Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 411
Filter
1.
J Physiol Pharmacol ; 75(2): 137-144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38736261

ABSTRACT

In this study, we examined the changes in the fibrinolytic system in a rabbit model of two acute pulmonary thromboembolisms (PTE). Fourteen healthy adult New Zealand white rabbits were divided into three groups: the single PTE group (five rabbits), the double PTE group (five rabbits), and the control group (four rabbits). A rabbit model of acute pulmonary embolism was established, and immunohistochemistry and polymerase chain reaction (PCR) were performed on tissue plasminogen activator (t-PA), plasminogen activator inhibitor-1 (PAI-1) in plasma, and pulmonary embolism tissue. Plasma results: 1) t-PA levels: one hour following the initial modeling, the levels of t-PA in the modeling groups were significantly lower than those in the control group (P<0.05). In addition, the t-PA levels in the double PTE group were found to be lower after the modeling, as compared to the pre-modeling period (P<0.05). One hour after the second modeling, the double PTE group had lower t-PA levels compared to the control group (P<0.05). However, t-PA rebounded two hours after modeling in the double PTE group. One week after the second modeling, the double PTE group had higher t-PA levels compared to the other two groups (P<0.05). 2) PAI-1 results: one hour after the initial modeling, PAI-1 levels in the two modeling groups were lower compared to the pre-modeling period and control groups (P<0.05). Two hours following modeling, PAI-1 levels in both modeling groups were lower compared to the control group (P<0.05). PAI-1 levels were lower in the double PTE group one and two hours after the second modeling compared to the other two groups and pre-modeling period (P<0.05). 3) The immunohistochemistry results: the expression of PAI-1 decreased in the two modeling groups, while t-PA expression increased compared to the control group. 4) PCR results: t-PA mRNA expression did not differ among the three groups. The PAI-1 mRNA expression was lower in the two PTE groups compared to the control group. We conclude that in the early stages of PTE, the local fibrinolytic activity of the thrombus is increased, which is favorable for thrombolysis. However, as the thrombus persists, the activity of the fibrinolytic system is inhibited, contributing to the development of chronic thromboembolic pulmonary hypertension.


Subject(s)
Disease Models, Animal , Fibrinolysis , Plasminogen Activator Inhibitor 1 , Pulmonary Embolism , Tissue Plasminogen Activator , Animals , Rabbits , Pulmonary Embolism/metabolism , Pulmonary Embolism/blood , Pulmonary Embolism/pathology , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/genetics , Male , RNA, Messenger/metabolism , RNA, Messenger/genetics , Lung/metabolism
2.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396774

ABSTRACT

Platelets assume a pivotal role in the pathogenesis of cardiovascular diseases (CVDs), emphasizing their significance in disease progression. Consequently, addressing CVDs necessitates a targeted approach focused on mitigating platelet activation. Eugenol, predominantly derived from clove oil, is recognized for its antibacterial, anticancer, and anti-inflammatory properties, rendering it a valuable medicinal agent. This investigation delves into the intricate mechanisms through which eugenol influences human platelets. At a low concentration of 2 µM, eugenol demonstrates inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Notably, thrombin and U46619 remain unaffected by eugenol. Its modulatory effects extend to ATP release, P-selectin expression, and intracellular calcium levels ([Ca2+]i). Eugenol significantly inhibits various signaling cascades, including phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß, mitogen-activated protein kinases, and cytosolic phospholipase A2 (cPLA2)/thromboxane A2 (TxA2) formation induced by collagen. Eugenol selectively inhibited cPLA2/TxA2 phosphorylation induced by AA, not affecting p38 MAPK. In ADP-treated mice, eugenol reduced occluded lung vessels by platelet thrombi without extending bleeding time. In conclusion, eugenol exerts a potent inhibitory effect on platelet activation, achieved through the inhibition of the PLCγ2-PKC and cPLA2-TxA2 cascade, consequently suppressing platelet aggregation. These findings underscore the potential therapeutic applications of eugenol in CVDs.


Subject(s)
Eugenol , Pulmonary Embolism , Humans , Mice , Animals , Eugenol/pharmacology , Eugenol/therapeutic use , Eugenol/metabolism , Phospholipase C gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal , Platelet Activation , Platelet Aggregation , Blood Platelets/metabolism , Phosphorylation , Protein Kinase C/metabolism , Thromboxane A2/metabolism , Collagen/metabolism , Pulmonary Embolism/drug therapy , Pulmonary Embolism/metabolism , Phospholipases A2, Cytosolic/metabolism
3.
J Thromb Haemost ; 22(1): 263-270, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37751849

