Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.407
Filter
1.
Nat Commun ; 15(1): 6966, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39138196

ABSTRACT

Pentraxin 3 (PTX3), a long pentraxin and a humoral pattern recognition molecule (PRM), has been demonstrated to be protective against Aspergillus fumigatus, an airborne human fungal pathogen. We explored its mode of interaction with A. fumigatus, and the resulting implications in the host immune response. Here, we demonstrate that PTX3 interacts with A. fumigatus in a morphotype-dependent manner: (a) it recognizes germinating conidia through galactosaminogalactan, a surface exposed cell wall polysaccharide of A. fumigatus, (b) in dormant conidia, surface proteins serve as weak PTX3 ligands, and (c) surfactant protein D (SP-D) and the complement proteins C1q and C3b, the other humoral PRMs, enhance the interaction of PTX3 with dormant conidia. SP-D, C3b or C1q opsonized conidia stimulated human primary immune cells to release pro-inflammatory cytokines and chemokines. However, subsequent binding of PTX3 to SP-D, C1q or C3b opsonized conidia significantly decreased the production of pro-inflammatory cytokines/chemokines. PTX3 opsonized germinating conidia also significantly lowered the production of pro-inflammatory cytokines/chemokines while increasing IL-10 (an anti-inflammatory cytokine) released by immune cells when compared to the unopsonized counterpart. Overall, our study demonstrates that PTX3 recognizes A. fumigatus either directly or by interplaying with other humoral PRMs, thereby restraining detrimental inflammation. Moreover, PTX3 levels were significantly higher in the serum of patients with invasive pulmonary aspergillosis (IPA) and COVID-19-associated pulmonary aspergillosis (CAPA), supporting previous observations in IPA patients, and suggesting that it could be a potential panel-biomarker for these pathological conditions caused by A. fumigatus.


Subject(s)
Aspergillus fumigatus , C-Reactive Protein , Complement C1q , Serum Amyloid P-Component , Spores, Fungal , Aspergillus fumigatus/immunology , Serum Amyloid P-Component/metabolism , Serum Amyloid P-Component/immunology , Humans , Spores, Fungal/immunology , C-Reactive Protein/metabolism , C-Reactive Protein/immunology , Complement C1q/metabolism , Complement C1q/immunology , Pulmonary Surfactant-Associated Protein D/metabolism , Pulmonary Surfactant-Associated Protein D/immunology , Complement C3b/immunology , Complement C3b/metabolism , Cytokines/metabolism , Cytokines/immunology , Interleukin-10/metabolism , Interleukin-10/immunology , Aspergillosis/immunology , Aspergillosis/microbiology , Host-Pathogen Interactions/immunology , Immunity, Humoral , Female , Polysaccharides
2.
BMJ Open ; 14(8): e086394, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153779

ABSTRACT

INTRODUCTION: Chronic respiratory morbidity from bronchopulmonary dysplasia (BPD) remains the most common complication of preterm birth and has consequences for later respiratory, cardiovascular and neurodevelopmental outcomes. The early phases of respiratory illness are characterised by rapid consumption of endogenous surfactant and slow replenishment. Exogenous surfactant is routinely administered to infants born before 28 weeks of gestation as prophylaxis. Endogenous surfactant includes four proteins, known as surfactant proteins (SPs) A, B, C and D. Current bovine-derived and porcine-derived surfactant preparations only contain SPs B and C. SP-D has a key role in lung immune homeostasis as part of the innate immune system. Laboratory studies using recombinant SP-D have demonstrated reduced inflammation, which may be a pathway to reducing the associated morbidity from BPD. RESPONSE uses a recombinant fragment of human SP D (rfhSP-D), in a phase I safety and dose-escalation trial as the first stage in determining its effect in humans. METHODS AND ANALYSIS: This is a single-centre, dose-escalation, phase I safety study aiming to recruit 24 infants born before 30 weeks gestation with respiratory distress syndrome. In addition to routine surfactant replacement therapy, participants will receive three doses of rfhSP-D via endotracheal route at either 1 mg/kg, 2 mg/kg or 4 mg/kg. The study uses a Bayesian continual reassessment method to make dose escalation decisions. Dose-limiting events (DLE) in this trial will be graded according to the published Neonatal Adverse Event Severity Score. The primary outcome of this study is to evaluate the safety profile of rfhSP-D across each dose level based on the profile of DLE to establish the recommended phase 2 dose (RP2D) of rfhSP-D. ETHICS AND DISSEMINATION: The RESPONSE study has received ethical approval from London-Brent NHS Research Health Authority ethics committee. Results from the study will be published in peer-reviewed journals and presented at national and international conferences. TRIAL REGISTRATION NUMBERS: ISRCTN17083028, NCT05898633. PROTOCOL VERSION: RESPONSE Protocol V.4.0 24th July 2024.


