Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.183
Filter
1.
Elife ; 122024 May 03.
Article in English | MEDLINE | ID: mdl-38700995

ABSTRACT

Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch-Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.


Subject(s)
Drosophila melanogaster , Lesch-Nyhan Syndrome , Animals , Drosophila melanogaster/physiology , Drosophila melanogaster/genetics , Lesch-Nyhan Syndrome/genetics , Lesch-Nyhan Syndrome/metabolism , Purines/metabolism , Disease Models, Animal , Behavior, Animal , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Hypoxanthine Phosphoribosyltransferase/deficiency , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Locomotion
2.
mSphere ; 9(4): e0000724, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38567972

ABSTRACT

Bruno Martorelli Di Genova works in parasitology, focusing on Toxoplasma gondii metabolism. In this mSphere of Influence article, he reflects on how the articles "Metabolic Reprogramming during Purine Stress in the Protozoan Pathogen Leishmania donovani" and "Yeast-Based High-Throughput Screen Identifies Plasmodium falciparum Equilibrative Nucleoside Transporter 1 Inhibitors That Kill Malaria Parasites" impacted him, informing his research strategies and understanding of metabolic flexibility in Toxoplasma gondii.


Subject(s)
Leishmania donovani , Plasmodium falciparum , Purines , Toxoplasma , Purines/metabolism , Toxoplasma/metabolism , Leishmania donovani/metabolism , Leishmania donovani/drug effects , Plasmodium falciparum/metabolism , Plasmodium falciparum/drug effects , Humans
3.
Nat Commun ; 15(1): 3520, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664402

ABSTRACT

The root-associated microbiota plays an important role in the response to environmental stress. However, the underlying mechanisms controlling the interaction between salt-stressed plants and microbiota are poorly understood. Here, by focusing on a salt-tolerant plant wild soybean (Glycine soja), we demonstrate that highly conserved microbes dominated by Pseudomonas are enriched in the root and rhizosphere microbiota of salt-stressed plant. Two corresponding Pseudomonas isolates are confirmed to enhance the salt tolerance of wild soybean. Shotgun metagenomic and metatranscriptomic sequencing reveal that motility-associated genes, mainly chemotaxis and flagellar assembly, are significantly enriched and expressed in salt-treated samples. We further find that roots of salt stressed plants secreted purines, especially xanthine, which induce motility of the Pseudomonas isolates. Moreover, exogenous application for xanthine to non-stressed plants results in Pseudomonas enrichment, reproducing the microbiota shift in salt-stressed root. Finally, Pseudomonas mutant analysis shows that the motility related gene cheW is required for chemotaxis toward xanthine and for enhancing plant salt tolerance. Our study proposes that wild soybean recruits beneficial Pseudomonas species by exudating key metabolites (i.e., purine) against salt stress.


Subject(s)
Glycine max , Plant Roots , Pseudomonas , Rhizosphere , Pseudomonas/genetics , Pseudomonas/metabolism , Glycine max/microbiology , Glycine max/metabolism , Glycine max/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Microbiota/drug effects , Purines/metabolism , Purines/pharmacology , Salt Stress/genetics , Chemotaxis/genetics , Salt Tolerance/genetics , Soil Microbiology , Xanthine/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
4.
Food Microbiol ; 121: 104522, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637084

ABSTRACT

Purine is mainly culprit of hyperuricemia (HUA) and gout, which is widely present in Huangjiu in the form of free bases. Bacterial succession plays an important role in quality control in Huangjiu. The correlation between the purine compound content and the bacterial communities during the fermentation process has not yet been evaluated. In this study, high-throughput sequencing (HTS) technology was used to monitor the bacterial community composition of Huangjiu at different fermentation stages. The correlation between the bacterial community and the contents of physicochemical properties and purine compounds were evaluated using the Spearman analysis method. The key enzymes of purine metabolism pathway in the microbial community were analyzed by bioinformatics using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). The results showed that the purine content in Huangjiu increased gradually in 0∼9d of fermentation (21.05-65.71 mg/L), and stabilized gradually in 12∼18d (65.63-69.55 mg/L), while the abundance of lactic acid bacteria (LAB) of bacterial microbial flora were increased (0∼9d) and then stabilized (12∼18d). Moreover, Lactobacillus acetotolerans and Lactobacillus helveticus were highly correlated positively with purine contents, while Limosilactobacillus fermentum and Lactiplantibacillus plantarum were correlated negatively. In addition, the dominant strains of bacteria were involved in the metabolism of purine, and the key enzymes for purine compound synthesis were more abundant than that for purine degradation. This study is helpful to scientifically understand the formation mechanism of purines, providing a basis for screening functional strains of purine degrading to accurately regulate purine level in Huangjiu.


