Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.087
Filter
1.
Sci Rep ; 14(1): 9862, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684707

ABSTRACT

The process of creating a series of 3-amino-1-aryl-8-methoxy-1H-benzo[f]chromene-2-carbonitriles (4a-q) involved reacting 6-methoxynaphthalen-2-ol (1), the appropriate aromatic aldehydes (2a-q), and malononitrile (3) in an absolute ethanol/piperidine solution under Ultrasonic irradiation. However, the attempt to create 3-amino-1-aryl-1H-benzo[f]chromene-2,8-dicarbonitrile (6a, d, e) was unsuccessful when 6-cyanonaphthalen-2-ol (5) was stirred at room temperature, reflux, Microwave irradiation, or Ultrasonic irradiation. In addition, the target molecules were screened against Staphylococcus aureus (MRSA), Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Escherichia coli and Klebsiella pneumonia, as well as a panel of three human cancer cells lines such as MCF-7, HCT-116, HepG-2 and two normal cell lines HFL-1 and WI-38. The obtained results confirmed that the pyran derivatives (4 m, i, k) which have a double chlorine at 3,4/2,3/2,5-positions, a single halogen atom 3-Cl/4-Br (4c, e) and a double bromine at 3,5-positions with a single methoxy group at 2-position (4n), of phenyl ring, and, to a lesser extent, other pyran derivatives with monoihalogenated (4a, b, d, f), dihalogenated (4 g, h, j, l) or trisubstituent phenyl ring (4o, p, q). Furthermore, compounds 4b-e, g, i, j, m, and n showed negligible activity against the two normal cell lines, HFL-1 and WI-38. Moreover, compound 4 g exhibited the strongest antimicrobial activity among the other pyran derivatives (4a-f, g-q) when compared to Ciprofloxacin. The MIC was assessed and screened for compound 4 g, revealing bactericidal effects. Lastly, SAR and molecular docking were studied.


Subject(s)
Antineoplastic Agents , Microbial Sensitivity Tests , Pyrans , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Pyrans/pharmacology , Pyrans/chemistry , Pyrans/chemical synthesis , Cell Line, Tumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Molecular Docking Simulation , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Structure-Activity Relationship , Escherichia coli/drug effects
2.
Chem Biodivers ; 21(5): e202400243, 2024 May.
Article in English | MEDLINE | ID: mdl-38462494

ABSTRACT

Dehydroacetic acid (DHA) was utilized as a fundamental precursor in the synthesis of novel pyrano [4,3-b] pyran and pyrano [2,3-b] pyridine systems. Whereas, a new series of fused polyheteronuclear systems was achieved through the reaction of DHA with active methylene compounds such as malononitrile and pyrazolone. Whereas, the treatment of DHA 1 with cyclic ketones involving cyclohexanone and cyclododecanone afforded annulated tricyclic system 6 and spiro hybrid molecule 7. Also, the reaction of DHA 1 with cyanoacetamide derivatives 8 and 11 yielded their corresponding novel pyrano [2,3-b] pyridine-6-carbonitrile frameworks 9 and 12, respectively. Also, in silico predictive theoretical molecular docking studies for bioactive synthesized scaffolds against both HER2 and 6BBP displayed an optimistic result for compounds 2 b, 5, 9, and 12 highlighting their expediency as up-and-coming candidates for future preclinical trials. Additionally, all compounds were assessed as antibacterial agents against various types of four candidates of bacteria in the presence of ampicillin as a reference. Notably, compounds 6, 7, and 12 showed promising antibacterial potential against Bacillus subtilis with activity indexes (69.6, 91.3, and 82.6 %), respectively.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Molecular Docking Simulation , Pyridones , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Density Functional Theory , Molecular Structure , Pyrans/chemistry , Pyrans/pharmacology , Pyrans/chemical synthesis , Pyridones/chemistry , Pyridones/pharmacology , Pyridones/chemical synthesis , Structure-Activity Relationship , Acetates/chemistry , Acetates/pharmacology
3.
J Med Chem ; 65(3): 2593-2609, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35089713