Subject(s)
Pulmonary Surfactant-Associated Protein D , Recombinant Proteins , Respiratory Distress Syndrome, Newborn , Humans , Infant, Newborn , Respiratory Distress Syndrome, Newborn/prevention & control , Recombinant Proteins/administration & dosage , Infant, Premature , Bronchopulmonary Dysplasia/prevention & control , Clinical Trials, Phase I as Topic , Female , Male
3.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891806

ABSTRACT

Given the various clinical manifestations that characterize Coronavirus Disease 2019 (COVID-19), the scientific community is constantly searching for biomarkers with prognostic value. Surfactant proteins A (SP-A) and D (SP-D) are collectins that play a crucial role in ensuring proper alveolar function and an alteration of their serum levels was reported in several pulmonary diseases characterized by Acute Respiratory Distress Syndrome (ARDS) and pulmonary fibrosis. Considering that such clinical manifestations can also occur during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, we wondered if these collectins could act as prognostic markers. In this regard, serum levels of SP-A and SP-D were measured by enzyme immunoassay in patients with SARS-CoV-2 infection (n = 51) at admission (T0) and after seven days (T1) and compared with healthy donors (n = 11). SP-D increased in COVID-19 patients compared to healthy controls during the early phases of infection, while a significant reduction was observed at T1. Stratifying SARS-CoV-2 patients according to disease severity, increased serum SP-D levels were observed in severe compared to mild patients. In light of these results, SP-D, but not SP-A, seems to be an eligible marker of COVID-19 pneumonia, and the early detection of SP-D serum levels could be crucial for preventive clinical management.


Subject(s)
Biomarkers , COVID-19 , Pulmonary Surfactant-Associated Protein A , Pulmonary Surfactant-Associated Protein D , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/blood , COVID-19/diagnosis , Male , Female , Pulmonary Surfactant-Associated Protein D/blood , Biomarkers/blood , Middle Aged , Pulmonary Surfactant-Associated Protein A/blood , SARS-CoV-2/isolation & purification , Aged , Adult , Prognosis
4.
Protein Expr Purif ; 222: 106523, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38880192

ABSTRACT

We previously identified surfactant protein D (SP-D) in the bottlenose dolphin Tursiops truncatus as a unique evolutionary factor of the cetacean pulmonary immune system. In this short report, recombinant SP-D of bottlenose dolphin (dSP-D) was synthesized in mammalian cells, and its properties were analyzed in vitro. The recombinant proteins were purified using Ni-carrier or Co-carrier. Sodium dodecyl sulfate poly-acrylamide gel electrophoresis and western blotting revealed a 50 kDa major band with minor secondary bands. Enzyme-linked immunosorbent assay-like methods revealed that recombinant dSP-D bonded to gram-positive and gram-negative bacterial walls. Our findings suggest the clinical usefulness of dSP-D for cetacean pneumonia.


Subject(s)
Bottle-Nosed Dolphin , Pulmonary Surfactant-Associated Protein D , Recombinant Proteins , Animals , Bottle-Nosed Dolphin/genetics , Bottle-Nosed Dolphin/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Pulmonary Surfactant-Associated Protein D/genetics , Pulmonary Surfactant-Associated Protein D/chemistry , Pulmonary Surfactant-Associated Protein D/metabolism , Gene Expression , Cloning, Molecular
5.
Immun Inflamm Dis ; 12(6): e1302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860749

ABSTRACT

BACKGROUND: Severe cases of COVID-19 often lead to the development of acute respiratory syndrome, a critical condition believed to be caused by the harmful effects of SARS-CoV-2 on type II alveolar cells. These cells play a crucial role in producing pulmonary surfactants, which are essential for proper lung function. Specifically focusing on surfactant proteins, including Surfactant protein A (SP-A), Surfactant protein B, Surfactant protein C, and Surfactant protein D (SP-D), changes in the levels of pulmonary surfactants may be a significant factor in the pathological changes seen in COVID-19 infection. OBJECTIVE: This study aims to gain insights into surfactants, particularly their impacts and changes during COVID-19 infection, through a comprehensive review of current literature. The study focuses on the function of surfactants as prognostic markers, diagnostic factors, and essential components in the management and treatment of COVID-19. FINDING: In general, pulmonary surfactants serve to reduce the surface tension at the gas-liquid interface, thereby significantly contributing to the regulation of respiratory mechanics. Additionally, these surfactants play a crucial role in the innate immune system within the pulmonary microenvironment. Within the spectrum of COVID-19 infections, a compelling association is observed, characterized by elevated levels of SP-D and SP-A across a range of manifestations from mild to severe pneumonia. The sudden decline in respiratory function observed in COVID-19 patients may be attributed to the decreased synthesis of surfactants by type II alveolar cells. CONCLUSION: Collectin proteins such as SP-A and SP-D show promise as biomarkers, offering potential avenues for predicting and monitoring pulmonary alveolar injury in the context of COVID-19. This clarification enhances our understanding of the molecular complexities contributing to respiratory complications in severe COVID-19 cases, providing a foundation for targeted therapeutic approaches using surfactants and refined clinical management strategies.