ABSTRACT

BACKGROUND: Thrombin-activatable fibrinolysis inhibitor (TAFI) levels are positively correlated with the risk of thrombosis. The mechanism of how TAFI affects venous thromboembolism (VTE) remains uncertain. In addition, the role of sex on the risk of VTE has also been studied. However, their association also remains unclear. OBJECTIVES: To investigate how TAFI and/or sex affect venous thrombus stability and consequent pulmonary embolism (PE). METHODS: Ferric chloride-induced thrombi were formed within the femoral veins of male and female wild-type (WT) or TAFI-knockout (Cpb2-/-) mice. Thrombi were imaged over 2 hours using intravital videomicroscopy to quantify embolization and thrombus size over time. Lungs were examined by immunohistochemistry to quantify (a) emboli and (b) fibrin composition of these emboli. RESULTS: Embolization events in female mice were higher than in males (7.9-fold in WT and 3.1-fold in Cpb2-/- mice). Although the maximal thrombus sizes were not different across groups, Cpb2-/- mice had thrombi that were, on average, 24% smaller at the end of the 2-hour experiment than WT mice. Loss of TAFI led to a 4.0- and 2.8-fold increase in PE burden in males and females, respectively, while sex had no influence. Pulmonary emboli in Cpb2-/- mice had higher fibrin composition compared with WT mice. CONCLUSION: Female mice had less stable venous thrombi than male mice, suggesting a higher risk of PE in females with deep vein thrombosis. Mice lacking TAFI had more thrombus degradation and higher PE burden than WT mice. These results confirm the role of TAFI in venous thrombosis.


Subject(s)
Carboxypeptidase B2 , Pulmonary Embolism , Thrombosis , Venous Thromboembolism , Male , Female , Mice , Animals , Carboxypeptidase B2/genetics , Disease Models, Animal , Pulmonary Embolism/genetics , Pulmonary Embolism/metabolism , Fibrin , Fibrinolysis
4.
Bull Exp Biol Med ; 175(5): 616-619, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37853268

ABSTRACT

Here we developed a model of chronic thromboembolic pulmonary hypertension (CTEPH) using repeated intravenous administration of microencapsulated thrombi with a controlled rate of biodegradation. Autologous thrombi encapsulated in alginate microspheres with a diameter of 190±48 µm were intravenously injected to rats 8 times every 4 days. In the comparison group, nonmodified thrombi were injected. After 6 weeks, a significant increase in systolic pressure in the right ventricle, a decrease in exercise tolerance, and an increase in the index of vascular wall hypertrophy were revealed in the group receiving injections of microencapsulated thrombi in comparison with the group receiving nonmodified thrombi and healthy animals. Thus, the developed representative CTEPH model can be used to test promising pharmacological substances.


Subject(s)
Hypertension, Pulmonary , Pulmonary Embolism , Animals , Rats , Hypertension, Pulmonary/metabolism , Pulmonary Artery/metabolism , Pulmonary Embolism/metabolism , Chronic Disease
5.
Life Sci ; 326: 121791, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37211346

ABSTRACT

AIMS: Platelet activation plays a central role in arterial thrombosis. Platelets are activated by adhesive proteins (i.e., collagen) or soluble agonists (i.e., thrombin), the respective receptor-specific signaling cause inside-out signaling, leading to the binding of fibrinogen to integrin αIIbß3. This binding triggers outside-in signaling, resulting in platelet aggregation. Garcinol, a polyisoprenylated benzophenone, is extracted from the fruit rind of Garcinia indica. Although garcinol exhibits considerable bioactivities, few studies have investigated the effect of garcinol on platelet activation. MAIN METHODS: Aggregometry, immunoblotting, flow cytometer, confocal microscopic analysis, fibrin clot retraction, animal studies such as fluorescein-induced platelet plug formation in mesenteric microvessels, acute pulmonary thromboembolism, and tail bleeding time were performed in this study. KEY FINDINGS: This study indicates that garcinol inhibited platelet aggregation stimulated by collagen, thrombin, arachidonic acid, and U46619. Garcinol reduced integrin αIIbß3 inside-out signaling, including ATP release; cytosolic Ca2+ mobilization; P-selectin expression; and Syk, PLCγ2/PKC, PI3K/Akt/GSK3ß, MAPKs, and NF-κB activation stimulated by collagen. Garcinol directly inhibited integrin αIIbß3 activation by interfering with FITC-PAC-1 and FITC-triflavin by collagen. Additionally, garcinol affected integrin αIIbß3-mediated outside-in signaling, such as decreasing platelet adhesion and the single-platelet spreading area; suppressing integrin ß3, Src, FAK, and Syk phosphorylation on immobilized fibrinogen; and inhibiting thrombin-stimulated fibrin clot retraction. Garcinol substantially reduced mortality caused by pulmonary thromboembolism and prolonged the occlusion time of thrombotic platelet plug formation without extending bleeding time in mice. SIGNIFICANCE: This study identified that garcinol, a novel antithrombotic agent, acts as a naturally occurring integrin αIIbß3 inhibitor.


