Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Protein Sci ; 33(1): e4835, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984447

ABSTRACT

Pulmonary surfactant (PS) is a lipid-protein complex that forms films reducing surface tension at the alveolar air-liquid interface. Surfactant protein C (SP-C) plays a key role in rearranging the lipids at the PS surface layers during breathing. The N-terminal segment of SP-C, a lipopeptide of 35 amino acids, contains two palmitoylated cysteines, which affect the stability and structure of the molecule. The C-terminal region comprises a transmembrane α-helix that contains a ALLMG motif, supposedly analogous to a well-studied dimerization motif in glycophorin A. Previous studies have demonstrated the potential interaction between SP-C molecules using approaches such as Bimolecular Complementation assays or computational simulations. In this work, the oligomerization state of SP-C in membrane systems has been studied using fluorescence spectroscopy techniques. We have performed self-quenching and FRET assays to analyze dimerization of native palmitoylated SP-C and a non-palmitoylated recombinant version of SP-C (rSP-C) using fluorescently labeled versions of either protein reconstituted in different lipid systems mimicking pulmonary surfactant environments. Our results reveal that doubly palmitoylated native SP-C remains primarily monomeric. In contrast, non-palmitoylated recombinant SP-C exhibits dimerization, potentiated at high concentrations, especially in membranes with lipid phase separation. Therefore, palmitoylation could play a crucial role in stabilizing the monomeric α-helical conformation of SP-C. Depalmitoylation, high protein densities as a consequence of membrane compartmentalization, and other factors may all lead to the formation of protein dimers and higher-order oligomers, which could have functional implications under certain pathological conditions and contribute to membrane transformations associated with surfactant metabolism and alveolar homeostasis.


Subject(s)
Pulmonary Surfactant-Associated Protein C , Pulmonary Surfactants , Pulmonary Surfactant-Associated Protein C/chemistry , Pulmonary Surfactant-Associated Protein C/metabolism , Pulmonary Surfactants/chemistry , Pulmonary Surfactants/metabolism , Fluorescence Resonance Energy Transfer , Lipids/chemistry , Surface-Active Agents
2.
Aging (Albany NY) ; 15(21): 12451-12475, 2023 11 12.
Article in English | MEDLINE | ID: mdl-37955668

ABSTRACT

The abnormality of surfactant protein C (SFTPC) has been linked to the development of a number of interstitial lung diseases, according to mounting evidence. Nonetheless, the function and mechanism of SFTPC in the biological progression of lung adenocarcinoma (LUAD) remain unclear. Analysis of public datasets and testing of clinical samples suggested that SFTPC expression was abnormally low in LUAD, which was associated with the onset and poor prognosis of LUAD. The SFTPC-related risk score was derived using least absolute shrinkage and selection operator Cox regression as well as multivariate Cox regression. The risk score was highly correlated with tumor purity and tumor mutation burden, and it could serve as an independent prognostic indicator for LUAD. Low-risk LUAD patients may benefit more from CTLA-4 or/and PD-1 inhibitors. Overall, the risk score is useful for LUAD patient prognostication and treatment guidance. Moreover, in vitro and in vivo experiments demonstrated that SFTPC inhibits the proliferation of LUAD by inhibiting PI3K/AKT/mTOR signaling transduction. These results reveal the molecular mechanism by which SFTPC inhibits the proliferation of LUAD and suggest that SFTPC could be a new therapeutic target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Lung Neoplasms/pathology , Cell Proliferation/genetics , Adenocarcinoma of Lung/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Gene Expression Regulation, Neoplastic , Pulmonary Surfactant-Associated Protein C/genetics , Pulmonary Surfactant-Associated Protein C/metabolism
3.
Am J Respir Cell Mol Biol ; 68(4): 358-365, 2023 04.
Article in English | MEDLINE | ID: mdl-36473455

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial lung disease. A barrier to developing more effective therapies for IPF is the dearth of preclinical models that recapitulate the early pathobiology of this disease. Intratracheal bleomycin, the conventional preclinical murine model of IPF, fails to reproduce the intrinsic dysfunction to the alveolar epithelial type 2 cell (AEC2) that is believed to be a proximal event in the pathogenesis of IPF. Murine fibrosis models based on SFTPC (Surfactant Protein C gene) mutations identified in patients with interstitial lung disease cause activation of the AEC2 unfolded protein response and endoplasmic reticulum stress-an AEC2 dysfunction phenotype observed in IPF. Although these models achieve spontaneous fibrosis, they do so with precedent lung injury and thus are challenged to phenocopy the general clinical course of patients with IPF-gradual progressive fibrosis and loss of lung function. Here, we report a refinement of a murine Sftpc mutation model to recapitulate the clinical course, physiological impairment, parenchymal cellular composition, and biomarkers associated with IPF. This platform provides the field with an innovative model to understand IPF pathogenesis and index preclinical therapeutic candidates.