Subject(s)
COVID-19 , Pulmonary Surfactant-Associated Proteins , SARS-CoV-2 , COVID-19/metabolism , COVID-19/immunology , Humans , Pulmonary Surfactant-Associated Proteins/metabolism , Pulmonary Surfactants/metabolism , Biomarkers , Pulmonary Surfactant-Associated Protein D/metabolism , Prognosis , Lung/pathology , Lung/metabolism
6.
Asian Pac J Cancer Prev ; 25(5): 1707-1713, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809643

ABSTRACT

BACKGROUND: Radiation-induced lung disease is a potentially fatal, dose-limiting toxicity commonly seen after radiotherapy of thoracic malignancies, including breast cancer. AIM: To evaluate and compare the early lung toxicity induced by 3D-CRT and IMRT radiotherapy treatment modalities in breast cancer female patients using biochemical, dosimetry and clinical data. SUBJECTS AND METHODS: this study included 15 normal healthy controls, 15 breast cancer patients treated with IMRT, and 15 breast cancer patients treated with 3D-CRT. One blood sample was obtained from the control group and 3 blood samples were withdrawn from cases before RT, after RT and after 3 months of RT. RESULT: IMRT delivered higher radiation dose to the breast tumor and lower doses to the lung as an organ at risk. There was a non-significant increase in the serum levels of IL-6 before IMRT and 3D-CRT compared with its levels in the control group. There were significant increases in serum levels of IL-6 after RT (IMRT and 3DCRT) compared with its levels before RT. There was a non-significant decrease in the serum levels of IL-6 after 3 months of RT (IMRT and 3D-CRT) compared with its serum levels immediately after RT. There was a non-significant increase in the serum levels of SP-D before RT (IMRT and 3D-CRT) compared with its levels in the control group. There were significant-increases in serum levels of SP-D after RT (IMRT and 3D-CRT) compared with its levels before RT. There was a non-significant decrease in the serum levels of SP-D after 3 months of radiotherapy (IMRT and 3D-CRT) compared with its serum levels immediately after RT. CONCLUSION: serum of levels IL-6 and SP-D can be used to diagnose the occurrence of early lung toxicity due to radiotherapy and the rate of recovery from radiation pneumonitis is apparent in case of IMRT than 3D-CRT.


Subject(s)
Breast Neoplasms , Interleukin-6 , Pulmonary Surfactant-Associated Protein D , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated , Humans , Female , Interleukin-6/blood , Radiotherapy, Intensity-Modulated/adverse effects , Breast Neoplasms/radiotherapy , Breast Neoplasms/blood , Middle Aged , Pulmonary Surfactant-Associated Protein D/blood , Case-Control Studies , Radiotherapy, Conformal/adverse effects , Follow-Up Studies , Adult , Radiation Injuries/blood , Radiation Injuries/etiology , Prognosis , Radiation Pneumonitis/etiology , Radiation Pneumonitis/blood , Radiotherapy Planning, Computer-Assisted/methods , Lung/radiation effects , Aged , Radiometry
7.
Lung ; 202(3): 269-273, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38753183

ABSTRACT

INTRODUCTION: Pulmonary fibrosis is a characteristic of various interstitial lung diseases (ILDs) with differing etiologies. Clinical trials in progressive pulmonary fibrosis (PPF) enroll patients based on previously described clinical criteria for past progression, which include a clinical practice guideline for PPF classification and inclusion criteria from the INBUILD trial. In this study, we compared the ability of past FVC (forced vital capacity) progression and baseline biomarker levels to predict future progression in a cohort of patients from the PFF Patient Registry. METHODS: Biomarkers previously associated with pathobiology and/or progression in pulmonary fibrosis were selected to reflect cellular senescence (telomere length), pulmonary epithelium (SP-D, RAGE), myeloid activation (CXCL13, YKL40, CCL18, OPN) and fibroblast activation (POSTN, COMP, PROC3). RESULTS: PFF or INBUILD-like clinical criteria was used to separate patients into past progressor and non-past progressor groups, and neither clinical criterion appeared to enrich for patients with greater future lung function decline. All baseline biomarkers measured were differentially expressed in patient groups compared to healthy controls. Baseline levels of SP-D and POSTN showed the highest correlations with FVC slope over one year, though correlations were low. CONCLUSIONS: Our findings provide further evidence that prior decline in lung function may not predict future disease progression for ILD patients, and elevate the need for molecular definitions of a progressive phenotype. Across ILD subtypes, certain shared pathobiologies may be present based on the molecular profile of certain biomarker groups observed. In particular, SP-D may be a common marker of pulmonary injury and future lung function decline across ILDs.