Subject(s)
Pulmonary Embolism , Thrombosis , Humans , Mice , Animals , Blood Platelets/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Fluorescein-5-isothiocyanate/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Thrombin/metabolism , Platelet Activation , Platelet Aggregation , Thrombosis/metabolism , Phosphorylation , Collagen/metabolism , Fibrinogen/metabolism , Pulmonary Embolism/metabolism
6.
Science ; 380(6641): 178-187, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37053338

ABSTRACT

Venous thromboembolism (VTE) comprising deep venous thrombosis and pulmonary embolism is a major cause of morbidity and mortality. Short-term immobility-related conditions are a major risk factor for the development of VTE. Paradoxically, long-term immobilized free-ranging hibernating brown bears and paralyzed spinal cord injury (SCI) patients are protected from VTE. We aimed to identify mechanisms of immobility-associated VTE protection in a cross-species approach. Mass spectrometry-based proteomics revealed an antithrombotic signature in platelets of hibernating brown bears with heat shock protein 47 (HSP47) as the most substantially reduced protein. HSP47 down-regulation or ablation attenuated immune cell activation and neutrophil extracellular trap formation, contributing to thromboprotection in bears, SCI patients, and mice. This cross-species conserved platelet signature may give rise to antithrombotic therapeutics and prognostic markers beyond immobility-associated VTE.


Subject(s)
Blood Platelets , HSP47 Heat-Shock Proteins , Hypokinesia , Spinal Cord Injuries , Ursidae , Venous Thromboembolism , Animals , Humans , Mice , Fibrinolytic Agents/therapeutic use , Pulmonary Embolism/drug therapy , Pulmonary Embolism/ethnology , Pulmonary Embolism/metabolism , Risk Factors , Spinal Cord Injuries/complications , Ursidae/metabolism , Venous Thromboembolism/etiology , Venous Thromboembolism/metabolism , Hypokinesia/complications , HSP47 Heat-Shock Proteins/metabolism , Blood Platelets/metabolism
7.
Folia Histochem Cytobiol ; 61(1): 56-67, 2023.
Article in English | MEDLINE | ID: mdl-36880683

ABSTRACT

INTRODUCTION: Acute pulmonary embolism (APE) is a clinical syndrome of pulmonary circulation disorder caused by obstruction of the pulmonary artery or its branches. Histone deacetylase 6 (HDAC6) has been reported to play an important role in lung-related diseases. However, the functional role of HDAC6 in APE remains unclear. MATERIAL AND METHODS: Male Sprague Dawley rats were used. The APE model was constructed by inserting an intravenous cannula into the right femoral vein and injecting Sephadex G-50 microspheres (12 mg/kg; 300 µm in diameter). After 1 h, the control and APE rats were intraperitoneally injected with tubastatin A (TubA) (40 mg/kg, an inhibitor of HDAC6) and sampled at 24 h after modeling. H&E staining, arterial blood gas analysis, and wet/dry (W/D) weight ratio were used to evaluate the histopathological changes and pulmonary function in APE rats. ELISA, Western blot, and immunohistochemistry were used to explore the potential mechanism of HDAC6-mediated inflammation in APE. RESULTS: The results indicated that HDAC6 expression was significantly increased in lungs of APE rats. TubA treatment in vivo decreased HDAC6 expression in lung tissues. HDAC6 inhibition alleviated histopathological damage and pulmonary dysfunction, as evidenced by decreased PaO2/FiO2 ratio and W/D weight ratio in APE rats. Furthermore, HDAC6 inhibition alleviated APE-induced inflammatory response. Specifically, APE rats exhibited increased production of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, IL-6, and IL-18, however, this increase was reversed by HDAC6 inhibition. Meanwhile, the activation of the NLRP3 inflammasome was also observed in lungs of APE rats, while HDAC6 inhibition blocked this activation. Mechanically, we demonstrated that HDAC6 inhibition blocked the activation of the protein kinase B (AKT)/extracellular signal-regulated protein kinase (ERK) signaling pathway, a classic pathway promoting inflammation. CONCLUSIONS: These findings demonstrate that the inhibition of HDAC6 may alleviate lung dysfunction and pathological injury resulting from APE by blocking the AKT/ERK signaling pathway, providing new theoretical fundamentals for APE therapy.


Subject(s)
Hominidae , Pulmonary Embolism , Rats , Male , Animals , Proto-Oncogene Proteins c-akt/metabolism , Histone Deacetylase 6 , Rats, Sprague-Dawley , Pulmonary Embolism/drug therapy , Pulmonary Embolism/metabolism , Inflammation , Tumor Necrosis Factor-alpha , Extracellular Signal-Regulated MAP Kinases , Hominidae/metabolism
8.
BMC Genomics ; 24(1): 10, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36624378