Subject(s)
Idiopathic Pulmonary Fibrosis , Pulmonary Surfactant-Associated Protein C , Animals , Mice , Alveolar Epithelial Cells/metabolism , Disease Progression , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Mutation/genetics , Pulmonary Surfactant-Associated Protein C/genetics , Pulmonary Surfactant-Associated Protein C/metabolism
4.
Proc Natl Acad Sci U S A ; 119(43): e2123187119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252035

ABSTRACT

Disruption of alveolar type 2 cell (AEC2) protein quality control has been implicated in chronic lung diseases, including pulmonary fibrosis (PF). We previously reported the in vivo modeling of a clinical surfactant protein C (SP-C) mutation that led to AEC2 endoplasmic reticulum (ER) stress and spontaneous lung fibrosis, providing proof of concept for disruption to proteostasis as a proximal driver of PF. Using two clinical SP-C mutation models, we have now discovered that AEC2s experiencing significant ER stress lose quintessential AEC2 features and develop a reprogrammed cell state that heretofore has been seen only as a response to lung injury. Using single-cell RNA sequencing in vivo and organoid-based modeling, we show that this state arises de novo from intrinsic AEC2 dysfunction. The cell-autonomous AEC2 reprogramming can be attenuated through inhibition of inositol-requiring enzyme 1 (IRE1α) signaling as the use of an IRE1α inhibitor reduced the development of the reprogrammed cell state and also diminished AEC2-driven recruitment of granulocytes, alveolitis, and lung injury. These findings identify AEC2 proteostasis, and specifically IRE1α signaling through its major product XBP-1, as a driver of a key AEC2 phenotypic change that has been identified in lung fibrosis.


Subject(s)
Alveolar Epithelial Cells , Cellular Reprogramming , Lung Injury , Membrane Proteins , Protein Serine-Threonine Kinases , Pulmonary Fibrosis , Alveolar Epithelial Cells/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/genetics , Endoribonucleases/metabolism , Inositol/metabolism , Lung Injury/pathology , Protein Serine-Threonine Kinases/genetics , Proteostasis , Pulmonary Fibrosis/genetics , Membrane Proteins/genetics , Pulmonary Surfactant-Associated Protein C/metabolism
5.
Nat Commun ; 13(1): 1821, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383173

ABSTRACT

BiP co-chaperones ERdj4, ERdj5, and GRP170 associate in cells with peptides predicted to be aggregation prone. Here, extending these findings to a full-length protein, we examine two Interstitial Lung Disease-associated mutants (ILD) of surfactant protein C (SP-C). The TANGO algorithm, which identifies sequences prone to formation of ß strand aggregates, found three such regions in SP-C: the N-terminal transmembrane (TM) domain and two sites in the intermolecular chaperone BRICHOS domain. We show the ILD mutants disrupt di-sulfide bond formation in the BRICHOS domain and expose the aggregation-prone peptides leading to binding of ERdj4, ERdj5, and GRP170. The destabilized mutant BRICHOS domain fails to properly insert its TM region in the ER membrane, exposing part of the N-terminal TM domain site. Our studies with ILD-associated mutant proteins provide insights into the specificity of ERdj4, ERdj5, and GRP170, identify context-dependent differences in their binding, and reveal molecular consequences of disease-associated mutants on folding.


Subject(s)
Molecular Chaperones , Pulmonary Surfactant-Associated Protein C , Binding Sites , Molecular Chaperones/metabolism , Mutation , Protein Binding , Protein Folding , Pulmonary Surfactant-Associated Protein C/metabolism
6.
PLoS One ; 17(4): e0267155, 2022.
Article in English | MEDLINE | ID: mdl-35476695

ABSTRACT

Surfactant protein C (SP-C) has several functions in pulmonary surfactant. These include the transfer of lipids between different membrane structures, a role in surfactant recycling and homeostasis, and involvement in modulation of the innate defense system. Despite these important functions, the structures of functional SP-C complexes have remained unclear. SP-C is known to exist as a primarily α-helical structure with an apparently unstructured N-terminal region, yet there is recent evidence that the functions of SP-C could be associated with the formation of SP-C dimers and higher oligomers. In this work, we used molecular dynamics simulations, two-dimensional umbrella sampling, and well-tempered metadynamics to study the details of SP-C dimerization. The results suggest that SP-C dimerizes in pulmonary surfactant membranes, forming dimers of different topologies. The simulations identified a dimerization motif region V21xxxVxxxGxxxM33 that is much larger than the putative A30xxxG34 motif that is commonly assumed to control the dimerization of some α-helical transmembrane domains. The results provide a stronger basis for elucidating how SP-C functions in concert with other surfactant proteins.