Subject(s)
Biomarkers , Disease Progression , Lung Diseases, Interstitial , Registries , Humans , Male , Female , Middle Aged , Vital Capacity , Aged , Lung Diseases, Interstitial/physiopathology , Lung Diseases, Interstitial/diagnosis , Pulmonary Fibrosis/physiopathology , Pulmonary Fibrosis/diagnosis , Pulmonary Surfactant-Associated Protein D/blood , Lung/physiopathology , Predictive Value of Tests , Chitinase-3-Like Protein 1/blood , Chemokines, CC , Osteopontin , Receptor for Advanced Glycation End Products/blood , Idiopathic Pulmonary Fibrosis/physiopathology , Idiopathic Pulmonary Fibrosis/diagnosis
8.
Vet Res Commun ; 48(4): 2671-2676, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38635105

ABSTRACT

Surfactant protein A (SP-A) and Surfactant protein D (SP-D) glycoproteins play a crucial role in maintaining lung homeostasis and lung host defense. Interestingly, these proteins are also expressed in extra-pulmonary tissues, including the female genital tract. The ovarian tissue, where SP-A and SP-D expression increases with follicular development, may serve as the primary site of defense for this tissue. However, their functions in these tissues are not well understood and are currently an active area of research. Therefore, the objective of this study is to investigate the expression of SP-A and SP-D in the ovine ovary throughout the ovarian cycle using immunohistochemistry by semiquantitative intensity classification and Western blotting techniques. These findings revealed the presence of SP-A and SP-D in various compartments of the ovary, such as the follicular epithelium, granulosa cells, cumulus cells, theca cells, oocyte I, follicular fluid, and luteal cells of Graafian follicles, excluding the corpus albicans. SP-A and SP-D likely act as a first line of defense against potential pathogens that infiltrate the ovaries. Further investigation of the differential expression of SP-A and SP-D proteins in ovarian follicles will provide a basis for understanding their interactions with key proteins involved in oogenesis.


Subject(s)
Ovarian Follicle , Ovary , Pulmonary Surfactant-Associated Protein A , Pulmonary Surfactant-Associated Protein D , Animals , Female , Sheep , Pulmonary Surfactant-Associated Protein A/metabolism , Pulmonary Surfactant-Associated Protein A/genetics , Ovarian Follicle/metabolism , Pulmonary Surfactant-Associated Protein D/metabolism , Pulmonary Surfactant-Associated Protein D/genetics , Ovary/metabolism , Immunohistochemistry/veterinary
9.
J Pak Med Assoc ; 74(3): 534-543, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38591293

ABSTRACT

Objective: To review the association of surfactant protein-D with type 2 diabetes mellitus, infections, oxidative stress and inflammation, and the changes in oxidative stress markers in type 2 diabetes mellitus. METHODS: The systematic review was conducted from April to September 2022, and comprised search on PubMed, Web of Sciences, Scopus, Science Direct and Google Scholar databases for relevant studies published in English language between January 1, 2000, and June 30, 2022. The search was updated in September 2022. After transferring literature to Mendeley, relevant data was extracted from the included studies. Quality assessment for eligible studies was done using Joanna Briggs Institute Critical Appraisal Checklist. Quality of evidences was assessed by using Grading of Recommendations Assessment, Development and Evaluation tool. RESULTS: Of the 203 studies identified, 18(8.9%) were analysed; 16(89%) with humans and 2(11%) with animals as subjects There were 5 (31.25%) studies for SP-D, of which 4 (80%) studies reported lower surfactant protein-D in type 2 diabetes mellitus cases than controls. Its significant negative association with glycated haemoglobin was reported by 1(20%) study and 2(40%) studies with fasting blood glucose levels. Higher surfactant protein-D in type 2 diabetes mellitus cases and its positive association with glycated haemoglobin was reported by 1(20%) study. Recurrent infections were frequent in type 2 diabetes mellitus patients. Malondialdehyde level was higher and superoxide dismutase activity was lower in type 2 diabetes mellitus cases, reflecting oxidative stress. Animal studies also showed that reactive oxygen species generating from hypochlorous acid during oxidative stress promoted the formation of non-disulfide linkages in surfactant protein-D structure, resulting in its decreased functionality. Conclusion: Surfactant protein-D, oxidative stress, inflammation and infections were found to be linked to each other for pathogenesis of infections in type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Humans , Blood Glucose , Glycated Hemoglobin , Inflammation , Oxidative Stress , Pulmonary Surfactant-Associated Protein D , Surface-Active Agents
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 484-490, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38597439