ABSTRACT

BACKGROUND: Pulmonary embolism (PE) is a severe disease that usually originates from deep vein thrombosis (DVT) of the lower extremities. This study set out to investigate the changes in the transcriptome of the pulmonary artery (PA) in the course of the PE in the porcine model. METHODS: The study was performed on 11 male pigs: a thrombus was formed in each right femoral vein in six animals, and then was released to induce PE, the remaining five animals served as a control group. In the experimental animals total RNA was isolated from the PA where the blood clot lodged, and in the control group, from the corresponding PA segments. High-throughput RNA sequencing was used to analyse the global changes in the transcriptome of PA with induced PE (PA-E). RESULTS: Applied multistep bioinformatics revealed 473 differentially expressed genes (DEGs): 198 upregulated and 275 downregulated. Functional Gene Ontology annotated 347 DEGs into 27 biological processes, 324 to the 11 cellular components and 346 to the 2 molecular functions categories. In the signaling pathway analysis, KEGG 'protein processing in endoplasmic reticulum' was identified for the mRNAs modulated during PE. The same KEGG pathway was also exposed by 8 differentially alternative splicing genes. Within single nucleotide variants, the 61 allele-specific expression variants were localised in the vicinity of the genes that belong to the cellular components of the 'endoplasmic reticulum'. The discovered allele-specific genes were also classified as signatures of the cardiovascular system. CONCLUSIONS: The findings of this research provide the first thorough investigation of the changes in the gene expression profile of PA affected by an embolus. Evidence from this study suggests that the disturbed homeostasis in the biosynthesis of proteins in the endoplasmic reticulum plays a major role in the pathogenesis of PE.


Subject(s)
Pulmonary Embolism , Transcriptome , Male , Animals , Swine , Pulmonary Artery/metabolism , Gene Expression Profiling , Pulmonary Embolism/genetics , Pulmonary Embolism/metabolism , Signal Transduction
9.
Rejuvenation Res ; 26(1): 32-38, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36517978

ABSTRACT

Acute pulmonary thromboembolism (APTE) has become a non-negligible clinical concern due to its high mortality and complex symptoms. Early diagnosis and prognostic assessment of APTE are of great significance for the long-term benefits of patients, especially elderly patients. Elderly patients with pulmonary embolism (n = 250) who presented to our hospital from January 2018 to July 2021 were recruited into this study. In addition, 50 healthy elderly people with no history of allergies were selected as the control group. An enzyme-linked immunosorbent assay (ELISA) method was used to determine concentrations of D-dimer and signal peptide-CUB-EGF domain-containing protein-1 (SCUBE1) in their plasma. Right ventricular volume contraction time (ICT), ejection time (ET), and isovolumic relaxation time (IRT) were determined by Doppler ultrasound. Right ventricular Tei index was calculated as (ICT + IRT)/ET. High plasma D-dimer, plasma SCUBE1, and right ventricular Tei index are risk factors for poor prognosis in APTE patients after treatment. Plasma D-dimer, plasma SCUBE1, and right ventricular Tei index have predictive value for poor prognosis in APTE patients. Their combined detection (0.256*DD +0.04*SCUBE1 + 10.188*Tei) can improve the sensitivity and specificity of prediction. There is a predictive value of combined plasma D-dimer, SCUBE1, and right ventricular Tei index for the prognosis of elderly patients with APTE.


Subject(s)
Fibrin Fibrinogen Degradation Products , Pulmonary Embolism , Aged , Humans , Acute Disease , Calcium-Binding Proteins/chemistry , Fibrin Fibrinogen Degradation Products/chemistry , Prognosis , Pulmonary Embolism/blood , Pulmonary Embolism/diagnosis , Pulmonary Embolism/metabolism
10.
Sci Rep ; 12(1): 2283, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145193

ABSTRACT

Chronic thromboembolic pulmonary hypertension (CTEPH) and pulmonary arterial hypertension (PAH) are two forms of pulmonary hypertension (PH) characterized by obstructive vasculopathy. Endothelial dysfunction along with metabolic changes towards increased glycolysis are important in PAH pathophysiology. Less is known about such abnormalities in endothelial cells (ECs) from CTEPH patients. This study provides a systematic metabolic comparison of ECs derived from CTEPH and PAH patients. Metabolic gene expression was studied using qPCR in cultured CTEPH-EC and PAH-EC. Western blot analyses were done for HK2, LDHA, PDHA1, PDK and G6PD. Basal viability of CTEPH-EC and PAH-EC with the incubation with metabolic inhibitors was measured using colorimetric viability assays. Human pulmonary artery endothelial cells (HPAEC) were used as healthy controls. Whereas PAH-EC showed significant higher mRNA levels of GLUT1, HK2, LDHA, PDHA1 and GLUD1 metabolic enzymes compared to HPAEC, CTEPH-EC did not. Oxidative phosphorylation associated proteins had an increased expression in PAH-EC compared to CTEPH-EC and HPAEC. PAH-EC, CTEPH-EC and HPAEC presented similar HOXD macrovascular gene expression. Metabolic inhibitors showed a dose-dependent reduction in viability in all three groups, predominantly in PAH-EC. A different metabolic profile is present in CTEPH-EC compared to PAH-EC and suggests differences in molecular mechanisms important in the disease pathology and treatment.