Subject(s)
Bacteria , Purines , Fermentation , Phylogeny , Purines/metabolism
5.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1225-1239, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621969

ABSTRACT

Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to investigate the impacts of Pruni Semen processed with different methods(raw and fried) on the liver and spleen metabolism in mice. A total of 24 male mice were randomly assigned to three groups: raw Pruni Semen group, fried Pruni Semen group, and control(deionized water) group. Mice in the three groups were orally administrated with 0.01 g·mL~(-1) Pruni Semen decoction or deionized water for one week. After that, the liver and spleen tissues were collected, and liquid chromatography-mass spectrometry(LC-MS)-based metabolomic analysis was carried out to investigate the impact of Pruni Semen on the liver and spleen metabolism in mice. Compared with thte control group, the raw Pruni Semen group showed up-regulation of 11 metabolites and down-regulation of 57 metabolites in the spleen(P<0.05), as well as up-regulation of 15 metabolites and down-regulation of 58 metabolites in the liver(P<0.05). The fried Pruni Semen group showed up-regulation of 31 metabolites and down-regulation of 10 metabolites in the spleen(P<0.05), along with up-regulation of 26 metabolites and down-regulation of 61 metabolites in the liver(P<0.05). The differential metabolites identified in the raw Pruni Semen group were primarily associated with alanine, aspartate, and glutamate metabolism, purine metabolism, amino sugar and nucleotide sugar metabolism, and D-glutamine and D-glutamate metabolism. The differential metabolites identified in the fried Pruni Semen group predominantly involved riboflavin metabolism, amino sugar and nucleotide sugar metabolism, purine metabolism, alanine, aspartate, and glutamate metabolism, D-glutamine and D-glutamate metabolism, and glutathione metabolism. The findings suggest that both raw and fried Pruni Semen have the potential to modulate the metabolism of the liver and spleen in mice by influencing the glutamine and glutamate metabolism.


Subject(s)
Glutamic Acid , Spleen , Mice , Male , Animals , Semen , Glutamine , Aspartic Acid , Metabolomics/methods , Liver/metabolism , Alanine/metabolism , Amino Sugars/metabolism , Water/metabolism , Nucleotides/metabolism , Purines/metabolism , Sugars , Chromatography, High Pressure Liquid , Biomarkers/metabolism
6.
Cancer Res Commun ; 4(5): 1174-1188, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38626341

ABSTRACT

p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in approximately 50% of all human cancers. In its canonical role, p16 inhibits the G1-S-phase cell cycle progression through suppression of cyclin-dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. However, the broader impact of p16/CDKN2A loss on other nucleotide metabolic pathways and potential therapeutic targets remains unexplored. Using CRISPR knockout libraries in isogenic human and mouse melanoma cell lines, we determined several nucleotide metabolism genes essential for the survival of cells with loss of p16/CDKN2A. Consistently, many of these genes are upregulated in melanoma cells with p16 knockdown or endogenously low CDKN2A expression. We determined that cells with low p16/CDKN2A expression are sensitive to multiple inhibitors of de novo purine synthesis, including antifolates. Finally, tumors with p16 knockdown were more sensitive to the antifolate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2Alow tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents. SIGNIFICANCE: Antimetabolites were the first chemotherapies, yet many have failed in the clinic due to toxicity and poor patient selection. Our data suggest that p16 loss provides a therapeutic window to kill cancer cells with widely-used antifolates with relatively little toxicity.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16 , Purines , Humans , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Mice , Animals , Purines/metabolism , Cell Line, Tumor , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Gene Expression Regulation, Neoplastic , Methotrexate/pharmacology
7.
Cells ; 13(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474337