ABSTRACT

OBJECTIVE: To evaluate the effect of esketamine combined with distal limb ischemic preconditioning (LIP) for lung protection in elderly patients undergoing thoracoscopic radical surgery for lung cancer. METHODS: This randomized trial was conducted in 160 patients undergoing elective thoracoscopic surgery for lung cancer, who were randomized into control group (with saline injection and sham LIP), esketamine group, LIP group, and esketamine + LIP group (n=40). Before anesthesia induction, according to the grouping, the patients received an intravenous injection with 0.5 mg/kg esketamine or 10 ml saline (in control group). LIP was induced by applying a tourniquet 1-2 cm above the popliteal fossa in the left lower limb to block the blood flow for 5 min for 3 times at the interval of 5 min, and sham LIP was performed by applying the tourniquet without pressurization for 30 min. Oxygenation index (OI) and alveolar-arterial PO2 difference (A-aDO2) were calculated before induction (T0), at 30 min (T0.5) and 1 h (T1) of one-lung ventilation (OLV), and at 1 h after two-lung ventilation (T3). Serum levels of SP-D, CC-16 and TNF-α were measured by ELISA at T0, T1, T2 (2 h of OLV), T3, and 24 h after the operation (T4). The length of hospital stay and postoperative pulmonary complications of the patients were recorded. RESULTS: Compared with those in the control group, the patients in the other 3 groups had significantly lower CC-16, SP-D and TNF-α levels, shorter hospital stay, and lower incidences of lung infection and lung atelectasis (all P < 0.05). Serum CC-16, SP-D and TNF-α levels, hospital stay, incidences of complications were significantly lower or shorter in the combined treatment group than in esketamine group and LIP group (all P < 0.05). CONCLUSION: In elderly patients undergoing thoracoscopic radical surgery for lung cancer, treatment with esketamine combined with LIP can alleviate acute lung injury by enhancing anti-inflammatory response to shorten postoperative hospital stay, reduce lung complications and promote the patients' recovery.


Subject(s)
Ischemic Preconditioning , Ketamine , Lung Neoplasms , One-Lung Ventilation , Humans , Aged , Lung Neoplasms/surgery , Tumor Necrosis Factor-alpha , Pulmonary Surfactant-Associated Protein D , Lung , Thoracoscopy , Postoperative Complications/prevention & control
11.
Cytokine ; 178: 156583, 2024 06.
Article in English | MEDLINE | ID: mdl-38554499

ABSTRACT

BACKGROUND AND OBJECTIVE: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant global morbidity and mortality. This study aimed to investigate the clinical significance of serum vascular endothelial growth factor A (VEGF-A) in COVID-19 patients and its association with disease severity and pulmonary injury. METHODS: We prospectively collected data from 71 hospitalized COVID-19 patients between June 2020 and January 2021. Patients were classified as either mild or severe based on their oxygen requirements during hospitalization. Serum VEGF-A levels were measured using an ELISA kit. RESULTS: In comparison to mild cases, significantly elevated serum VEGF-A levels were observed in severe COVID-19 patients. Furthermore, VEGF-A levels exhibited a positive correlation with white blood cell count, neutrophil count, and lymphocyte count. Notably, serum surfactant protein-D (SP-D), an indicator of alveolar epithelial cell damage, was significantly higher in patients with elevated VEGF-A levels. CONCLUSION: These results suggest that elevated serum VEGF-A levels could serve as a prognostic biomarker for COVID-19 as it is indicative of alveolar epithelial cell injury caused by SARS-CoV-2 infection. Additionally, we observed a correlation between VEGF-A and neutrophil activation, which plays a role in the immune response during endothelial cell injury, indicating a potential involvement of angiogenesis in disease progression. Further research is needed to elucidate the underlying mechanisms of VEGF-A elevation in COVID-19.


Subject(s)
COVID-19 , Humans , Vascular Endothelial Growth Factor A , Pulmonary Surfactant-Associated Protein D , Prospective Studies , SARS-CoV-2 , Neutrophils , Patient Acuity
12.
BMC Anesthesiol ; 24(1): 92, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443828

ABSTRACT

OBJECTIVE: To study how Pneumoperitoneum under Trendelenburg position for robot-assisted laparoscopic surgery impact the perioperative respiratory parameters, diagrammatic function, etc. METHODS: Patients undergoing robot-assisted laparoscopic surgery in the Trendelenburg position and patients undergoing general surgery in the supine position were selected. The subjects were divided into two groups according to the type of surgery: robot-assisted surgery group and general surgery group. ① Respiratory parameters such as lung compliance, oxygenation index, and airway pressure were recorded at 5 min after intubation, 1 and 2 h after pneumoperitoneum. ② Diaphragm excursion (DE) and diaphragm thickening fraction (DTF) were recorded before entering the operating room (T1), immediately after extubation (T2), 10 min after extubation (T3), and upon leaving the postanesthesia care unit (T4). ③ Peripheral venous blood (5 ml) was collected before surgery and 30 min after extubation and was analyzed by enzyme-linked immunosorbent assay to determine the serum concentration of Clara cell secretory protein 16 (CC16) and surfactant protein D (SP-D). RESULT: ① Compared with the general surgery group (N = 42), the robot-assisted surgery group (N = 46) presented a significantly higher airway pressure and lower lung compliance during the surgery(P < 0.001). ② In the robot-assisted surgery group, the DE significantly decreased after surgery (P < 0.001), which persisted until patients were discharged from the PACU (P < 0.001), whereas the DTF only showed a transient decrease postoperatively (P < 0.001) and returned to its preoperative levels at discharge (P = 0.115). In the general surgery group, the DE showed a transient decrease after surgery(P = 0.011) which recovered to the preoperative levels at discharge (P = 1). No significant difference in the DTF was observed among T1, T2, T3, and T4. ③ Both the general and robot-assisted surgery reduced the postoperative serum levels of SP-D (P < 0.05), while the robot-assisted surgery increased the postoperative levels of CC16 (P < 0.001). CONCLUSION: Robot-assisted laparoscopic surgery significantly impairs postoperative diaphragm function, which does not recover to preoperative levels at PACU discharge. Elevated levels of serum CC16 after surgery suggest potential lung injury. The adverse effects may be attributed to the prolonged Trendelenburg position and pneumoperitoneum during laparoscopic surgery.