Subject(s)
Pulmonary Surfactant-Associated Protein C , Pulmonary Surfactants , Dimerization , Pulmonary Surfactant-Associated Protein C/metabolism , Pulmonary Surfactant-Associated Proteins/metabolism , Pulmonary Surfactants/metabolism , Surface-Active Agents
7.
Eur Respir J ; 59(1)2022 01.
Article in English | MEDLINE | ID: mdl-34049951

ABSTRACT

BACKGROUND: Alveolar epithelial cell dysfunction plays an important role in the pathogenesis of idiopathic pulmonary fibrosis (IPF), but remains incompletely understood. Some monogenic forms of pulmonary fibrosis are associated with expression of mutant surfactant protein C (SFTPC). The commonest pathogenic mutant, I73T, mislocalises to the alveolar epithelial cell plasma membrane and displays a toxic gain of function. Because the mechanisms explaining the link between this mutant and IPF are incompletely understood, we sought to interrogate SFTPC trafficking in health and disease to understand the functional significance of SFTPC-I73T relocalisation. METHODS: We performed mechanistic analysis of SFTPC trafficking in a cell model that reproduces the in vivo phenotype and validated findings in human primary alveolar organoids. RESULTS: We show that wild-type SFTPC takes an unexpected indirect trafficking route via the plasma membrane and undergoes the first of multiple cleavage events before reaching the multivesicular body (MVB) for further processing. SFTPC-I73T takes this same route, but its progress is retarded both at the cell surface and due to failure of trafficking into the MVB. Unable to undergo onward trafficking, it is recycled to the plasma membrane as a partially cleaved intermediate. CONCLUSION: These data show for the first time that all SFTPC transits the cell surface during normal trafficking, and the I73T mutation accumulates at the cell surface through both retarded trafficking and active recycling. This understanding of normal SFTPC trafficking and how the I73T mutant disturbs it provides novel insight into SFTPC biology in health and disease, and in the contribution of the SFTPC mutant to IPF development.


Subject(s)
Idiopathic Pulmonary Fibrosis , Pulmonary Surfactant-Associated Protein C/metabolism , Alveolar Epithelial Cells , Humans , Idiopathic Pulmonary Fibrosis/genetics , Mutation , Pulmonary Surfactant-Associated Protein C/genetics , Surface-Active Agents
8.
ACS Chem Biol ; 16(12): 2864-2873, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34878249

ABSTRACT

Treatment of respiratory distress syndrome (RDS) with surfactant replacement therapy in prematurely born infants was introduced more than 30 years ago; however, the surfactant preparations currently in clinical use are extracts from animal lungs. A synthetic surfactant that matches the currently used nature-derived surfactant preparations and can be produced in a cost-efficient manner would enable worldwide treatment of neonatal RDS and could also be tested against lung diseases in adults. The major challenge in developing fully functional synthetic surfactant preparations is to recapitulate the properties of the hydrophobic lung surfactant proteins B (SP-B) and SP-C. Here, we have designed single polypeptides that combine properties of SP-B and SP-C and produced them recombinantly using a novel solubility tag based on spider silk production. These Combo peptides mixed with phospholipids are as efficient as nature-derived surfactant preparations against neonatal RDS in premature rabbit fetuses.


Subject(s)
Peptides/therapeutic use , Recombinant Proteins/therapeutic use , Respiratory Distress Syndrome/drug therapy , Animals , Escherichia coli , Humans , Lung , Peptides/pharmacology , Phospholipids/chemistry , Pulmonary Surfactant-Associated Protein B/metabolism , Pulmonary Surfactant-Associated Protein C/metabolism , Pulmonary Surfactants/metabolism , Rabbits , Recombinant Proteins/pharmacology , Surface-Active Agents
9.
Biochem Biophys Res Commun ; 581: 81-88, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34656852