Subject(s)
Endothelial Cells/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Embolism/genetics , Pulmonary Embolism/metabolism , Adult , Aged , Cells, Cultured , Chronic Disease , Female , Gene Expression , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Glycolysis/genetics , Hexokinase/genetics , Hexokinase/metabolism , Humans , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Male , Middle Aged , Oxidative Phosphorylation , Pulmonary Artery/cytology , Pyruvate Dehydrogenase (Lipoamide)/genetics , Pyruvate Dehydrogenase (Lipoamide)/metabolism
11.
Molecules ; 27(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35056795

ABSTRACT

Platelets play a critical role in arterial thrombosis. Rutaecarpine (RUT) was purified from Tetradium ruticarpum, a well-known Chinese medicine. This study examined the relative activity of RUT with NF-κB inhibitors in human platelets. BAY11-7082 (an inhibitor of IκB kinase [IKK]), Ro106-9920 (an inhibitor of proteasomes), and RUT concentration-dependently (1-6 µM) inhibited platelet aggregation and P-selectin expression. RUT was found to have a similar effect to that of BAY11-7082; however, it exhibits more effectiveness than Ro106-9920. RUT suppresses the NF-κB pathway as it inhibits IKK, IκBα, and p65 phosphorylation and reverses IκBα degradation in activated platelets. This study also investigated the role of p38 and NF-κB in cell signaling events and found that SB203580 (an inhibitor of p38) markedly reduced p38, IKK, and p65 phosphorylation and reversed IκBα degradation as well as p65 activation in a confocal microscope, whereas BAY11-7082 had no effects in p38 phosphorylation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay shows that RUT and BAY11-7082 did not exhibit free radical scavenging activity. In the in vivo study, compared with BAY11-7082, RUT more effectively reduced mortality in adenosine diphosphate (ADP)-induced acute pulmonary thromboembolism without affecting the bleeding time. In conclusion, a distinctive pathway of p38-mediated NF-κB activation may involve RUT-mediated antiplatelet activation, and RUT could act as a strong prophylactic or therapeutic drug for cardiovascular diseases.


Subject(s)
Fibrinolytic Agents/pharmacology , Indole Alkaloids/pharmacology , NF-kappa B/metabolism , Nitriles/pharmacology , Quinazolines/pharmacology , Sulfones/pharmacology , Thrombosis/drug therapy , Thrombosis/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Disease Models, Animal , Fibrinolytic Agents/therapeutic use , Free Radical Scavengers/pharmacology , Free Radical Scavengers/therapeutic use , Free Radicals/antagonists & inhibitors , Humans , I-kappa B Kinase/antagonists & inhibitors , Imidazoles/pharmacology , Imidazoles/therapeutic use , Indole Alkaloids/therapeutic use , Male , Mice, Inbred ICR , NF-kappa B/antagonists & inhibitors , Nitriles/therapeutic use , P-Selectin/metabolism , Platelet Activation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pulmonary Embolism/drug therapy , Pulmonary Embolism/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Quinazolines/therapeutic use , Sulfones/therapeutic use , Transcription Factor RelA/metabolism
12.
Eur J Clin Invest ; 52(1): e13660, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34312860

ABSTRACT

BACKGROUND: Post-pulmonary embolism (PE) syndrome occurs in up to 50% of PE patients. The pathophysiology of this syndrome is obscure. OBJECTIVE: We investigated whether enhanced oxidative stress and prothrombotic state may be involved in post-PE syndrome. METHODS: We studied 101 normotensive noncancer PE patients (aged 56.5 ± 13.9 years) on admission, after 5-7 days and after a 3-month anticoagulation, mostly with rivaroxaban. A marker of oxidative stress, 8-isoprostane, endogenous thrombin potential, fibrinolysis proteins, clot lysis time (CLT) and fibrin clot permeability (Ks ), along with PE biomarkers, were determined. RESULTS: Patients who developed the post-PE syndrome (n = 31, 30.7%) had at baseline 77.6% higher N-terminal brain natriuretic propeptide and 46.8% higher growth differentiation factor 15, along with 14.1% longer CLT associated with 34.4% higher plasminogen activator inhibitor-1 as compared to subjects without post-PE syndrome (all P < .05). After 5-7 days, only hypofibrinolysis was noted in post-PE syndrome patients. When measured at 3 months, prolonged CLT and reduced Ks were observed in post-PE syndrome patients, accompanied by 23.8% higher growth differentiation factor 15 and 35.8% higher plasminogen activator inhibitor-1 (all P < .05). 8-isoprostane levels ≥108 pg/ml (odds ratio=4.36; 95% confidence interval 1.63-12.27) and growth differentiation factor 15 ≥ 1529 pg/ml (odds ratio=3.89; 95% confidence interval 1.29-12.16) measured at 3 months were associated with higher risk of developing post-PE syndrome. CONCLUSIONS: Enhanced oxidative stress and prothrombotic fibrin clot properties could be involved in the pathogenesis of the post-PE syndrome. Elevated growth differentiation factor 15 assessed at 3 months might be a new biomarker of this syndrome.