Subject(s)
Laparoscopy , Pneumoperitoneum , Robotic Surgical Procedures , Robotics , Humans , Diaphragm , Head-Down Tilt , Pulmonary Surfactant-Associated Protein D , Respiration
13.
Respir Res ; 25(1): 129, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500106

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in critically ill patients, and diffuse alveolar damage (DAD) is considered its histological hallmark. Sepsis is one of the most common aetiology of ARDS with the highest case-fatality rate. Identifying ARDS patients and differentiate them from other causes of acute respiratory failure remains a challenge. To address this, many studies have focused on identifying biomarkers that can help assess lung epithelial injury. However, there is scarce information available regarding the tissue expression of these markers. Evaluating the expression of elafin, RAGE, and SP-D in lung tissue offers a potential bridge between serological markers and the underlying histopathological changes. Therefore, we hypothesize that the expression of epithelial injury markers varies between sepsis and ARDS as well as according to its severity. METHODS: We compared the post-mortem lung tissue expression of the epithelial injury markers RAGE, SP-D, and elafin of patients that died of sepsis, ARDS, and controls that died from non-pulmonary causes. Lung tissue was collected during routine autopsy and protein expression was assessed by immunohistochemistry. We also assessed the lung injury by a semi-quantitative analysis. RESULTS: We observed that all features of DAD were milder in septic group compared to ARDS group. Elafin tissue expression was increased and SP-D was decreased in the sepsis and ARDS groups. Severe ARDS expressed higher levels of elafin and RAGE, and they were negatively correlated with PaO2/FiO2 ratio, and positively correlated with bronchopneumonia percentage and hyaline membrane score. RAGE tissue expression was negatively correlated with mechanical ventilation duration in both ARDS and septic groups. In septic patients, elafin was positively correlated with ICU admission length, SP-D was positively correlated with serum lactate and RAGE was correlated with C-reactive protein. CONCLUSIONS: Lung tissue expression of elafin and RAGE, but not SP-D, is associated with ARDS severity, but does not discriminate sepsis patients from ARDS patients.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Sepsis , Humans , Elafin , Pulmonary Surfactant-Associated Protein D , Lung , Respiratory Distress Syndrome/diagnosis , Sepsis/diagnosis , Sepsis/complications
14.
Int J Legal Med ; 138(4): 1583-1592, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38379061

ABSTRACT

In forensic cases, detailed identification of pneumonia is important. Our objective was to statistically determine the applicability of three interstitial lung disease (ILD) markers for forensic diagnosis using serum collected from dead bodies with various postmortem intervals (PMIs). We retrospectively analyzed the levels of postmortem serum Krebs von den Lungen-6 (KL-6) and pulmonary surfactant-associated proteins A and D (SP-A and SP-D) using 221 samples obtained during forensic autopsy at our facility from 2019 to 2023. We evaluated the diagnostic efficacy of ILD markers for various pneumonias against the pathological diagnosis, and examined the assessment of the severity of ILD. When comparing the ILD group with bacterial pneumonia (BP) versus the control group, there was a significant increase in KL-6 in the ILD group. When comparing the severe ILD (SILD) group with the mild ILD (MILD) group, there was a significant increase in KL-6 and SP-D in the SILD group. The optimal cutoff values for differentiating SILD were 607.0 U/mL for KL-6, 55.5 ng/mL for SP-A, and 160.0 ng/mL for SP-D, and the sensitivity/specificity (%) of KL-6, SP-A, and SP-D for SILD were 84.1/95.2, 55.6/85.7, and 66.7/74.6, respectively. This is the first study to examine KL-6 in postmortem serum in forensic medicine. By analyzing dead bodies with various PMIs, our results confirmed statistically that postmortem serum KL-6 specifically detects ILD, postmortem serum SP-A has high sensitivity to lung injury, and postmortem serum SP-D is potentially useful in assessing the severity of ILD.