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) has attracted more and more attention due to its irreversibility and high mortality rate. Currently, there is no effective treatment option is available to reverse the disease. Caspase recruitment domain-containing membrane-associated guanylate kinase protein (CARMA3) has been recognized as a proinflammatory molecule involved in many lung diseases, such as Allergic airway inflammation and lung cancer. Bleomycin (Bleo), as an alkaline sugar peptide antibiotics, is often used as a first-line anti-tumor agent. Its toxic effect is to induce pulmonary fibrosis (PF) and its clinical symptoms, so it has been widely used in the construction of pulmonary fibrosis model. METHODS: Wild type mice (WT, n = 20) and CARMA3 knockout mice (CARMA3-KO, n = 20) were generated and injected with bleomycin or saline via trachea. The severity of fibrosis was evaluated by fibrosis markers and lung histological morphology. Furthermore, the amount of alveolar epithelial cells and inflammation in lung tissue were examined. Finally, epithelial-mesenchymal transition was further investigated. RESULTS: We found CARMA3 expression in the mice alveolar epithelial cells. And compared with WT mice, CARMA3-KO mice showed reduced deposition of collagen fibers, inflammation and destruction of alveolar epithelial cells in lung tissue. In addition, after bleomycin induction, the expressions of proinflammatory factors and collagen-related factors in CARMA3-KO mice were much lower than those in WT mice. The epithelial-mesenchymal transformation phenotype was also improved in CARMA3-KO mice compared to WT mice. CONCLUSION: Our Results shows that CARMA3 plays an important role in the pathogenesis of bleomycin-induced pulmonary fibrosis. CARMA3 could alleviate the fibrosis by improving inflammation, deposition of collagen and damage of alveolar epithelial cells, which revealed that CARMA3 may be a potential target for pulmonary fibrosis.


Subject(s)
Alveolar Epithelial Cells/metabolism , Bleomycin/administration & dosage , CARD Signaling Adaptor Proteins/genetics , Fibronectins/genetics , Lung/metabolism , Pulmonary Fibrosis/genetics , Actins/genetics , Actins/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Animals , Aquaporin 5/genetics , Aquaporin 5/metabolism , CARD Signaling Adaptor Proteins/deficiency , Cadherins/genetics , Cadherins/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Epithelial-Mesenchymal Transition/genetics , Fibronectins/metabolism , Gene Expression Regulation , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lung/drug effects , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Surfactant-Associated Protein C/genetics , Pulmonary Surfactant-Associated Protein C/metabolism , Signal Transduction , Vimentin/genetics , Vimentin/metabolism
10.
Cancer Treat Res Commun ; 29: 100461, 2021.
Article in English | MEDLINE | ID: mdl-34600418

ABSTRACT

Surfactant protein C (SP-C) is one of four surfactant proteins produced by type II pneumocytes. Mutations in surfactant protein A are strongly associated with development of lung cancer. Mutations in the SP-C gene are rare and are associated with interstitial lung disease in the pediatric age group. We describe two patients with SP-C mutations who developed lung cancer. Both patients had concurrent interstitial lung disease, although the clinical phenotype was variable. In both cases, mutations were in translated region of the SP-C gene; one in the BRICHOS domain and the other in the transmembrane domain. Our paper suggests that patients with SP-C mutations can be at increased risk for the development of lung cancer, and it's reasonable to follow them routinely.


Subject(s)
Lung Neoplasms/genetics , Pulmonary Surfactant-Associated Protein C/metabolism , Adult , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Mutation
11.
J Chem Neuroanat ; 118: 102036, 2021 12.
Article in English | MEDLINE | ID: mdl-34626771

ABSTRACT

Surfactant protein C (SP-C) modulates cerebrospinal fluid (CSF) rheology. During ageing, its declining levels are accompanied by an increased burden of white matter lesions. Pulmonary SP-C intermediates harbouring the BRICHOS-domain prevent protein misfolding in the lungs. Thus, cerebral SP-C intermediates may counteract cerebral ß-amyloidosis, a hallmark of Alzheimer's disease (AD). However, data on the molecular neuroanatomy of SP-C and its alterations in wildtype and triple transgenic (3xTg) mice, featuring essential elements of AD-neuropathology, are lacking. Therefore, this study investigated SP-C-containing structures in murine forebrains and their spatial relationships with vascular, glial and neuronal components of the neurovascular unit. Fluorescence labelling demonstrated neuronal SP-C in the medial habenula, the indusium griseum and the hippocampus. Glial counterstaining elucidated astrocytes in the corpus callosum co-expressing SP-C and S100ß. Notably, perineuronal nets were associated with SP-C in the nucleus reticularis thalami, the lateral hypothalamus and the retrosplenial cortex. In the hippocampus of aged 3xTg mice, an increased number of dot-like depositions containing SP-C and Reelin, but devoid of BRICHOS-immunoreactivity were observed apart from AD-like lesions. Wildtype and 3xTg mice revealed an age-dependent increase of such deposits markedly pronounced in about 24-month-old 3xTg mice. SP-C levels of the intracellular and extracellular compartments in each group revealed an inverse correlation of SP-C and Reelin, with reduced SP-C and increased Reelin in an age-dependent fashion especially in 3xTg mice. Taken together, extracellular SP-C, as modulator of glymphatic clearance and potential ligand of PNs, declines in 3xTg mice, which show an accumulation of extracellular Reelin depositions during ageing.