Subject(s)
Dinoprost/analogs & derivatives , Growth Differentiation Factor 15/blood , Pulmonary Embolism/blood , Adult , Aged , Biomarkers/blood , Dinoprost/blood , Female , Humans , Male , Middle Aged , Oxidative Stress , Pulmonary Embolism/complications , Pulmonary Embolism/metabolism , Syndrome , Thrombosis/complications , Thrombosis/metabolism
13.
Hypertension ; 79(3): 562-574, 2022 03.
Article in English | MEDLINE | ID: mdl-34965740

ABSTRACT

BACKGROUND: The mechanism of chronic thromboembolic pulmonary hypertension (CTEPH) is known to be multifactorial but remains incompletely understood. METHODS: In this study, single-cell RNA sequencing, which facilitates the identification of molecular profiles of samples on an individual cell level, was applied to investigate individual cell types in pulmonary endarterectomized tissues from 5 patients with CTEPH. The order of single-cell types was then traced along the developmental trajectory of CTEPH by trajectory inference analysis, and intercellular communication was characterized by analysis of ligand-receptor pairs between cell types. Finally, comprehensive bioinformatics tools were used to analyze possible functions of branch-specific cell types and the underlying mechanisms. RESULTS: Eleven cell types were identified, with immune-related cell types (T cells, natural killer cells, macrophages, and mast cells) distributed in the left (early) branch of the pseudotime tree, cancer stem cells, and CRISPLD2+ cells as intermediate cell types, and classic disease-related cell types (fibroblasts, smooth muscle cells, myofibroblasts, and endothelial cells) in the right (later) branch. Ligand-receptor interactions revealed close communication between macrophages and disease-related cell types as well as between smooth muscle cells and fibroblasts or endothelial cells. Moreover, the ligands and receptors were significantly enriched in key pathways such as the PI3K/Akt signaling pathway. Furthermore, highly expressed genes specific to the undefined cell type were significantly enriched in important functions associated with regulation of endoplasmic reticulum stress. CONCLUSIONS: This single-cell RNA sequencing analysis revealed the order of single cells along a developmental trajectory in CTEPH as well as close communication between different cell types in CTEPH pathogenesis.


Subject(s)
Endothelial Cells/metabolism , Hypertension, Pulmonary/metabolism , Lung/metabolism , Pulmonary Embolism/metabolism , Humans , Macrophages/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , Signal Transduction/physiology
14.
Stroke ; 52(11): e706-e709, 2021 11.
Article in English | MEDLINE | ID: mdl-34428931
15.
Sci Rep ; 11(1): 14015, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234248

ABSTRACT

Venous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak (rs1424597: p = 5.3 × 10-7) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose exact role now needs to be further elucidated.


Subject(s)
Genetic Predisposition to Disease/genetics , Neural Networks, Computer , Proteomics , Pulmonary Embolism/blood , Pulmonary Embolism/genetics , Receptors, Cell Surface/blood , Receptors, Cell Surface/genetics , Adult , COVID-19/complications , Female , Genome-Wide Association Study , Humans , Male , Phenotype , Polymorphism, Single Nucleotide , Pulmonary Embolism/complications , Pulmonary Embolism/metabolism
16.
Sci Rep ; 11(1): 5583, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33692478

ABSTRACT

Chronic thromboembolic pulmonary hypertension (CTEPH) is a vascular disease characterized by the presence of organized thromboembolic material in pulmonary arteries leading to increased vascular resistance, heart failure and death. Dysfunction of endothelial cells is involved in CTEPH. The present study describes for the first time the molecular processes underlying endothelial dysfunction in the development of the CTEPH. The advanced analytical approach and the protein network analyses of patient derived CTEPH endothelial cells allowed the quantitation of 3258 proteins. The 673 differentially regulated proteins were associated with functional and disease protein network modules. The protein network analyses resulted in the characterization of dysregulated pathways associated with endothelial dysfunction, such as mitochondrial dysfunction, oxidative phosphorylation, sirtuin signaling, inflammatory response, oxidative stress and fatty acid metabolism related pathways. In addition, the quantification of advanced oxidation protein products, total protein carbonyl content, and intracellular reactive oxygen species resulted increased attesting the dysregulation of oxidative stress response. In conclusion this is the first quantitative study to highlight the involvement of endothelial dysfunction in CTEPH using patient samples and by network medicine approach.


Subject(s)
Endothelial Cells/metabolism , Hypertension, Pulmonary/metabolism , Protein Carbonylation , Protein Interaction Maps , Pulmonary Artery/metabolism , Pulmonary Embolism/metabolism , Thromboembolism/metabolism , Endothelial Cells/pathology , Humans , Hypertension, Pulmonary/pathology , Pulmonary Artery/pathology , Pulmonary Embolism/pathology , Thromboembolism/pathology
17.
Mol Cell Biochem ; 476(7): 2823-2835, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33730297

ABSTRACT

This study was intended to investigate the effect of Curcumin on acute pulmonary embolism (APE) via microRNA-21 (miR-21)/PTEN/NF-κB axis. APE model was induced on rats and administrated with Curcumin. Western blot analysis and RT-qPCR manifested the downregulation of Sp1, miR-21 and NF-κB, but the upregulation of PTEN in Curcumin-treated APE rats. Blood gas analysis, ELISA, and weighing of wet weight/dry weight (W/D) ratio indicated that Curcumin diminished mPAP and RVSP levels, W/D ratio, thrombus volume, and inflammatory factors in the lungs of APE rats. Further mechanical analysis was conducted by dual-luciferase reporter assays and ChIP assay, which showed that Sp1 increased miR-21 expression by binding to the miR-21 promoter, and that PTEN was targeted by miR-21. The APE rats were injected with adenovirus to evaluate the effect of Sp1, miR-21, or PTEN on lung injury and inflammation. It was observed that downregulation of miR-21 or Sp1, or upregulation of PTEN diminished mPAP and RVSP levels, W/D ratio, thrombus volume, and inflammatory factors in the lungs of APE rats. In summary, Curcumin decreased miR-21 expression by downregulating Sp1 to upregulate PTEN and to impair the NF-κB signaling pathway, thus suppressing lung injury and inflammation in APE rats.


Subject(s)
Acute Lung Injury , Curcumin/pharmacology , MicroRNAs/metabolism , NF-kappa B/metabolism , PTEN Phosphohydrolase/metabolism , Pulmonary Embolism , Signal Transduction/drug effects , Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , Animals , Inflammation/metabolism , Inflammation/prevention & control , Pulmonary Embolism/metabolism , Pulmonary Embolism/prevention & control , Rats , Rats, Sprague-Dawley
18.
Blood ; 137(19): 2681-2693, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33529319

ABSTRACT

Patients with isolated pulmonary embolism (PE) have a distinct clinical profile from those with deep vein thrombosis (DVT)-associated PE, with more pulmonary conditions and atherosclerosis. These findings suggest a distinct molecular pathophysiology and the potential involvement of alternative pathways in isolated PE. To test this hypothesis, data from 532 individuals from the Genotyping and Molecular Phenotyping of Venous ThromboEmbolism Project, a multicenter prospective cohort study with extensive biobanking, were analyzed. Targeted, high-throughput proteomics, machine learning, and bioinformatic methods were applied to contrast the acute-phase plasma proteomes of isolated PE patients (n = 96) against those of patients with DVT-associated PE (n = 276) or isolated DVT (n = 160). This resulted in the identification of shared molecular processes between PE phenotypes, as well as an isolated PE-specific protein signature. Shared processes included upregulation of inflammation, response to oxidative stress, and the loss of pulmonary surfactant. The isolated PE-specific signature consisted of 5 proteins: interferon-γ, glial cell line-derived neurotrophic growth factor, polypeptide N-acetylgalactosaminyltransferase 3, peptidyl arginine deiminase type-2, and interleukin-15 receptor subunit α. These proteins were orthogonally validated using cis protein quantitative trait loci. External replication in an independent population-based cohort (n = 5778) further validated the proteomic results and showed that they were prognostic for incident primary isolated PE in individuals without history of VTE (median time to event: 2.9 years; interquartile range: 1.6-4.2 years), supporting their possible involvement in the early pathogenesis. This study has identified molecular overlaps and differences between VTE phenotypes. In particular, the results implicate noncanonical pathways more commonly associated with respiratory and atherosclerotic disease in the acute pathophysiology of isolated PE.


Subject(s)
Proteome , Pulmonary Embolism/metabolism , Transcriptome , Acute-Phase Proteins/biosynthesis , Adult , Aged , Atherosclerosis/complications , Comorbidity , Datasets as Topic , Female , Follow-Up Studies , Gene Expression Regulation , Glial Cell Line-Derived Neurotrophic Factor/biosynthesis , Glial Cell Line-Derived Neurotrophic Factor/genetics , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Interleukin-15 Receptor alpha Subunit/biosynthesis , Interleukin-15 Receptor alpha Subunit/genetics , Machine Learning , Male , Middle Aged , N-Acetylgalactosaminyltransferases/biosynthesis , N-Acetylgalactosaminyltransferases/genetics , Oxidative Stress , Prospective Studies , Protein Interaction Maps , Protein-Arginine Deiminase Type 2/biosynthesis , Protein-Arginine Deiminase Type 2/genetics , Pulmonary Embolism/genetics , Pulmonary Embolism/physiopathology , Pulmonary Surfactants , Quantitative Trait Loci , Venous Thromboembolism/metabolism , Polypeptide N-acetylgalactosaminyltransferase
19.
Cardiol Rev ; 29(1): 43-47, 2021.
Article in English | MEDLINE | ID: mdl-32947478