ABSTRACT

Inflammatory bowel disease (IBD) is marked by a state of chronic energy deficiency that limits gut tissue wound healing. This energy shortfall is partially due to microbiota dysbiosis, resulting in the loss of microbiota-derived metabolites, which the epithelium relies on for energy procurement. The role of microbiota-sourced purines, such as hypoxanthine, as substrates salvaged by the colonic epithelium for nucleotide biogenesis and energy balance, has recently been appreciated for homeostasis and wound healing. Allopurinol, a synthetic hypoxanthine isomer commonly prescribed to treat excess uric acid in the blood, inhibits the degradation of hypoxanthine by xanthine oxidase, but also inhibits purine salvage. Although the use of allopurinol is common, studies regarding how allopurinol influences the gastrointestinal tract during colitis are largely nonexistent. In this work, a series of in vitro and in vivo experiments were performed to dissect the relationship between allopurinol, allopurinol metabolites, and colonic epithelial metabolism and function in health and during disease. Of particular significance, the in vivo investigation identified that a therapeutically relevant allopurinol dose shifts adenylate and creatine metabolism, leading to AMPK dysregulation and disrupted proliferation to attenuate wound healing and increased tissue damage in murine experimental colitis. Collectively, these findings underscore the importance of purine salvage on cellular metabolism and gut health in the context of IBD and provide insight regarding the use of allopurinol in patients with IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Mice , Animals , Allopurinol , Purines/metabolism , Hypoxanthine/metabolism , Colitis/drug therapy , Inflammatory Bowel Diseases/drug therapy
8.
Trop Anim Health Prod ; 56(2): 99, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38467996

ABSTRACT

Feeding low-quality forage (LQF) has been evaluated in mature ruminants and results show that it has been improved nitrogen utilization efficiency. The present study evaluated the interaction effect of feeding wheat straw as LQF (0 and 7.5%, DM basis) and starter protein level (20 vs. 24%, DM basis) on growth performance, ruminal fermentation, and microbial protein synthesis in Holstein dairy calves raised under moderate heat stress condition. Forty-eight 3-day old dairy calves (averaging 40.6 kg) were assigned in four experimental treatments as follow; 1) no LQF with 20% CP (NLQF-20CP), 2) no LQF with 24% CP (NLQF-24CP), 3) 7.5% LQF with 20% CP (LQF-20CP) and 4) 7.5% LQF and 24% CP (LQF-24CP). The calves were weaned on d 53 of age but the experiment extended until d 73 of age. Feeding LQF increased starter intake, average daily gain (tendency), ruminal acetate concentration, and improved fecal score of calves. The average daily gains before and after weaning were positively influenced with greater starter protein content. Hence, weaning and final BWs were improved when calves received greater CP content. In addition, greater starter CP content increased total ruminal volatile fatty acid concentration. With respect to the interaction effect between LQF feeding and starter protein content, the lower nitrogen excretion through urine was obtained for LQF-20CP diet among experimental treatments. The results of the current study showed that feeding LQF improved ruminal fermentation pattern and improved growth performance through increased starter intake. In addition, greater starter protein content is advisable during pre-weaning period for calves raised under mild heat stress condition. In conclusion, based on the results found in the current study, it can be suggested that feeding LQF for calves under heat stress condition can improve nitrogen utilization when dietary protein content is low. This can be opportunity to formulate starter diets with greater nitrogen utilization efficiency which is critical for accelerated growth programs at early stages of growth for young calves while calves raised under hot season condition.


Subject(s)
Animal Feed , Rumen , Animals , Cattle , Body Weight , Fermentation , Rumen/metabolism , Animal Feed/analysis , Diet/veterinary , Weaning , Vitamins/metabolism , Nitrogen/metabolism , Purines/metabolism
9.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38452196