Subject(s)
Brain Chemistry/physiology , Hippocampus/metabolism , Nerve Net/metabolism , Pulmonary Surfactant-Associated Protein C/metabolism , Aging/metabolism , Animals , Astrocytes/metabolism , Extracellular Space/metabolism , Female , Glymphatic System/metabolism , Humans , Male , Mice , Mice, Transgenic , Nerve Net/growth & development , Neuroglia/metabolism , Neurovascular Coupling/physiology , Reelin Protein/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism
12.
Neurobiol Dis ; 159: 105514, 2021 11.
Article in English | MEDLINE | ID: mdl-34555537

ABSTRACT

Synchronized and properly balanced electrical activity of neurons is the basis for the brain's ability to process information, to learn, and to remember. In Alzheimer's disease (AD), which causes cognitive decline in patients, this synchronization and balance is disturbed by the accumulation of neuropathological biomarkers such as amyloid-beta peptide (Aß42). Failure of Aß42 clearance mechanisms as well as desynchronization of crucial neuronal classes such as fast-spiking interneurons (FSN) are root causes for the disruption of the cognition-relevant gamma brain rhythm (30-80 Hz) and consequent cognitive impairment observed in AD. Here we show that recombinant BRICHOS molecular chaperone domains from ProSP-C or Bri2, which interfere with Aß42 aggregation, can rescue the gamma rhythm. We demonstrate that Aß42 progressively decreases gamma oscillation power and rhythmicity, disrupts the inhibition/excitation balance in pyramidal cells, and desynchronizes FSN firing during gamma oscillations in the hippocampal CA3 network of mice. Application of the more efficacious Bri2 BRICHOS chaperone rescued the cellular and neuronal network performance from all ongoing Aß42-induced functional impairments. Collectively, our findings offer critical missing data to explain the importance of FSN for normal network function and underscore the therapeutic potential of Bri2 BRICHOS to rescue the disruption of cognition-relevant brain rhythms in AD.


Subject(s)
Action Potentials/drug effects , Adaptor Proteins, Signal Transducing/pharmacology , Hippocampus/drug effects , Interneurons/drug effects , Molecular Chaperones/pharmacology , Pyramidal Cells/drug effects , Action Potentials/physiology , Adaptor Proteins, Signal Transducing/metabolism , Amyloid beta-Peptides , Animals , Disease Models, Animal , Gamma Rhythm , Hippocampus/physiopathology , In Vitro Techniques , Interneurons/physiology , Mice , Neural Pathways/drug effects , Neural Pathways/physiopathology , Peptide Fragments , Protein Domains , Pulmonary Surfactant-Associated Protein C/metabolism , Pulmonary Surfactant-Associated Protein C/pharmacology , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Recombinant Proteins
13.
Cell Rep ; 36(9): 109636, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34469722

ABSTRACT

Alveolar epithelial type 2 cell (AEC2) dysfunction is implicated in the pathogenesis of adult and pediatric interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF); however, identification of disease-initiating mechanisms has been impeded by inability to access primary AEC2s early on. Here, we present a human in vitro model permitting investigation of epithelial-intrinsic events culminating in AEC2 dysfunction, using patient-specific induced pluripotent stem cells (iPSCs) carrying an AEC2-exclusive disease-associated variant (SFTPCI73T). Comparing syngeneic mutant versus gene-corrected iPSCs after differentiation into AEC2s (iAEC2s), we find that mutant iAEC2s accumulate large amounts of misprocessed and mistrafficked pro-SFTPC protein, similar to in vivo changes, resulting in diminished AEC2 progenitor capacity, perturbed proteostasis, altered bioenergetic programs, time-dependent metabolic reprogramming, and nuclear factor κB (NF-κB) pathway activation. Treatment of SFTPCI73T-expressing iAEC2s with hydroxychloroquine, a medication used in pediatric ILD, aggravates the observed perturbations. Thus, iAEC2s provide a patient-specific preclinical platform for modeling the epithelial-intrinsic dysfunction at ILD inception.


Subject(s)
Alveolar Epithelial Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Lung Diseases, Interstitial/genetics , Pulmonary Surfactant-Associated Protein C/genetics , Alveolar Epithelial Cells/pathology , Animals , Cell Line , Cell Proliferation , Energy Metabolism , Genetic Predisposition to Disease , Humans , Induced Pluripotent Stem Cells/pathology , Inflammation Mediators/metabolism , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/pathology , Mice, Knockout , Mutation , NF-kappa B/metabolism , Phenotype , Proteostasis , Pulmonary Surfactant-Associated Protein C/metabolism , Signal Transduction
15.
Am J Respir Cell Mol Biol ; 65(4): 442-460, 2021 10.
Article in English | MEDLINE | ID: mdl-34101541

ABSTRACT

Alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, are typically identified through the use of the canonical markers, SFTPC and ABCA3. Self-renewing AEC2-like cells have been generated from human induced pluripotent stem cells (iPSCs) through the use of knock-in SFTPC fluorochrome reporters. However, developmentally, SFTPC expression onset begins in the fetal distal lung bud tip and thus is not specific to mature AEC2s. Furthermore, SFTPC reporters appear to identify only those iPSC-derived AEC2s (iAEC2s) expressing the highest SFTPC levels. Here, we generate an ABCA3 knock-in GFP fusion reporter (ABCA3:GFP) that enables the purification of iAEC2s while allowing visualization of lamellar bodies, organelles associated with AEC2 maturation. Using an SFTPCtdTomato and ABCA3:GFP bifluorescent line for in vitro distal lung-directed differentiation, we observe later onset of ABCA3:GFP expression and broader identification of the subsequently emerging iAEC2 population based on ABCA3:GFP expression compared with SFTPCtdTomato expression. Comparing ABCA3:GFP/SFTPCtdTomato double-positive with ABCA3:GFP single-positive (SP) cells by RNA sequencing and functional studies reveals iAEC2 cellular heterogeneity with both populations functionally processing surfactant proteins but the SP cells exhibiting faster growth kinetics, increased clonogenicity, increased expression of progenitor markers, lower levels of SFTPC expression, and lower levels of AEC2 maturation markers. Over time, we observe that each population (double-positive and SP) gives rise to the other and each can serve as the parents of indefinitely self-renewing iAEC2 progeny. Our results indicate that iAEC2s are a heterogeneous population of cells with differing proliferation versus maturation properties, the majority of which can be tracked and purified using the ABCA3:GFP reporter or surrogate cell surface proteins, such as SLC34A2 and CPM.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Alveolar Epithelial Cells/cytology , Induced Pluripotent Stem Cells/cytology , Pulmonary Alveoli/cytology , Pulmonary Surfactant-Associated Protein C/metabolism , Cell Differentiation/physiology , Epithelial Cells/metabolism , Humans , Lung/metabolism , Pulmonary Surfactant-Associated Proteins/metabolism
16.
PLoS Genet ; 17(6): e1009619, 2021 06.
Article in English | MEDLINE | ID: mdl-34161347

ABSTRACT

Lysosome-associated membrane glycoprotein 3 (LAMP3) is a type I transmembrane protein of the LAMP protein family with a cell-type-specific expression in alveolar type II cells in mice and hitherto unknown function. In type II pneumocytes, LAMP3 is localized in lamellar bodies, secretory organelles releasing pulmonary surfactant into the extracellular space to lower surface tension at the air/liquid interface. The physiological function of LAMP3, however, remains enigmatic. We generated Lamp3 knockout mice by CRISPR/Cas9. LAMP3 deficient mice are viable with an average life span and display regular lung function under basal conditions. The levels of a major hydrophobic protein component of pulmonary surfactant, SP-C, are strongly increased in the lung of Lamp3 knockout mice, and the lipid composition of the bronchoalveolar lavage shows mild but significant changes, resulting in alterations in surfactant functionality. In ovalbumin-induced experimental allergic asthma, the changes in lipid composition are aggravated, and LAMP3-deficient mice exert an increased airway resistance. Our data suggest a critical role of LAMP3 in the regulation of pulmonary surfactant homeostasis and normal lung function.


Subject(s)
Alveolar Epithelial Cells/metabolism , Asthma/genetics , Homeostasis/genetics , Lysosomal-Associated Membrane Protein 3/genetics , Pulmonary Surfactant-Associated Protein C/genetics , Pulmonary Surfactants/metabolism , Airway Resistance , Alveolar Epithelial Cells/pathology , Animals , Asthma/chemically induced , Asthma/metabolism , Asthma/pathology , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Female , Gene Editing/methods , Gene Expression Regulation , Lipidomics , Lung/metabolism , Lung/pathology , Lysosomal-Associated Membrane Protein 3/deficiency , Mice , Mice, Knockout , Ovalbumin/administration & dosage , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Pulmonary Surfactant-Associated Protein C/metabolism , Respiratory Function Tests , Signal Transduction
17.
Front Immunol ; 12: 665818, 2021.
Article in English | MEDLINE | ID: mdl-33968067

ABSTRACT

Acute inflammatory exacerbations (AIE) represent precipitous deteriorations of a number of chronic lung conditions, including pulmonary fibrosis (PF), chronic obstructive pulmonary disease and asthma. AIEs are marked by diffuse and persistent polycellular alveolitis that profoundly accelerate lung function decline and mortality. In particular, excess monocyte mobilization during AIE and their persistence in the lung have been linked to poor disease outcome. The etiology of AIEs remains quite uncertain, but environmental exposure and genetic predisposition/mutations have been identified as two contributing factors. Guided by clinical evidence, we have developed a mutant model of pulmonary fibrosis leveraging the PF-linked missense isoleucine to threonine substitution at position 73 [I73T] in the alveolar type-2 cell-restricted Surfactant Protein-C [SP-C] gene [SFTPC]. With this toolbox at hand, the present work investigates the role of peripheral monocytes during the initiation and progression of AIE-PF. Genetic ablation of CCR2+ monocytes (SP-CI73TCCR2KO) resulted in improved lung histology, mouse survival, and reduced inflammation compared to SP-CI73TCCR2WT cohorts. FACS analysis of CD11b+CD64-Ly6Chi monocytes isolated 3 d and 14 d after SP-CI73T induced injury reveals dynamic transcriptional changes associated with "Innate Immunity' and 'Extracellular Matrix Organization' signaling. While immunohistochemical and in situ hybridization analysis revealed comparable levels of tgfb1 mRNA expression localized primarily in parenchymal cells found nearby foci of injury we found reduced effector cell activation (C1q, iNOS, Arg1) in SP-CI73TCCR2KO lungs as well as partial colocalization of tgfb1 mRNA expression in Arg1+ cells. These results provide a detailed picture of the role of resident macrophages and recruited monocytes in the context of AIE-PF driven by alveolar epithelial dysfunction.


Subject(s)
Lung Diseases, Interstitial/immunology , Mutation , Myeloid Cells/immunology , Pulmonary Surfactant-Associated Protein C/metabolism , Respiratory Mucosa/immunology , Animals , Epithelium/metabolism , Female , Inflammation/metabolism , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/pathology , Male , Mice , Mice, Transgenic , Myeloid Cells/pathology , Pulmonary Surfactant-Associated Protein C/genetics , Receptors, CCR2/genetics , Receptors, CCR2/immunology , Respiratory Mucosa/pathology , Sequence Analysis, RNA , Signal Transduction , Tamoxifen/pharmacology , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
18.
Biochemistry ; 60(9): 678-688, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33621049

ABSTRACT

Protein oligomerization is a commonly encountered strategy by which the functional repertoire of proteins is increased. This, however, is a double-edged sword strategy because protein oligomerization is notoriously difficult to control. Living organisms have therefore developed a number of chaperones that prevent protein aggregation. The small ATP-independent molecular chaperone domain proSP-C BRICHOS, which is mainly trimeric, specifically inhibits fibril surface-catalyzed nucleation reactions that give rise to toxic oligomers during the aggregation of the Alzheimer's disease-related amyloid-ß peptide (Aß42). Here, we have created a stable proSP-C BRICHOS monomer mutant and show that it does not bind to monomeric Aß42 but has a high affinity for Aß42 fibrils, using surface plasmon resonance. Kinetic analysis of Aß42 aggregation profiles, measured by thioflavin T fluorescence, reveals that the proSP-C BRICHOS monomer mutant strongly inhibits secondary nucleation reactions and thereby reduces the level of catalytic formation of toxic Aß42 oligomers. To study binding between the proSP-C BRICHOS monomer mutant and small soluble Aß42 aggregates, we analyzed fluorescence cross-correlation spectroscopy measurements with the maximum entropy method for fluorescence correlation spectroscopy. We found that the proSP-C BRICHOS monomer mutant binds to the smallest emerging Aß42 aggregates that are comprised of eight or fewer Aß42 molecules, which are already secondary nucleation competent. Our approach can be used to provide molecular-level insights into the mechanisms of action of substances that interfere with protein aggregation.