ABSTRACT

The novel coronavirus (severe acute respiratory syndrome CoV-2 [SARS-CoV-2]), also known as COVID-19, is a single-stranded enveloped RNA virus that created a Public Health Emergency of International Concern in January 2020, with a global case burden of over 15 million in just 7 months. Infected patients develop a wide range of clinical manifestations-typically presenting with fever, cough, myalgia, and fatigue. Severely ill patients may fall victim to acute respiratory distress syndrome, acute heart injuries, neurological manifestations, or complications due to secondary infections. These critically ill patients are also found to have disrupted coagulation function, predisposing them to consumptive coagulopathies, and both venous and thromboembolic complications. Common laboratory findings include thrombocytopenia, elevated D-dimer, fibrin degradation products, and fibrinogen, all of which have been associated with greater disease severity. Many cases of pulmonary embolism have been noted, along with deep vein thrombosis, ischemic stroke, myocardial infarction, and systemic arterial embolism. The pathogenesis of coronavirus has not been completely elucidated, but the virus is known to cause excessive inflammation, endothelial injury, hypoxia, and disseminated intravascular coagulation, all of which contribute to thrombosis formation. These patients are also faced with prolonged immobilization while staying in the hospital or intensive care unit. It is important to have a high degree of suspicion for thrombotic complications as patients may rapidly deteriorate in severe cases. Evidence suggests that prophylaxis with anticoagulation may lead to a lower risk of mortality, although it does not eliminate the possibility. The risks and benefits of anticoagulation treatment should be considered in each case. Patients should be regularly evaluated for bleeding risks and thrombotic complications.


Subject(s)
Blood Coagulation Disorders/blood , COVID-19/blood , Embolism/blood , Thrombosis/blood , Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/metabolism , COVID-19/complications , COVID-19/metabolism , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/metabolism , Disseminated Intravascular Coagulation/blood , Disseminated Intravascular Coagulation/etiology , Disseminated Intravascular Coagulation/metabolism , Disseminated Intravascular Coagulation/prevention & control , Embolism/etiology , Embolism/metabolism , Embolism/prevention & control , Endothelium, Vascular/metabolism , Fibrin Fibrinogen Degradation Products/metabolism , Fibrinogen/metabolism , Humans , Hypoxia/blood , Hypoxia/etiology , Hypoxia/metabolism , Immobilization , Inflammation/blood , Inflammation/etiology , Inflammation/metabolism , Ischemic Stroke/blood , Ischemic Stroke/etiology , Ischemic Stroke/metabolism , Ischemic Stroke/prevention & control , Myocardial Infarction/blood , Myocardial Infarction/etiology , Myocardial Infarction/metabolism , Myocardial Infarction/prevention & control , Practice Guidelines as Topic , Pulmonary Embolism/blood , Pulmonary Embolism/etiology , Pulmonary Embolism/metabolism , Pulmonary Embolism/prevention & control , Severity of Illness Index , Thrombocytopenia/blood , Thrombocytopenia/etiology , Thrombosis/etiology , Thrombosis/metabolism , Thrombosis/prevention & control , Venous Thrombosis/blood , Venous Thrombosis/etiology , Venous Thrombosis/metabolism , Venous Thrombosis/prevention & control
20.
Am J Respir Cell Mol Biol ; 64(4): 407-415, 2021 04.
Article in English | MEDLINE | ID: mdl-33180562

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new strain of a Coronaviridae virus that presents 79% genetic similarity to the severe acute respiratory syndrome coronavirus, has been recently recognized as the cause of a global pandemic by the World Health Organization, implying a major threat to world public health. SARS-CoV-2 infects host human cells by binding through the viral spike proteins to the ACE-2 (angiotensin-converting enzyme 2) receptor, fuses with the cell membrane, enters, and starts its replication process to multiply its viral load. Coronavirus disease (COVID-19) was initially considered a respiratory infection that could cause pneumonia. However, in severe cases, it extends beyond the respiratory system and becomes a multiorgan disease. This transition from localized respiratory infection to multiorgan disease is due to two main complications of COVID-19. On the one hand, it is due to the so-called cytokine storm: an uncontrolled inflammatory reaction of the immune system in which defensive molecules become aggressive for the body itself. On the other hand, it is due to the formation of a large number of thrombi that can cause myocardial infarction, stroke, and pulmonary embolism. The pulmonary endothelium actively participates in these two processes, becoming the last barrier before the virus spreads throughout the body. In this review, we examine the role of the pulmonary endothelium in response to COVID-19, the existence of potential biomarkers, and the development of novel therapies to restore vascular homeostasis and to protect and/or treat coagulation, thrombosis patients. In addition, we review the thrombotic complications recently observed in patients with COVID-19 and its potential threatening sequelae.


Subject(s)
COVID-19/metabolism , Endothelium/metabolism , Pulmonary Embolism/metabolism , SARS-CoV-2/metabolism , Thrombosis/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Biomarkers/metabolism , COVID-19/pathology , COVID-19/therapy , Endothelium/pathology , Endothelium/virology , Humans , Membrane Fusion , Pulmonary Embolism/pathology , Pulmonary Embolism/therapy , Pulmonary Embolism/virology , Spike Glycoprotein, Coronavirus/metabolism , Thrombosis/pathology , Thrombosis/therapy , Thrombosis/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...