Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.382
Filter
1.
Sci Rep ; 14(1): 8025, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580807

ABSTRACT

The modification of the surgical polypropylene mesh and the polytetrafluoroethylene vascular prosthesis with cecropin A (small peptide) and puromycin (aminonucleoside) yielded very stable preparations of modified biomaterials. The main emphasis was placed on analyses of their antimicrobial activity and potential immunomodulatory and non-cytotoxic properties towards the CCD841 CoTr model cell line. Cecropin A did not significantly affect the viability or proliferation of the CCD 841 CoTr cells, regardless of its soluble or immobilized form. In contrast, puromycin did not induce a significant decrease in the cell viability or proliferation in the immobilized form but significantly decreased cell viability and proliferation when administered in the soluble form. The covalent immobilization of these two molecules on the surface of biomaterials resulted in stable preparations that were able to inhibit the multiplication of Staphylococcus aureus and S. epidermidis strains. It was also found that the preparations induced the production of cytokines involved in antibacterial protection mechanisms and stimulated the immune response. The key regulator of this activity may be related to TLR4, a receptor recognizing bacterial LPS. In the present study, these factors were produced not only in the conditions of LPS stimulation but also in the absence of LPS, which indicates that cecropin A- and puromycin-modified biomaterials may upregulate pathways leading to humoral antibacterial immune response.


Subject(s)
Anti-Infective Agents , Biocompatible Materials , Biocompatible Materials/pharmacology , Lipopolysaccharides , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers/pharmacology , Staphylococcus epidermidis , Puromycin
2.
Int J Biol Macromol ; 268(Pt 2): 131785, 2024 May.
Article in English | MEDLINE | ID: mdl-38679258

ABSTRACT

To expand the scope of genomic editing, a C-to-G transversion-based editor called CGBE has been developed for precise single-nucleotide genomic editing. However, limited editing efficiency and product purity have hindered the development and application of CGBE. In this study, we introduced the Puromycin-Resistance Screening System, referred to as CGBE/ABE-PRSS, to select genetically modified cells via the CGBE or ABE editors. The CGBE/ABE-PRSS system significantly improves the enrichment efficiency of CGBE- or ABE-modified cells, showing enhancements of up to 59.6 % compared with the controls. Our findings indicate that the CGBE/ABE-PRSS, when driven by the CMV promoter, results in a higher enrichment of edited cells compared to the CAG and EF1α promoters. Furthermore, we demonstrate that this system is compatible with different versions of both CGBE and ABE, enabling various cell species and simultaneous multiplexed genome editing without any detectable random off-targets. In conclusion, our developed CGBE/ABE-PRSS system facilitates the selection of edited cells and holds promise in both basic engineering and gene therapy applications.


Subject(s)
Drug Resistance, Microbial , Gene Editing , Gene Editing/methods , Humans , Drug Resistance, Microbial/genetics , CRISPR-Cas Systems , HEK293 Cells , Promoter Regions, Genetic , Puromycin/pharmacology , Animals
3.
Molecules ; 29(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474448

ABSTRACT

Prosthetic infections are associated with high morbidity, mortality, and relapse rates, making them still a serious problem for implantology. Staphylococcus aureus is one of the most common bacterial pathogens causing prosthetic infections. In response to the increasing rate of bacterial resistance to commonly used antibiotics, this work proposes a method for combating pathogenic microorganisms by modifying the surfaces of synthetic polymeric biomaterials using proteolytic enzyme inhibitors (serine protease inhibitors-4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride and puromycin). While using techniques based on the immobilization of biologically active molecules, it is important to monitor the changes occurring on the surface of the modified biomaterial, where spectroscopic techniques (e.g., FTIR) are ideal. ATR-FTIR measurements demonstrated that the immobilization of both inhibitors caused large structural changes on the surface of the tested vascular prostheses (polyester or polytetrafluoroethylene) and showed that they were covalently bonded to the surfaces of the biomaterials. Next, the bactericidal and antibiofilm activities of the tested serine protease inhibitors were determined using the CLSM microscopic technique with fluorescent staining. During LIVE/DEAD analyses, a significant decrease in the formation of Staphylococcus aureus biofilm after exposure to selected concentrations of native inhibitors (0.02-0.06 mg/mL for puromycin and 0.2-1 mg/mL for 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride) was demonstrated.


Subject(s)
Anti-Infective Agents , Staphylococcal Infections , Sulfones , Humans , Blood Vessel Prosthesis , Anti-Bacterial Agents/pharmacology , Biofilms , Serine Proteinase Inhibitors/pharmacology , Staphylococcus aureus , Biocompatible Materials , Puromycin , Peptide Hydrolases
4.
J Biol Chem ; 300(3): 105780, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395310

ABSTRACT

Expression of the Escherichia coli tnaCAB operon, responsible for L-tryptophan (L-Trp) transport and catabolism, is regulated by L-Trp-directed translation arrest and the ribosome arresting peptide TnaC. The function of TnaC relies on conserved residues distributed throughout the peptide, which are involved in forming an L-Trp binding site at the ribosome exit tunnel and inhibiting the ribosome function. We aimed to understand whether nonconserved amino acids surrounding these critical conserved residues play a functional role in TnaC-mediated ribosome arrest. We have isolated two intragenic suppressor mutations that restore arrest function of TnaC mutants; one of these mutations is located near the L-Trp binding site, while the other mutation is located near the ribosome active site. We used reporter gene fusions to show that both suppressor mutations have similar effects on TnaC mutants at the conserved residues involved in forming a free L-Trp binding site. However, they diverge in suppressing loss-of-function mutations in a conserved TnaC residue at the ribosome active site. With ribosome toeprinting assays, we determined that both suppressor mutations generate TnaC peptides, which are highly sensitive to L-Trp. Puromycin-challenge assays with isolated arrested ribosomes indicate that both TnaC suppressor mutants are resistant to peptidyl-tRNA cleavage by puromycin in the presence of L-Trp; however, they differ in their resistance to puromycin in the absence of L-Trp. We propose that the TnaC peptide two functionally distinct segments, a sensor domain and a stalling domain, and that the functional versatility of these domains is fine-tuned by the nature of their surrounding nonconserved residues.


Subject(s)
Escherichia coli , Protein Biosynthesis , Ribosomes , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Peptides/metabolism , Puromycin , Ribosomes/metabolism
5.
Clin Oral Investig ; 28(2): 136, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319457

ABSTRACT

OBJECTIVES: To compare, in vitro, resin cement excess removal techniques at the veneer-tooth interface. MATERIALS AND METHODS: Anterior human teeth were restored with ceramic veneers and randomly divided according to the following techniques (n = 10): removal of excess resin cement with brush and dental floss, followed by light-curing with Valo (Group 1) or Elipar (Group 2) for 1 min and 40 s; tack-curing with Valo (Group 3) or Elipar (Group 4) for 1 s; and tack-curing with Valo (Group 5) or Elipar (Group 6) for 5 s. The tack-curing was followed by removal of excess with probe and dental floss and light-curing for 1 min and 40 s. The area of excess resin cement (mm2) was measured in micro-CT images using AutoCAD program. The failures at the cervical margin in the X, Y, and Z axes (µm) of greater value were measured using the DataViewer program. The specimens were submitted to microleakage with 2% basic fuchsin. RESULTS: According to the Kruskal-Wallis and multiple comparison test, the highest area of excess resin cement was found in Group 1 (5.06 mm2), which did not differ statistically from Groups 2 (3.70 mm2) and 5 (2.19 mm2). Groups 2, 3 (1.73 mm2), 4 (1.14 mm2), and 5 (2.18 mm2) did not differ statistically. Group 6 (0.77 mm2) obtained the lowest value, which did not differ statistically from Groups 3 and 4. According to the Kruskal-Wallis and Dunn test, there was no significant difference in failures in X (p = 0.981), Y (p = 0.860), and Z (p = 0.638) axes and no significant difference in microleakage (p = 0.203) among the groups. CONCLUSIONS: Tack-curing for 1 s or 5 s, followed by removal of excess resin cement using a probe and a dental floss, tended to result in a lower amount of excess material around the margin. CLINICAL RELEVANCE: The technique used for resin cement excess removal influences the amount of excess leaved at the veneer-tooth interface. Tack-curing for 1 s or 5 s is recommended to mitigate the excess resin cement.