Subject(s)
Adenosine Triphosphate/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Molecular Chaperones , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Aggregation, Pathological , Protein Multimerization , Pulmonary Surfactant-Associated Protein C/metabolism , Humans , Protein Domains , Pulmonary Surfactant-Associated Protein C/genetics
19.
Biochim Biophys Acta Biomembr ; 1863(6): 183572, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33548215

ABSTRACT

Surfactant protein C (SP-C) is a protein present in the pulmonary surfactant system that is involved in the biophysical properties of this lipoprotein complex, but it also has a role in lung defense and homeostasis. In this article, we propose that the link between both functions could rely on the ability of SP-C to induce fragmentation of phospholipid membranes and generate small vesicles that serve as support to present different ligands to cells in the lungs. Our results using bimolecular fluorescence complementation and tunable resistive pulse sensing setups suggest that SP-C oligomerization could be the triggering event that causes membrane budding and nanovesiculation. As shown by fluorescence microscopy and flow cytometry, these vesicles are differentially assimilated by alveolar macrophages and alveolar type II cells, indicating distinct roles of these alveoli-resident cells in the processing of the SP-C- induced vesicles and their cargo. These results depict a more accurate picture of the mechanisms of this protein, which could be relevant for the comprehension of pulmonary pathologies and the development of new therapeutic approaches.


Subject(s)
Pulmonary Surfactant-Associated Protein C/metabolism , Unilamellar Liposomes/metabolism , Amino Acid Sequence , Cell Line , Dimerization , Endocytosis , Flow Cytometry , Humans , Microscopy, Fluorescence , Peptidomimetics/chemistry , Peptidomimetics/metabolism , Protein Domains , Protein Multimerization , Pulmonary Surfactant-Associated Protein C/chemistry , Pulmonary Surfactant-Associated Protein C/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Unilamellar Liposomes/chemistry
20.
J Pharmacol Exp Ther ; 377(1): 11-19, 2021 04.
Article in English | MEDLINE | ID: mdl-33509901

ABSTRACT

Gain-of-function mutations in leucine-rich kinase 2 (LRRK2) are associated with increased incidence of Parkinson disease (PD); thus, pharmacological inhibition of LRRK2 kinase activity is postulated as a disease-modifying treatment of PD. Histomorphological changes in lungs of nonhuman primates (NHPs) treated with small-molecule LRRK2 kinase inhibitors have brought the safety of this treatment approach into question. Although it remains unclear how LRRK2 kinase inhibition affects the lung, continued studies in NHPs prove to be both cost- and resource-prohibitive. To develop a tractable alternative animal model platform, we dosed male mice in-diet with the potent, highly selective LRRK2 kinase inhibitor MLi-2 and induced histomorphological changes in lung within 1 week. Oral bolus dosing of MLi-2 at a frequency modeled to provide steady-state exposure equivalent to that achieved with in-diet dosing induced type II pneumocyte vacuolation, suggesting pulmonary changes require sustained LRRK2 kinase inhibition. Treating mice with MLi-2 in-diet for up to 6 months resulted in type II pneumocyte vacuolation that progressed only modestly over time and was fully reversible after withdrawal of MLi-2. Immunohistochemical analysis of lung revealed a significant increase in prosurfactant protein C staining within type II pneumocytes. In the present study, we demonstrated the kinetics for onset, progression, and rapid reversibility of chronic LRRK2 kinase inhibitor effects on lung histomorphology in rodents and provide further evidence for the derisking of safety and tolerability concerns for chronic LRRK2 kinase inhibition in PD. SIGNIFICANCE STATEMENT: We have defined a mouse model by which the on-target lung effects of leucine-rich kinase 2 (LRRK2) kinase inhibition can be monitored, whereas previous in vivo testing relied solely on nonhuman primates. Data serve to derisk long-term treatment with LRRK2 kinase inhibitors, as all lung changes were mild and readily reversible.


Subject(s)
Alveolar Epithelial Cells/drug effects , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Animals , Indazoles/administration & dosage , Indazoles/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Mice , Mice, Inbred C57BL , Morpholines/administration & dosage , Morpholines/pharmacology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pulmonary Surfactant-Associated Protein C/genetics , Pulmonary Surfactant-Associated Protein C/metabolism , Pyrimidines/administration & dosage , Pyrimidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...