Subject(s)
Biomarkers , Lung Diseases, Interstitial , Mucin-1 , Pulmonary Surfactant-Associated Protein A , Pulmonary Surfactant-Associated Protein D , Humans , Mucin-1/blood , Lung Diseases, Interstitial/blood , Pulmonary Surfactant-Associated Protein D/blood , Biomarkers/blood , Male , Female , Middle Aged , Retrospective Studies , Pulmonary Surfactant-Associated Protein A/blood , Aged , Adult , Sensitivity and Specificity , Aged, 80 and over , Pneumonia/blood , Forensic Pathology , Pneumonia, Bacterial/blood , Pneumonia, Bacterial/diagnosis
15.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L524-L538, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38375572

ABSTRACT

Lung surfactant collectins, surfactant protein A (SP-A) and D (SP-D), are oligomeric C-type lectins involved in lung immunity. Through their carbohydrate recognition domain, they recognize carbohydrates at pathogen surfaces and initiate lung innate immune response. Here, we propose that they may also be able to bind to other carbohydrates present in typical cell surfaces, such as the alveolar epithelial glycocalyx. To test this hypothesis, we analyzed and quantified the binding affinity of SP-A and SP-D to different sugars and glycosaminoglycans (GAGs) by microscale thermophoresis (MST). In addition, by changing the calcium concentration, we aimed to characterize any consequences on the binding behavior. Our results show that both oligomeric proteins bind with high affinity (in nanomolar range) to GAGs, such as hyaluronan (HA), heparan sulfate (HS) and chondroitin sulfate (CS). Binding to HS and CS was calcium-independent, as it was not affected by changing calcium concentration in the buffer. Quantification of GAGs in bronchoalveolar lavage (BAL) fluid from animals deficient in either SP-A or SP-D showed changes in GAG composition, and electron micrographs showed differences in alveolar glycocalyx ultrastructure in vivo. Taken together, SP-A and SP-D bind to model sulfated glycosaminoglycans of the alveolar epithelial glycocalyx in a multivalent and calcium-independent way. These findings provide a potential mechanism for SP-A and SP-D as an integral part of the alveolar epithelial glycocalyx binding and interconnecting free GAGs, proteoglycans, and other glycans in glycoproteins, which may influence glycocalyx composition and structure.NEW & NOTEWORTHY SP-A and SP-D function has been related to innate immunity of the lung based on their binding to sugar residues at pathogen surfaces. However, their function in the healthy alveolus was considered as limited to interaction with surfactant lipids. Here, we demonstrated that these proteins bind to glycosaminoglycans present at typical cell surfaces like the alveolar epithelial glycocalyx. We propose a model where these proteins play an important role in interconnecting alveolar epithelial glycocalyx components.


Subject(s)
Calcium , Glycocalyx , Glycosaminoglycans , Pulmonary Alveoli , Pulmonary Surfactant-Associated Protein A , Pulmonary Surfactant-Associated Protein D , Animals , Humans , Mice , Alveolar Epithelial Cells/metabolism , Bronchoalveolar Lavage Fluid , Calcium/metabolism , Glycocalyx/metabolism , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Mice, Inbred C57BL , Protein Binding , Pulmonary Alveoli/metabolism , Pulmonary Surfactant-Associated Protein A/metabolism , Pulmonary Surfactant-Associated Protein D/metabolism
16.
Sci Rep ; 14(1): 1315, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38225283

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by severe lung fibrosis and a poor prognosis. Although the biomolecules related to IPF have been extensively studied, molecular mechanisms of the pathogenesis and their association with serum biomarkers and clinical findings have not been fully elucidated. We constructed a Bayesian network using multimodal data consisting of a proteome dataset from serum extracellular vesicles, laboratory examinations, and clinical findings from 206 patients with IPF and 36 controls. Differential protein expression analysis was also performed by edgeR and incorporated into the constructed network. We have successfully visualized the relationship between biomolecules and clinical findings with this approach. The IPF-specific network included modules associated with TGF-ß signaling (TGFB1 and LRC32), fibrosis-related (A2MG and PZP), myofibroblast and inflammation (LRP1 and ITIH4), complement-related (SAA1 and SAA2), as well as serum markers, and clinical symptoms (KL-6, SP-D and fine crackles). Notably, it identified SAA2 associated with lymphocyte counts and PSPB connected with the serum markers KL-6 and SP-D, along with fine crackles as clinical manifestations. These results contribute to the elucidation of the pathogenesis of IPF and potential therapeutic targets.