Subject(s)
Ceramics , Resin Cements , Humans , Neck , Puromycin , X-Ray Microtomography
6.
Proc Natl Acad Sci U S A ; 121(7): e2306993121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315848

ABSTRACT

Puromycin is covalently added to the nascent chain of proteins by the peptidyl transferase activity of the ribosome and the dissociation of the puromycylated peptide typically follows this event. It was postulated that blocking the translocation of the ribosome with emetine could retain the puromycylated peptide on the ribosome, but evidence against this has recently been published [Hobson et al., Elife 9, e60048 (2020); and Enam et al., Elife 9, e60303 (2020)]. In neurons, puromycylated nascent chains remain in the ribosome even in the absence of emetine, yet direct evidence for this has been lacking. Using biochemistry and cryoelectron microscopy, we show that the puromycylated peptides remain in the ribosome exit channel in the large subunit in a subset of neuronal ribosomes stalled in the hybrid state. These results validate previous experiments to localize stalled polysomes in neurons and provide insight into how neuronal ribosomes are stalled. Moreover, in these hybrid-state neuronal ribosomes, anisomycin, which usually blocks puromycylation, competes poorly with puromycin in the puromycylation reaction, allowing a simple assay to determine the proportion of nascent chains that are stalled in this state. In early hippocampal neuronal cultures, over 50% of all nascent peptides are found in these stalled polysomes. These results provide insights into the stalling mechanisms of neuronal ribosomes and suggest that puromycylated peptides can be used to reveal subcellular sites of hybrid-state stalled ribosomes in neurons.


Subject(s)
Emetine , Ribosomes , Puromycin/pharmacology , Cryoelectron Microscopy , Emetine/analysis , Emetine/metabolism , Ribosomes/metabolism , Protein Biosynthesis , Peptides/metabolism , Neurons/metabolism
7.
Blood Adv ; 8(6): 1550-1566, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38163324

ABSTRACT

ABSTRACT: Mechanisms of proteostasis in anucleate circulating platelets are unknown and may regulate platelet function. We investigated the hypothesis that plasma-borne growth factors/hormones (GFHs) maintain constitutive translation in circulating platelets to facilitate reactivity. Bio-orthogonal noncanonical amino acid tagging (BONCAT) coupled with liquid chromatography-tandem mass spectrometry analysis revealed constitutive translation of a broad-spectrum translatome in human platelets dependent upon plasma or GFH exposure, and in murine circulation. Freshly isolated platelets from plasma showed homeostatic activation of translation-initiation signaling pathways: phosphorylation of p38/ERK upstream kinases, essential intermediate MNK1/2, and effectors eIF4E/4E-BP1. Plasma starvation led to loss of pathway phosphorylation, but it was fully restored with 5-minute stimulation by plasma or GFHs. Cycloheximide or puromycin infusion suppressed ex vivo platelet GpIIb/IIIa activation and P-selectin exposure with low thrombin concentrations and low-to-saturating concentrations of adenosine 5'-diphosphate (ADP) or thromboxane analog but not convulxin. ADP-induced thromboxane generation was blunted by translation inhibition, and secondary-wave aggregation was inhibited in a thromboxane-dependent manner. Intravenously administered puromycin reduced injury-induced clot size in cremaster muscle arterioles, and delayed primary hemostasis after tail tip amputation but did not delay neither final hemostasis after subsequent rebleeds, nor final hemostasis after jugular vein puncture. In contrast, these mice were protected from injury-induced arterial thrombosis and thrombin-induced pulmonary thromboembolism (PE), and adoptive transfer of translation-inhibited platelets into untreated mice inhibited arterial thrombosis and PE. Thus, constitutive plasma GFH-driven translation regulates platelet G protein-coupled receptor reactivity to balance hemostasis and thrombotic potential.


Subject(s)
Platelet Aggregation , Thrombosis , Mice , Humans , Animals , Thrombin/metabolism , Thromboxanes , Puromycin/adverse effects
8.
Planta Med ; 90(2): 154-165, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37931776

ABSTRACT

Astragaloside IV (AS-IV) has been shown to provide renal protection in various kidney injury models. However, the metabolic profile variation of AS-IV in pathological models in vivo is not well established. This study aims to explore the metabolic pathway of AS-IV in vivo in the classical puromycin aminonucleoside (PAN)-induced kidney injury in a rat model. Twelve Wistar rats were randomly divided into the AS-IV (CA) and the PAN+AS-IV (PA) treatment groups. PAN was injected by a single tail intravenous (i. v.) injection at 5 mg/100 g body weight, and AS-IV was administered intragastrically (i. g.) at 40 mg/kg for 10 days. Fecal samples of these rats were collected, and metabolites of AS-IV were detected by ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) to explore the AS-IV metabolic pathway. The metabolic differences between the AS-IV and PAN+AS-IV groups were compared. A total of 25 metabolites were detected, and deglycosylation, deoxygenation, and methyl oxidation were found to be the main metabolic pathways of AS-IV in vivo. The abundance of most of these metabolites in the PAN+AS-IV group was lower than that in the AS-IV treatment group, and differences for seven of them were statistically significant. Our study indicates that AS-IV metabolism is affected in the PAN-induced kidney injury rat model.


Subject(s)
Saponins , Tandem Mass Spectrometry , Triterpenes , Rats , Animals , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Rats, Wistar , Puromycin
9.
Proc Natl Acad Sci U S A ; 120(49): e2303114120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38019857

ABSTRACT

Drug resistance continues to impede the success of cancer treatments, creating a need for experimental model systems that are broad, yet simple, to allow the identification of mechanisms and novel countermeasures applicable to many cancer types. To address these needs, we investigated a set of engineered mammalian cell lines with synthetic gene circuits integrated into their genome that evolved resistance to Puromycin. We identified DNA amplification as the mechanism underlying drug resistance in 4 out of 6 replicate populations. Triplex-forming oligonucleotide (TFO) treatment combined with Puromycin could efficiently suppress the growth of cell populations with DNA amplification. Similar observations in human cancer cell lines suggest that TFOs could be broadly applicable to mitigate drug resistance, one of the major difficulties in treating cancer.


Subject(s)
DNA , Neoplasms , Animals , Humans , DNA/metabolism , Drug Resistance, Neoplasm/genetics , Genes, Synthetic , Oligonucleotides , Puromycin , Mammals/metabolism , Neoplasms/drug therapy , Neoplasms/genetics
10.
Environ Toxicol Pharmacol ; 104: 104320, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37984675

ABSTRACT

Our study aimed to verify the hypothesis concerning low-frequency magnetic fields (LF-MFs)-related changes in cell viability through the biomechanism(s) based on calcineurin (CaN)-mediated signaling pathways triggered via ROS-like molecules. For experiments, Mono Mac 6 and U937 leukocytic cell lines were chosen and exposed to various LF-MFs and/or puromycin (PMC). The protein expression level of key regulatory proteins of calcium metabolism was examined by Western Blot analysis. In turn, the reactive oxygen species (ROS) and cell viability parameters were evaluated by cytochrome C reduction assay and flow cytometry, respectively. The simultaneous action of applied MF and PMC influenced cell viability in a MF-dependent manner. The changes in cell viability were correlated with protein expression and ROS levels. It was verified experimentally that applied stress stimuli influence cell susceptibility to undergo cell death. Moreover, the evoked bioeffects might be recognized as specific to both types of leukocyte populations.


Subject(s)
Calcium , Electromagnetic Fields , Reactive Oxygen Species/metabolism , Calcium/metabolism , Cell Line , Puromycin , Leukocytes
11.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4098-4107, 2023 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-37877393

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) are promising in regenerative medicine. However, the pluripotent stem cells (PSCs) may form clumps of cancerous tissue, which is a major safety concern in PSCs therapies. Rapamycin is a safe and widely used immunosuppressive pharmaceutical that acts through heterodimerization of the FKBP12 and FRB fragment. Here, we aimed to insert a rapamycin inducible caspase 9 (riC9) gene in a safe harbor AAVS1 site to safeguard hiPSCs therapy by drug induced homodimerization. The donor vector containing an EF1α promoter, a FRB-FKBP-Caspase 9 (CARD domain) fusion protein and a puromycin resistant gene was constructed and co-transfected with sgRNA/Cas9 vector into hiPSCs. After one to two weeks screening with puromycin, single clones were collected for genotype and phenotype analysis. Finally, rapamycin was used to induce the homodimerization of caspase 9 to activate the apoptosis of the engineered cells. After transfection of hiPSCs followed by puromycin screening, five cell clones were collected. Genome amplification and sequencing showed that the donor DNA has been precisely knocked out at the endogenous AAVS1 site. The engineered hiPSCs showed normal pluripotency and proliferative capacity. Rapamycin induced caspase 9 activation, which led to the apoptosis of all engineered hiPSCs and its differentiated cells with different sensitivity to drugs. In conclusion, we generated a rapamycin-controllable hiPSCs survival by homodimerization of caspase 9 to turn on cell apoptosis. It provides a new strategy to guarantee the safety of the hiPSCs therapy.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Sirolimus/pharmacology , Sirolimus/metabolism , Caspase 9/genetics , Caspase 9/metabolism , RNA, Guide, CRISPR-Cas Systems , Pluripotent Stem Cells/metabolism , Cell Differentiation , Puromycin/metabolism
12.
STAR Protoc ; 4(4): 102653, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37862174

ABSTRACT

Translation is a fundamental process of cellular behavior. Here, we present a protocol for measuring translation in Drosophila epithelial tissues using O-propargyl-puromycin (OPP), a puromycin derivative. We detail steps for larval dissection, OPP incorporation, fixation, OPP labeling, immunostaining, and imaging. We also provide details of quantification analysis. Significantly, OPP addition to methionine-containing media enables polypeptide labeling in living cells. Here, we study wing imaginal discs, an excellent model system for investigating growth, proliferation, pattern formation, differentiation, and cell death. For complete details on the use and execution of this protocol, please refer to Lee et al. (2018), Ji et al. (2019), and Kiparaki et al. (2022).1,2,3.


Subject(s)
Drosophila , Imaginal Discs , Puromycin/analogs & derivatives , Animals , Larva/metabolism , Puromycin/pharmacology
13.
Langenbecks Arch Surg ; 408(1): 343, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37642753

ABSTRACT

PURPOSE: Colorectal liver metastases (CRLM) are the predominant factor limiting survival in patients with colorectal cancer. Multimodal treatment strategies are frequently necessary to achieve total tumor elimination. This study examines the efficacy of liver resection combined with local ablative therapy in comparison to liver resection only, in the treatment of patients with ≥ 4 CRLM. METHODS: This retrospective cohort study was conducted at the University Hospital RWTH Aachen, Germany. Patients with ≥ 4 CRLM in preoperative imaging, who underwent curative resection between 2010-2021, were included. Recurrent resections and deaths in the early postoperative phase were excluded. Ablation modalities included radiofrequency or microwave ablation, and irreversible electroporation. Differences in overall- (OS) and recurrence-free-survival (RFS) between patients undergoing combined resection-ablation vs. resection only, were examined. RESULTS: Of 178 included patients, 46 (27%) underwent combined resection-ablation and 132 (73%) resection only. Apart from increased rates of adjuvant chemotherapy in the first group (44% vs. 25%, p = 0.014), there were no differences in perioperative systemic therapy. Kaplan-Meier and log-rank test analyses showed no statistically significant differences in median OS (36 months for both, p = 0.638) or RFS (9 months for combined resection-ablation vs. 8 months, p = 0.921). Cox regression analysis showed a hazard ratio of 0.891 (p = 0.642) for OS and 0.981 (p = 0.924) for RFS, for patients undergoing resection only. CONCLUSION: For patients with ≥ 4 CRLM, combined resection-ablation is a viable option in terms of OS and RFS. Therefore, combined resection-ablation should be considered for complete tumor clearance, in patients with multifocal disease.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Humans , Retrospective Studies , Liver Neoplasms/surgery , Hepatectomy , Chemotherapy, Adjuvant , Puromycin
14.
Exp Brain Res ; 241(10): 2451-2461, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37653104

ABSTRACT

According to Fitts' Law, the time to reach a target (movement time, MT) increases with distance. A violation of Fitts' Law occurs when target positions are outlined before and during movement, as MTs are not different when reaching to the farthest and penultimate targets. One hypothesis posits that performers cognitively process the edges of a target array before the center, allowing for corrective movements to be completed more quickly when moving to edge targets compared to middle targets. The objective of this study was to test this hypothesis by displaying a target range rather than outlines of individual targets in an effort to identify the effects of array edges. Using a touch-screen laptop, participants (N = 24) were asked to reach to one of three targets which would appear within a presented range. Separately, targets were also presented without a range to determine if the display protocol could evoke Fitts' Law. Movements were assessed with the touch screen and optical position measurement. A main effect was found for relative position within a range (touch: F2,44 = 15.4, p < 0.001, η2p = 0.412; position: F2,40 = 15.6, p < 0.001, η2p = 0.439). As hypothesised, MT to the farthest target in a range was not significantly different than MT to the middle target (touch: p = 0.638, position: p = 0.449). No violation was found when a target range was not presented (touch: p = 0.003, position: p = 0.001). Thus, a target range reproduces the Fitts' Law violation previously documented with individually outlined targets, which supports and extends the discussed hypothesis.


Subject(s)
Acrylic Resins , Dioctyl Sulfosuccinic Acid , Humans , Movement , Phenolphthalein , Puromycin
15.
Nucleic Acids Res ; 51(14): 7465-7479, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37395404

ABSTRACT

Extremely diverse libraries are essential for effectively selecting functional peptides or proteins, and mRNA display technology is a powerful tool for generating such libraries with over 1012-1013 diversity. Particularly, the protein-puromycin linker (PuL)/mRNA complex formation yield is determining for preparing the libraries. However, how mRNA sequences affect the complex formation yield remains unclear. To study the effects of N-terminal and C-terminal coding sequences on the complex formation yield, puromycin-attached mRNAs containing three random codons after the start codon (32768 sequences) or seven random bases next to the amber codon (6480 sequences) were translated. Enrichment scores were calculated by dividing the appearance rate of every sequence in protein-PuL/mRNA complexes by that in total mRNAs. The wide range of enrichment scores (0.09-2.10 for N-terminal and 0.30-4.23 for C-terminal coding sequences) indicated that the N-terminal and C-terminal coding sequences strongly affected the complex formation yield. Using C-terminal GGC-CGA-UAG-U sequences, which resulted in the highest enrichment scores, we constructed highly diverse libraries of monobodies and macrocyclic peptides. The present study provides insights into how mRNA sequences affect the protein/mRNA complex formation yield and will accelerate the identification of functional peptides and proteins involved in various biological processes and having therapeutic applications.


Subject(s)
Codon, Terminator , Peptide Library , Peptides/metabolism , Proteins/genetics , Puromycin/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
Virus Res ; 334: 199176, 2023 09.
Article in English | MEDLINE | ID: mdl-37473963

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has necessitated the global development of countermeasures since its outbreak. However, current therapeutics and vaccines to stop the pandemic are insufficient and this is mainly because of the emergence of resistant variants, which requires the urgent development of new countermeasures, such as antiviral drugs. Replicons, self-replicating RNAs that do not produce virions, are a promising system for this purpose because they safely recreate viral replication, enabling antiviral screening in biosafety level (BSL)-2 facilities. We herein constructed three pCC2Fos-based RNA replicons lacking some open reading frames (ORF) of SARS-CoV-2: the Δorf2-8, Δorf2.4, and Δorf2 replicons, and validated their replication in Huh-7 cells. The functionalities of the Δorf2-8 and Δorf2.4 replicons for antiviral drug screening were also confirmed. We conducted puromycin selection following the construction of the Δorf2.4-puro replicon by inserting a puromycin-resistant gene into the Δorf2.4 replicon. We observed the more sustained replication of the Δorf2.4-puro replicon by puromycin pressure. The present results will contribute to the establishment of a safe and useful replicon system for analyzing SARS-CoV-2 replication mechanisms as well as the development of novel antiviral drugs in BSL-2 facilities.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , SARS-CoV-2/genetics , COVID-19/genetics , Drug Evaluation, Preclinical , Containment of Biohazards , Virus Replication , Replicon , Puromycin/pharmacology
17.
Int J Biol Macromol ; 243: 124926, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37217056

ABSTRACT

CRISPR/Cas9 is a powerful tool for gene editing in various cell types and organisms. However, it is still challenging to screen genetically modified cells from an excess of unmodified cells. Our previous studies demonstrated that surrogate reporters can be used for efficient screening of genetically modified cells. Here, we developed two novel traffic light screening reporters, puromycin-mCherry-EGFP (PMG) based on single-strand annealing (SSA) and homology-directed repair (HDR), respectively, to measure the nuclease cleavage activity within transfected cells and to select genetically modified cells. We found that the two reporters could be self-repaired coupling the genome editing events driven by different CRISPR/Cas nucleases, resulting in a functional puromycin-resistance and EGFP selection cassette that can be afforded to screen genetically modified cells by puromycin selection or FACS enrichment. We further compared the novel reporters with different traditional reporters at several endogenous loci in different cell lines, for the enrichment efficiencies of genetically modified cells. The results indicated that the SSA-PMG reporter exhibited improvements in enriching gene knockout cells, while the HDR-PMG system was very useful in enriching knock-in cells. These results provide robust and efficient surrogate reporters for the enrichment of CRISPR/Cas9-mediated editing in mammalian cells, thereby advancing basic and applied research.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Gene Editing/methods , CRISPR-Cas Systems/genetics , Cell Line , Gene Knockout Techniques , Puromycin/pharmacology , Mammals
18.
Elife ; 122023 04 24.
Article in English | MEDLINE | ID: mdl-37092974

ABSTRACT

Controlled protein synthesis is required to regulate gene expression and is often carried out in a cell type-specific manner. Protein synthesis is commonly measured by labeling the nascent proteome with amino acid analogs or isotope-containing amino acids. These methods have been difficult to implement in vivo as they require lengthy amino acid replacement procedures. O-propargyl-puromycin (OPP) is a puromycin analog that incorporates into nascent polypeptide chains. Through its terminal alkyne, OPP can be conjugated to a fluorophore-azide for directly visualizing nascent protein synthesis, or to a biotin-azide for capture and identification of newly-synthesized proteins. To achieve cell type-specific OPP incorporation, we developed phenylacetyl-OPP (PhAc-OPP), a puromycin analog harboring an enzyme-labile blocking group that can be removed by penicillin G acylase (PGA). Here, we show that cell type-specific PGA expression in Drosophila can be used to achieve OPP labeling of newly-synthesized proteins in targeted cell populations within the brain. Following a brief 2 hr incubation of intact brains with PhAc-OPP, we observe robust imaging and affinity purification of OPP-labeled nascent proteins in PGA-targeted cell populations. We apply this method to show a pronounced age-related decline in neuronal protein synthesis in the fly brain, demonstrating the capability of PhAc-OPP to quantitatively capture in vivo protein synthesis states. This method, which we call POPPi (PGA-dependent OPP incorporation), should be applicable for rapidly visualizing protein synthesis and identifying nascent proteins synthesized under diverse physiological and pathological conditions with cellular specificity in vivo.


Subject(s)
Drosophila , Proteome , Animals , Proteome/metabolism , Drosophila/metabolism , Azides/chemistry , Amino Acids/metabolism , Puromycin
19.
J Med Chem ; 66(5): 3250-3261, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36855911

ABSTRACT

Overexpression of the selenoprotein thioredoxin reductase (TrxR) has been documented in malignant tissues and is of pathological significance for many types of tumors. The antibiotic puromycin (Puro) is a protein synthesis inhibitor causing premature polypeptide chain termination during translation. The well-defined action mechanism of Puro makes it a useful tool in biomedical studies. However, the nonselective cytotoxicity of Puro limits its therapeutic applications. We report herein the construction and evaluation of two Puro prodrugs, that is, S1-Puro with a five-membered cyclic disulfide trigger and S2-Puro with a linear disulfide trigger. S1-Puro is selectively activated by TrxR and shows the TrxR-dependent cytotoxicity to cancer cells, while S2-Puro is readily activated by thiols. Furthermore, S1-Puro displays higher stability in plasma than S2-Puro. We expect that this prodrug strategy may promote the further development of Puro as a therapeutic agent.


Subject(s)
Prodrugs , Thioredoxin-Disulfide Reductase , Thioredoxin-Disulfide Reductase/metabolism , Prodrugs/pharmacology , Puromycin/pharmacology
20.
Cell Commun Signal ; 21(1): 54, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36915194

ABSTRACT

BACKGROUND: Eukaryotic Initiation Factor 5A (eIF-5A), an essential translation factor, is post-translationally activated by the polyamine spermidine. Two human genes encode eIF-5A, being eIF5-A1 constitutively expressed whereas eIF5-A2 is frequently found overexpressed in human tumours. The contribution of both isoforms with regard to cellular proliferation and invasion in non-small cell lung cancer remains to be characterized. METHODS: We have evaluated the use of eIF-5A2 gene as prognosis marker in lung adenocarcinoma (LUAD) patients and validated in immunocompromised mice. We have used cell migration and cell proliferation assays in LUAD lines after silencing each eIF-5A isoform to monitor their contribution to both phenotypes. Cytoskeleton alterations were analysed in the same cells by rhodamine-phalloidin staining and fluorescence microscopy. Polysome profiles were used to monitor the effect of eIF-5A2 overexpression on translation. Western blotting was used to study the levels of eIF-5A2 client proteins involved in migration upon TGFB1 stimulation. Finally, we have co-localized eIF-5A2 with puromycin to visualize the subcellular pattern of actively translating ribosomes. RESULTS: We describe the differential functions of both eIF-5A isoforms, to show that eIF5-A2 properties on cell proliferation and migration are coincident with its features as a poor prognosis marker. Silencing of eIF-5A2 leads to more dramatic consequences of cellular proliferation and migration compared to eIF-5A1. Overexpression of eIF-5A2 leads to enhanced global translation. We also show that TGFß signalling enhances the expression and activity of eIF-5A2 which promotes the translation of polyproline rich proteins involved in cytoskeleton and motility features as it is the case of Fibronectin, SNAI1, Ezrin and FHOD1. With the use of puromycin labelling we have co-localized active ribosomes with eIF-5A2 not only in cytosol but also in areas of cellular protrusion. We have shown the bulk invasive capacity of cells overexpressing eIF-5A2 in mice. CONCLUSIONS: We propose the existence of a coordinated temporal and positional interaction between TFGB and eIF-5A2 pathways to promote cell migration in NSCLC. We suggest that the co-localization of actively translating ribosomes with hypusinated eIF-5A2 facilitates the translation of key proteins not only in the cytosol but also in areas of cellular protrusion. Video Abstract.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Mice , Animals , Ribosomes/metabolism , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Puromycin
SELECTION OF CITATIONS
SEARCH DETAIL
...