ABSTRACT

Diverse ecosystems host microbial relationships that are stabilized by nutrient cross-feeding. Cross-feeding can involve metabolites that should hold value for the producer. Externalization of such communally valuable metabolites is often unexpected and difficult to predict. Previously, we discovered purine externalization by Rhodopseudomonas palustris by its ability to rescue an Escherichia coli purine auxotroph. Here we found that an E. coli purine auxotroph can stably coexist with R. palustris due to purine cross-feeding. We identified the cross-fed purine as adenine. Adenine was externalized by R. palustris under diverse growth conditions. Computational modeling suggested that adenine externalization occurs via diffusion across the cytoplasmic membrane. RNAseq analysis led us to hypothesize that adenine accumulation and externalization stem from a salvage pathway bottleneck at the enzyme encoded by apt. Ectopic expression of apt eliminated adenine externalization, supporting our hypothesis. A comparison of 49 R. palustris strains suggested that purine externalization is relatively common, with 16 strains exhibiting the trait. Purine externalization was correlated with the genomic orientation of apt, but apt orientation alone could not always explain purine externalization. Our results provide a mechanistic understanding of how a communally valuable metabolite can participate in cross-feeding. Our findings also highlight the challenge in identifying genetic signatures for metabolite externalization.


Subject(s)
Adenine , Escherichia coli , Adenine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ecosystem , Purines/metabolism , Computer Simulation
10.
Food Funct ; 15(7): 3353-3364, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38481358

ABSTRACT

Cyclocodon lancifolius fruit is a promising commercial fruit with antioxidant activity and is rich in polyphenolic compounds. In this study, the anti-aging activity of C. lancifolius fruit extract (CF) on Caenorhabditis elegans (C. elegans) was evaluated by observing the longevity, stress response, reproduction, oscillation, lipofuscin, and antioxidant enzymes of worms. Moreover, the effects and potential mechanisms of CF on delaying C. elegans senescence at the mRNA and metabolite levels were investigated. The results showed that CF treatment significantly increased the lifespan and stress resistance, decreased the levels of lipofuscin and reactive oxygen species (ROS), and improved the antioxidant system of C. elegans. The extension of the lifespan of C. elegans was remarkably correlated with the upregulation of mtl-1 and Hsp-16.2, along with the downregulation of age-1, daf-2, and akt-1. Metabolomics analysis revealed that purine metabolism is a key regulatory pathway for CF to exert anti-aging effects. The present study suggests that C. lancifolius fruit has potential for use as a functional food to enhance antioxidant capacity and delay aging.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Longevity , Antioxidants/pharmacology , Antioxidants/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Fruit/metabolism , Lipofuscin/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Purines/metabolism , Forkhead Transcription Factors/metabolism
11.
Nat Ecol Evol ; 8(5): 999-1009, 2024 May.
Article in English | MEDLINE | ID: mdl-38519634

ABSTRACT

An unresolved question in the origin and evolution of life is whether a continuous path from geochemical precursors to the majority of molecules in the biosphere can be reconstructed from modern-day biochemistry. Here we identified a feasible path by simulating the evolution of biosphere-scale metabolism, using only known biochemical reactions and models of primitive coenzymes. We find that purine synthesis constitutes a bottleneck for metabolic expansion, which can be alleviated by non-autocatalytic phosphoryl coupling agents. Early phases of the expansion are enriched with enzymes that are metal dependent and structurally symmetric, supporting models of early biochemical evolution. This expansion trajectory suggests distinct hypotheses regarding the tempo, mode and timing of metabolic pathway evolution, including a late appearance of methane metabolisms and oxygenic photosynthesis consistent with the geochemical record. The concordance between biological and geological analyses suggests that this trajectory provides a plausible evolutionary history for the vast majority of core biochemistry.


Subject(s)
Purines , Purines/biosynthesis , Purines/metabolism , Biological Evolution , Models, Biological , Origin of Life , Metabolic Networks and Pathways
12.
BMC Plant Biol ; 24(1): 102, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38331761

ABSTRACT

Polyphenol oxidases (PPOs) are type-3 copper enzymes and are involved in many biological processes. However, the potential functions of PPOs in pollination are not fully understood. In this work, we have screened 13 PPO members in Nicotiana. tabacum (named NtPPO1-13, NtPPOs) to explore their characteristics and functions in pollination. The results show that NtPPOs are closely related to PPOs in Solanaceae and share conserved domains except NtPPO4. Generally, NtPPOs are diversely expressed in different tissues and are distributed in pistil and male gametes. Specifically, NtPPO9 and NtPPO10 are highly expressed in the pistil and mature anther. In addition, the expression levels and enzyme activities of NtPPOs are increased after N. tabacum self-pollination. Knockdown of NtPPOs would affect pollen growth after pollination, and the purines and flavonoid compounds are accumulated in self-pollinated pistil. Altogether, our findings demonstrate that NtPPOs potentially play a role in the pollen tube growth after pollination through purines and flavonoid compounds, and will provide new insights into the role of PPOs in plant reproduction.


Subject(s)
Nicotiana , Pollination , Nicotiana/genetics , Pollination/genetics , Pollen Tube , Flowers , Flavonoids/metabolism , Purines/metabolism
13.
Int J Biol Macromol ; 261(Pt 2): 129629, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266843

ABSTRACT

The existing DNA damage detection technology cannot meet the current detection requirements. It is critical to build new methods and discover novel biomarkers. In this study, alkaline comet and 8-OHDG ELISA assays were used to identify DNA damage in HT-1080 cells exposed to K2Cr2O7, and electrochemical behaviors of HT-1080 cells with DNA damage was studied. With an increase in K2Cr2O7 exposure time, two electrochemical signals from HT-1080 cells at 0.69 and 1.01 V steadily grew before decreasing after reaching their highest values. The electrochemical signal's initial response time and peak time decreased as the concentration of K2Cr2O7 increased. The duration of the high dose group was 0.5 and 1 h, while the low dose group was 1.5 and 6 h. Western blotting analysis revealed that DNA damage increased the expression of proteins involved in catabolism and de novo purine synthesis, particularly de novo purine synthesis. Expressions of PRPP amidotransferase, IMPDH, and ADA were all higher than those of ADSS, XOD, and GDA, which resulted in larger concentrations of hypoxanthine, guanine, and xanthine, and in turn improved electrochemical signaling. These findings suggest that intracellular purine identified by linear scan voltammetry is predicted to evolve as a marker of early DNA damage.


Subject(s)
Guanine , Purines , Purines/metabolism , Hypoxanthine , Guanine/metabolism , Xanthine/metabolism , DNA Damage
14.
J Agric Food Chem ; 72(3): 1561-1570, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38197881

ABSTRACT

Purine metabolism plays a pivotal role in numerous biological processes with potential implications for brain function and emotional regulation. This study utilizes gene-edited probiotics and pseudo-germ-free mice to unravel this intricate interplay. Transcriptomic analysis identified a ribonucleoside-diphosphate reductase ß chain (nrdB) as a pivotal gene in purine metabolism within Bifidobacterium breve CCFM1025. Comparative evaluation between the wild-type and nrdB mutant strains revealed CCFM1025's effective reduction of xanthine and xanthosine levels in the serum and brain of stressed mice. Concomitantly, it downregulated the expression of the adenosine receptor gene (Adora2b) and inhibited the overactivation of microglia. These findings emphasize the potential of psychobiotics in modulating emotional responses by regulating purine metabolites and adenosine receptors. This study sheds light on novel pathways that influence emotional well-being through gut microbiota interactions and purine metabolic processes.


Subject(s)
Bifidobacterium breve , Gastrointestinal Microbiome , Probiotics , Mice , Animals , Bifidobacterium breve/genetics , Bifidobacterium breve/metabolism , Purines/metabolism , Emotions
15.
J Thromb Haemost ; 22(4): 1154-1166, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38072374

ABSTRACT

BACKGROUND: Platelet (PLT) product transfusion is a life-saving therapy for actively bleeding patients. There is an urgent need to maintain PLT function and extend shelf life to improve outcomes in these patients. Cold-stored PLT (CS-PLT) maintain hemostatic potential better than room temperature-stored PLT (RT-PLT). However, whether function in long-term CS-PLT is maintained under physiological flow regimes and/or determined by cold-induced metabolic changes is unknown. OBJECTIVES: This study aimed to (i) compare the function of RT-PLT and CS-PLT under physiological flow conditions, (ii) determine whether CS-PLT maintain function after 3 weeks of storage, and (iii) identify metabolic pathways associated with the CS-PLT lesion. METHODS: We performed phenotypic and functional assessments of RT- and CS-PLT (22 °C and 4 °C storage, respectively; N = 10 unique donors) at storage days 0, 5, and/or 21 via metabolomics, flow cytometry, aggregation, thrombin generation, viscoelastic testing, and a microfluidic assay to measure primary hemostatic function. RESULTS: Day 21 4 °C PLT formed an occlusive thrombus under arterial shear at a similar rate to day 5 22 °C PLT. Day 21 4 °C PLTs had enhanced thrombin generation capacity compared with day 0 PLT and maintained functionality comparable to day RT-PLT across all assays performed. Key metrics from microfluidic assessment, flow cytometry, thrombin generation, and aggregation were associated with 4 °C storage, and metabolites involved in taurine and purine metabolism significantly correlated with these metrics. Taurine supplementation of PLT during storage improved hemostatic function under flow. CONCLUSION: CS-PLT stored for 3 weeks maintain hemostatic activity, and storage-induced phenotype and function are associated with taurine and purine metabolism.


Subject(s)
Hemostatics , Humans , Thrombin/metabolism , Blood Preservation , Blood Platelets/metabolism , Purines/metabolism
16.
Trends Cell Biol ; 34(1): 72-82, 2024 01.
Article in English | MEDLINE | ID: mdl-37188562

ABSTRACT

Extracellular purinergic molecules act as signaling molecules that bind to cellular receptors and regulate signaling pathways. Growing evidence suggests that purines regulate adipocyte function and whole-body metabolism. Here, we focus on one specific purine: inosine. Brown adipocytes, which are important regulators of whole-body energy expenditure (EE), release inosine when they are stressed or become apoptotic. Unexpectedly, inosine activates EE in neighboring brown adipocytes and enhances differentiation of brown preadipocytes. Increasing extracellular inosine, either directly by increasing inosine intake or indirectly via pharmacological inhibition of cellular inosine transporters, increases whole-body EE and counteracts obesity. Thus, inosine and other closely related purines might be a novel approach to tackle obesity and associated metabolic disorders by enhancing EE.


Subject(s)
Adipocytes, Brown , Adipose Tissue, Brown , Humans , Adipose Tissue, Brown/metabolism , Adipocytes, Brown/metabolism , Obesity/metabolism , Homeostasis , Energy Metabolism , Purines/metabolism
17.
Mol Cancer Res ; 22(1): 82-93, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37773022

ABSTRACT

Small cell lung cancer (SCLC) has a poor prognosis, emphasizing the necessity for developing new therapies. The de novo synthesis pathway of purine nucleotides, which is involved in the malignant growth of SCLC, has emerged as a novel therapeutic target. Purine nucleotides are supplied by two pathways: de novo and salvage. However, the role of the salvage pathway in SCLC and the differences in utilization and crosstalk between the two pathways remain largely unclear. Here, we found that deletion of the HPRT1 gene, which codes for the rate-limiting enzyme of the purine salvage pathway, significantly suppressed tumor growth in vivo in several SCLC cells. We also demonstrated that HPRT1 expression confers resistance to lemetrexol (LMX), an inhibitor of the purine de novo pathway. Interestingly, HPRT1-knockout had less effect on SCLC SBC-5 cells, which are more sensitive to LMX than other SCLC cell lines, suggesting that a preference for either the purine de novo or salvage pathway occurs in SCLC. Furthermore, metabolome analysis of HPRT1-knockout cells revealed increased intermediates in the pentose phosphate pathway and elevated metabolic flux in the purine de novo pathway, indicating compensated metabolism between the de novo and salvage pathways in purine nucleotide biosynthesis. These results suggest that HPRT1 has therapeutic implications in SCLC and provide fundamental insights into the regulation of purine nucleotide biosynthesis. IMPLICATIONS: SCLC tumors preferentially utilize either the de novo or salvage pathway in purine nucleotide biosynthesis, and HPRT1 has therapeutic implications in SCLC.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , Purines/metabolism , Purine Nucleotides/metabolism , Hypoxanthine Phosphoribosyltransferase/metabolism , Lung Neoplasms/genetics
18.
Neurochem Res ; 49(1): 29-37, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37725293

ABSTRACT

As one of the most common neuropathic disorders, neuropathic pain often has a negative impact on patients with persistent pain, mood disorders and sleep disturbances. Currently, neuropathic pain is not treated with any specific drug, instead, drugs for other diseases are used as replacements in clinics, but most have adverse effects. In recent years, the role of spinal cord microglia in the pathogenesis of neuropathic pain has been widely recognized, and they are being explored as potential therapeutic targets. Spinal microglia are known to be involved in the pathogenic mechanisms of neuropathic pain through purine signaling, fractalkine signaling, and p38 MAPK signaling. Exercise is a safe and effective treatment, and numerous studies have demonstrated its effectiveness in improving neurological symptoms. Nevertheless, it remains unclear what the exact molecular mechanism is. This review summarized the specific molecular mechanisms of exercise in alleviating neuropathic pain by mediating the activity of spinal microglia and maintaining the phenotypic homeostasis of spinal microglia through purine signaling, fractalkine signaling and p38 MAPK signaling. In addition, it has been proposed that different intensities and types of exercise affect the regulation of the above-mentioned signaling pathways differently, providing a theoretical basis for the improvement of neuropathic pain through exercise.


Subject(s)
Microglia , Neuralgia , Rats , Animals , Humans , Microglia/metabolism , Chemokine CX3CL1/metabolism , Rats, Sprague-Dawley , Neuralgia/metabolism , Spinal Cord/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Purines/metabolism
19.
Mol Nutr Food Res ; 68(2): e2300115, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039425

ABSTRACT

BACKGROUND: Oral inosine loading is a new method to evaluate the effects of purine on urate metabolism. However, individuals respond differently to acute purine intake, and the effects on the metabolism of other purines remain to be explored. METHODS: 35 male participants are recruited. Participants received 500 mg of inosine orally after an overnight fast, and blood and urine samples are collected before and at various time points over 180 min after inosine administration. RESULTS: The serum urate concentration is significantly different between the hyperuricemia (n = 14) and non-hyperuricemia (n = 16) groups before inosine intake, but there is no in urate change after inosine intake. When grouped according to the baseline estimated glomerular filtration rate (eGFR), the increase in urate level in the high-eGFR group is significantly higher than that in the low-eGFR group (p  =  0.047). The high-eGFR group showed higher levels of serum xanthine and xanthine oxidase (XOD), the key enzyme in urate synthesis, after inosine loading (p < 0.01). CONCLUSIONS: The increase in urate level is positively related to eGFR after oral acute inosine administration, which may have been due to a higher level of XOD.


Subject(s)
Hyperuricemia , Uric Acid , Humans , Male , Purines/metabolism , Hyperuricemia/drug therapy , Inosine/metabolism , Metabolic Networks and Pathways , China
20.
Eur J Paediatr Neurol ; 48: 69-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056117

ABSTRACT

Purines and pyrimidines are essential components as they are the building blocks of vital molecules, such as nucleic acids, coenzymes, signalling molecules, as well as energy transfer molecules. Purine and pyrimidine metabolism defects are characterised by abnormal concentrations of purines, pyrimidines and/or their metabolites in cells or body fluids. This phenomenon is due to a decreased or an increased activity of enzymes involved in this metabolism and has been reported in humans for over 60 years. This review provides an overview of neurological presentations of inborn errors of purine and pyrimidine metabolism. These conditions can lead to psychomotor retardation, epilepsy, hypotonia, or microcephaly; sensory involvement, such as deafness and visual disturbances; multiple malformations, as well as muscular symptoms. Clinical signs are often nonspecific and thus overlooked, but some diseases are treatable and early diagnosis may improve the child's future. Although these metabolic hereditary diseases are rare, they are most probably under-diagnosed. When confronted with suggestive clinical or laboratory signs, clinicians should prescribe genetic testing in association with a biochemical screening including thorough purine and pyrimidine metabolites analysis and/or specific enzyme evaluation. This is most likely going to increase the number of confirmed patients.


Subject(s)
Purine-Pyrimidine Metabolism, Inborn Errors , Child , Humans , Purine-Pyrimidine Metabolism, Inborn Errors/diagnosis , Purine-Pyrimidine Metabolism, Inborn Errors/genetics , Purine-Pyrimidine Metabolism, Inborn Errors/metabolism , Purines/metabolism , Genetic Testing , Pyrimidines/therapeutic use , Pyrimidines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...