Subject(s)
Idiopathic Pulmonary Fibrosis , Proteome , Humans , Pulmonary Surfactant-Associated Protein D , Bayes Theorem , Respiratory Sounds , Idiopathic Pulmonary Fibrosis/pathology , Biomarkers
17.
Sci Rep ; 14(1): 1799, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245585

ABSTRACT

Mucin overproduction is a common feature of chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), and exacerbates their underlying respiratory condition. Surfactant protein D (SP-D) protects against airway diseases through modulation of immune reactions, but whether it also exerts direct effects on airway epithelial cells has remained unclear. Therefore, we sought to investigate the inhibitory role of SP-D on mucin production in airway epithelial cells. We prepared air-liquid interface (ALI) cultures of human primary bronchial epithelial cells (HBECs), which recapitulated a well-differentiated human airway epithelium. Benzo(a)pyrene (BaP), a key toxicant in cigarette smoke, induced mucin 5AC (MUC5AC) production in ALI-cultured HBECs, airway secretory cell lines, and airway epithelia of mice. Then, the protective effects of SP-D against the BaP-induced mucin overproduction were examined. BaP increased MUC5AC production in ALI cultures of HBECs, and this effect was attenuated by SP-D. SP-D also suppressed the BaP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and MUC5AC expression in NCI-H292 goblet-like cells, but not in NCI-H441 club-like cells. Signal regulatory protein α (SIRPα) was found to be expressed in HBECs and NCI-H292 cells but absent in NCI-H441 cells. In NCI-H292 cells, SP-D activated SH2 domain-containing tyrosine phosphatase-1 (SHP-1), downstream of SIRPα, and knockdown of SIRPα abolished the suppressive effects of SP-D on BaP-induced ERK phosphorylation and MUC5AC production. Consistent with these in vitro findings, intratracheal instillation of SP-D prevented the BaP-induced phosphorylation of ERK and Muc5ac expression in airway epithelial cells in a mouse model. SP-D acts directly on airway epithelial cells to inhibit mucin secretion through ligation of SIRPα and SHP-1-mediated dephosphorylation of ERK. Targeting of SIRPα is therefore a potential new therapeutic approach to suppression of mucin hypersecretion in chronic airway diseases such as COPD and asthma.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Animals , Humans , Mice , Epithelial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Goblet Cells/metabolism , Mucin 5AC/genetics , Mucins , Pulmonary Surfactant-Associated Protein D
18.
Mol Immunol ; 166: 58-64, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244369

ABSTRACT

Surfactant protein A (SP-A), a natural immune molecule, plays an important role in lung health. SP-A recognizes and binds microbial surface glycogroups through the C-type carbohydrate recognition domain, and then binds corresponding cell surface receptors (such as C1qRp, CRT-CD91 complex, CD14, SP-R210, Toll-like receptor, SIRP-α, CR3, etc.) through collagen-like region, and subsequently mediates biological effects. SP-A regulates lung innate immunity by promoting surfactant absorption by alveolar type II epithelial cells and phagocytosis of pathogenic microorganisms by alveolar macrophages. SP-A also regulates lung adaptive immunity by inhibiting DC maturation, and T cell proliferation and differentiation. This article reviews latest relationships between SP-A and adaptive and intrinsic immunity.


Subject(s)
Macrophages, Alveolar , Pulmonary Surfactant-Associated Protein A , Pulmonary Surfactant-Associated Protein A/metabolism , Lung/metabolism , Phagocytosis , Immunity, Innate , Pulmonary Surfactant-Associated Protein D
19.
Mucosal Immunol ; 17(3): 461-475, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38184074

ABSTRACT

Tuberculosis is the leading cause of death for people living with HIV (PLWH). We hypothesized that altered functions of innate immune components in the human alveolar lining fluid of PLWH (HIV-ALF) drive susceptibility to Mycobacterium tuberculosis (M.tb) infection. Our results indicate a significant increase in oxidation of innate proteins and chemokine levels and significantly lower levels and function of complement components and Th1/Th2/Th17 cytokines in HIV-ALF versus control-ALF (non-HIV-infected people). We further found a deficiency of surfactant protein D (SP-D) and reduced binding of SP-D to M.tb that had been exposed to HIV-ALF. Primary human macrophages infected with M.tb exposed to HIV-ALF were significantly less capable of controlling the infection, which was reversed by SP-D replenishment in HIV-ALF. Thus, based on the limited number of participants in this study, our data suggest that PLWH without antiretroviral therapy (ART) have declining host innate defense function in their lung mucosa, thereby favoring M.tb and potentially other pulmonary infections.


Subject(s)
Cytokines , HIV Infections , Immunity, Innate , Mycobacterium tuberculosis , Pulmonary Surfactant-Associated Protein D , Humans , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/physiology , Pulmonary Surfactant-Associated Protein D/metabolism , Pulmonary Surfactant-Associated Protein D/immunology , HIV Infections/immunology , Cytokines/metabolism , Male , Female , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Cells, Cultured , Adult , Tuberculosis, Pulmonary/immunology , Tuberculosis/immunology , Middle Aged , Host-Pathogen Interactions/immunology , Macrophages/immunology , Macrophages/metabolism , Pulmonary Alveoli/immunology , Pulmonary Alveoli/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL