bronchial and alveolar epithelium by SARS-CoV-2.


Subject(s)
COVID-19/pathology , COVID-19/virology , Immunoglobulin A/blood , Immunoglobulin G/blood , Sputum/virology , Aged , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Antibodies, Viral/blood , Bronchi/metabolism , Bronchi/virology , COVID-19/blood , COVID-19/metabolism , Female , Humans , Hypoxia/blood , Hypoxia/metabolism , Male , Middle Aged , Mucous Membrane/metabolism , Mucous Membrane/virology , Oxygen/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/virology , RNA, Viral/genetics , SARS-CoV-2/genetics
14.
Cells ; 11(1)2021 12 24.
Article in English | MEDLINE | ID: mdl-35011607

ABSTRACT

The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.


Subject(s)
COVID-19/metabolism , Ion Channels/metabolism , Lamellar Bodies/metabolism , Lung/metabolism , Membrane Transport Proteins/metabolism , Pulmonary Surfactants/metabolism , COVID-19/virology , Humans , Lung/virology , Organelles/metabolism , Organelles/virology , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/virology , SARS-CoV-2/physiology
15.
Ann Anat ; 234: 151657, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33279630

ABSTRACT

The corona virus outbreak in Wuhan, China, at the end of 2019 has rapidly evolved into a pandemic which is still virulent in many countries. An infection with SARS-CoV-2 can lead to corona virus disease (Covid-19). This paper presents an overview of the knowledge gained so far with regard to histopathological lung lesions in fatal courses of Covid-19. The main findings were diffuse alveolar damage and micro-angiopathies. These included the development of hyaline membranes, thrombi, endothelial inflammation, haemorrhages and angiogenesis. Overall, the vessel lesions seemed to be more lethal than the diffuse alveolar damage. There was obvious hyperreactivity and hyperinflammation of the cellular immune system. An expanded T-cell memory may explain the increased risk of a severe course in the elderly.


Subject(s)
COVID-19/pathology , Lung/pathology , SARS-CoV-2/isolation & purification , Autopsy , COVID-19/mortality , Humans , Lung/virology , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology
16.
Cell Rep ; 33(10): 108488, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33271063

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has precipitated an unprecedented and yet-unresolved health crisis worldwide. Different mammals are susceptible to SARS-CoV-2; however, few species examined so far develop robust clinical disease that mirrors severe human cases or allows testing of vaccines and drugs under conditions of severe disease. Here, we compare the susceptibilities of three dwarf hamster species (Phodopus spp.) to SARS-CoV-2 and introduce the Roborovski dwarf hamster (P. roborovskii) as a highly susceptible COVID-19 model with consistent and fulminant clinical signs. Particularly, only this species shows SARS-CoV-2-induced severe acute diffuse alveolar damage and hyaline microthrombi in the lungs, changes described in patients who succumbed to the infection but not reproduced in any experimentally infected animal. Based on our findings, we propose the Roborovski dwarf hamster as a valuable model to examine the efficacy and safety of vaccine candidates and therapeutics, particularly for use in highly susceptible individuals.


Subject(s)
COVID-19/virology , Disease Models, Animal , Lung/virology , Phodopus/virology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/pathology , COVID-19/physiopathology , Lung/pathology , Lung/physiopathology , Pulmonary Alveoli/physiopathology , Pulmonary Alveoli/virology , SARS-CoV-2/genetics
17.
Front Cell Infect Microbiol ; 10: 586592, 2020.
Article in English | MEDLINE | ID: mdl-33194826

ABSTRACT

The present study focuses on the role of human miRNAs in SARS-CoV-2 infection. An extensive analysis of human miRNA binding sites on the viral genome led to the identification of miR-1207-5p as potential regulator of the viral Spike protein. It is known that exogenous RNA can compete for miRNA targets of endogenous mRNAs leading to their overexpression. Our results suggest that SARS-CoV-2 virus can act as an exogenous competing RNA, facilitating the over-expression of its endogenous targets. Transcriptomic analysis of human alveolar and bronchial epithelial cells confirmed that the CSF1 gene, a known target of miR-1207-5p, is over-expressed following SARS-CoV-2 infection. CSF1 enhances macrophage recruitment and activation and its overexpression may contribute to the acute inflammatory response observed in severe COVID-19. In summary, our results indicate that dysregulation of miR-1207-5p-target genes during SARS-CoV-2 infection may contribute to uncontrolled inflammation in most severe COVID-19 cases.


Subject(s)
COVID-19/immunology , MicroRNAs/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/genetics , COVID-19/virology , Epithelial Cells/immunology , Epithelial Cells/virology , Host-Pathogen Interactions , Humans , MicroRNAs/immunology , Pulmonary Alveoli/immunology , Pulmonary Alveoli/virology , RNA, Viral/metabolism , SARS-CoV-2/physiology
18.
Cell Stem Cell ; 27(6): 905-919.e10, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33142113

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the cause of a present pandemic, infects human lung alveolar type 2 (hAT2) cells. Characterizing pathogenesis is crucial for developing vaccines and therapeutics. However, the lack of models mirroring the cellular physiology and pathology of hAT2 cells limits the study. Here, we develop a feeder-free, long-term, three-dimensional (3D) culture technique for hAT2 cells derived from primary human lung tissue and investigate infection response to SARS-CoV-2. By imaging-based analysis and single-cell transcriptome profiling, we reveal rapid viral replication and the increased expression of interferon-associated genes and proinflammatory genes in infected hAT2 cells, indicating a robust endogenous innate immune response. Further tracing of viral mutations acquired during transmission identifies full infection of individual cells effectively from a single viral entry. Our study provides deep insights into the pathogenesis of SARS-CoV-2 and the application of defined 3D hAT2 cultures as models for respiratory diseases.


Subject(s)
COVID-19 , Pulmonary Alveoli/virology , SARS-CoV-2/physiology , Stem Cells/virology , COVID-19/virology , Cell Culture Techniques , Culture Media , Humans , Interferons/metabolism , Models, Biological , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/ultrastructure , SARS-CoV-2/ultrastructure , Transcriptome , Virus Internalization , Virus Replication
20.
Front Immunol ; 11: 574862, 2020.
Article in English | MEDLINE | ID: mdl-33042157

ABSTRACT

It is currently believed that innate immunity is unable to prevent the spread of SARS-CoV-2 from the upper airways to the alveoli of high-risk groups of patients. SARS-CoV-2 replication in ACE-2-expressing pneumocytes can drive the diffuse alveolar injury through the cytokine storm and immunothrombosis by upregulating the transcription of chemokine/cytokines, unlike several other respiratory viruses. Here we report histopathology data obtained in post-mortem lung biopsies of COVID-19, showing the increased density of perivascular and septal mast cells (MCs) and IL-4-expressing cells (n = 6), in contrast to the numbers found in pandemic H1N1-induced pneumonia (n = 10) or Control specimens (n = 10). Noteworthy, COVID-19 lung biopsies showed a higher density of CD117+ cells, suggesting that c-kit positive MCs progenitors were recruited earlier to the alveolar septa. These findings suggest that MC proliferation/differentiation in the alveolar septa might be harnessed by the shift toward IL-4 expression in the inflamed alveolar septa. Future studies may clarify whether the fibrin-dependent generation of the hyaline membrane, processes that require the diffusion of procoagulative plasma factors into the alveolar lumen and the endothelial dysfunction, are preceded by MC-driven formation of interstitial edema in the alveolar septa.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Mast Cells/immunology , Pneumonia, Viral/immunology , Pulmonary Alveoli/immunology , Pulmonary Edema/immunology , Thrombosis/immunology , Adult , Aged , Aged, 80 and over , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/pathology , Influenza, Human/virology , Interleukin-4/immunology , Male , Mast Cells/pathology , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Proto-Oncogene Proteins c-kit/immunology , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology , Pulmonary Edema/pathology , Pulmonary Edema/virology , SARS-CoV-2 , Thrombosis/pathology , Thrombosis/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...