ABSTRACT

Metabotropic glutamate receptor 2 (mGluR2) is a therapeutic target for several neuropsychiatric disorders. An mGluR2 function in etiology could be unveiled by positron emission tomography (PET). In this regard, 5-(2-fluoro-4-[11C]methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridine-7-carboxamide ([11C]13, [11C]mG2N001), a potent negative allosteric modulator (NAM), was developed to support this endeavor. [11C]13 was synthesized via the O-[11C]methylation of phenol 24 with a high molar activity of 212 ± 76 GBq/µmol (n = 5) and excellent radiochemical purity (>99%). PET imaging of [11C]13 in rats demonstrated its superior brain heterogeneity and reduced accumulation with pretreatment of mGluR2 NAMs, VU6001966 (9) and MNI-137 (26), the extent of which revealed a time-dependent drug effect of the blocking agents. In a nonhuman primate, [11C]13 selectively accumulated in mGluR2-rich regions and resulted in high-contrast brain images. Therefore, [11C]13 is a potential candidate for translational PET imaging of the mGluR2 function.


Subject(s)
Contrast Media/chemistry , Picolinic Acids/chemistry , Pyrans/chemistry , Radiopharmaceuticals/chemistry , Receptors, Metabotropic Glutamate/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Carbon Radioisotopes , Contrast Media/chemical synthesis , Contrast Media/metabolism , Female , Ligands , Macaca fascicularis , Male , Picolinic Acids/chemical synthesis , Picolinic Acids/metabolism , Positron-Emission Tomography , Pyrans/chemical synthesis , Pyrans/metabolism , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/metabolism , Rats, Sprague-Dawley
4.
Org Biomol Chem ; 20(4): 870-876, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35006233

ABSTRACT

Seventeen C20-O-alkyl/benzyl oxime derivatives were synthesized by a concise and effective method. Most of these derivatives showed tens to several hundred nanomolar IC50 values against HT-29 colorectal, HGC-27 gastric and MDA-MB-231 breast cancer cells, whose antiproliferative activity is 15-240 fold better than that of salinomycin. The C20-oxime etherified derivatives can coordinate potassium ions, and further adjust the cytosolic Ca2+ concentrations in HT-29 cells. The significant improvement of the potency should be attributed to the better ion binding and transport ability of the modified derivatives. In addition, the C20-O-alkyl/benzyl oxime derivatives showed much better selectivity indexes (SI) than salinomycin, indicating that they present lower neurotoxic risk.


Subject(s)
Antineoplastic Agents/pharmacology , Oximes/pharmacology , Pyrans/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Conformation , Oximes/chemical synthesis , Oximes/chemistry , Pyrans/chemical synthesis , Pyrans/chemistry
5.
J Am Chem Soc ; 143(49): 20970-20979, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34851106

ABSTRACT

A new synthetic strategy for the total synthesis of norhalichondrin B featuring a highly convergent approach and our recently disclosed reverse approach for the synthesis of cyclic ether structural motifs is disclosed. Resulting in the shortest route to norhalichondrin B disclosed thus far, the reported total synthesis was achieved through the synthesis of two almost equally complex fragments whose coupling and short elaboration sequence featured an essential epimerization of the C16 stereocenter occurring concurrently with a simple acid-induced deprotection, a tactic based on a prior study along the synthetic route. This unprecedented strategy within the halichondrin family of natural products could find practical application to the synthesis of other more or less complex natural or designed halichondrin analogues.


Subject(s)
Furans/chemical synthesis , Pyrans/chemical synthesis , Cyclization , Stereoisomerism
6.
Bioorg Chem ; 116: 105344, 2021 11.
Article in English | MEDLINE | ID: mdl-34598088

ABSTRACT

Src kinase activity controls diverse cellular functions, including cell growth, migration, adhesion, and survival. It is de-regulated in several cancers, including breast cancer, where it is highly expressed and phosphorylated. Thus, targeting Src by a small molecule is a feasible strategy for managing different breast cancer types. Several Src kinase inhibitors are available, including the FDA-approved drug (dasatinib). However, they are primarily ATP-competitive inhibitors that have been reported to lack specificity towards Src. We have a long-time interest in discovering protein kinase inhibitors that are non-competitive for ATP. In this project, three groups of 2'-aminospiro[pyrano[3,2-c]quinoline]-3'-carbonitrile derivatives were designed and synthesized, hypothesizing that small molecules with a spiro scaffold appended to a pyrano[3,2-c]quinoline analog could act as non-ATP competitive Src kinase inhibitors. 3b, 3c, and 3d inhibited Src kinase activity with IC50s of 4.9, 5.9, and 0.9 µM, respectively. At the same time, they did not impact the MDM2/p53 interaction in HEK293 cells, which has been reported to be affected by some spirocyclic compounds. 25 µM of 3b, 3c, or 3d did not inhibit the kinase activity of ERK2, JNK1, or p38-alpha in an in-vitro kinase assay. Steady-state kinetic studies for the effect of 3d on the ability of recombinant Src to phosphorylate its substrate (Srctide) revealed a non-ATP competitive inhibition mechanism. 1.6 µM of 3d was enough to diminish Src, Fak, and paxillin phosphorylation in the breast cancer cell lines MDA-MB-231 and MCF7. In the NCI screening, 3d induced broad tumor cytotoxicity for the NCI-60 cell lines, including all the breast cancer cell lines. The potency of 3b, 3c, and 3d to inhibit migration, proliferation, and colony formation of MDA-MB-231 and proliferation of MCF7 cells correlates with their potency to suppress Src kinase activity in the same cell line. Noticeably, the cell growth suppression and apoptosis induction in the tested cell lines can be attributed to the ability of the new derivatives to suppress the ERK and Akt survival pathways downstream of Src.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Development , Protein Kinase Inhibitors/pharmacology , Pyrans/pharmacology , Quinolines/pharmacology , src-Family Kinases/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrans/chemical synthesis , Pyrans/chemistry , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship , src-Family Kinases/metabolism
7.
Photochem Photobiol Sci ; 20(10): 1309-1321, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34562236

ABSTRACT

The initial objective of our work was to synthesize a series of 2-amino-4H-pyran-3-carbonitriles to be tested for their antifungal activities against economically relevant phytopathogenic fungi. Fourteen compounds were prepared in up to 94% yield and shown percentages of Botrytis cinerea inhibition above 70%. Despite the promising biological results, we observed that stock solutions prepared for biological tests showed color changing when kept for a few days on the laboratory bench, under room conditions, illuminated by common LED daylight tubes (4500-6000 k). This prompted us to investigate the possible photo-induced degradation of our compounds. FT-IR ATR experiments evidenced variations in the expected bands for functional of -amino-4H-pyran-3-carbonitriles stored under LED daylight. Following, HPLC-UV analysis showed reductions in the intensity of chromatographic peaks of 2-amino-4H-pyran-3-carbonitriles, and but not for solutions kept in the dark. A solution of (E)-2-amino-8-(4-nitrobenzylidene)-4-(4-nitrophenyl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile underwent 84.4% of conversion after 72 h of exposure to continuous LED daylight in a BOD chamber, and the reaction product was isolated in 36% yield and characterized as (E)-7-cyano-5-(4-nitrobenzylidene)-8-(4-nitrophenyl)bicyclo[4.2.0]oct-1(6)-ene-7-carboxamide (7*). Despite freshly prepared solutions of 2-amino-4H-pyran-3-carbonitriles produced antifungal activities, these solutions lost biological activity when left on the bench for a week. Besides, compound 7* formed from photo-induced degradation of 7 also showed no antifungal activity. With this, we hope to bring two contributions: (1) production of cyclobutenes through photochemical reactions of 2-amino-4H-pyran-3-carbonitriles can be carried out through exposure to simple white LED daylight; (2) biological applications of such 2-amino-4H-pyran-3-carbonitriles may be impaired by their poor photostability.


Subject(s)
Antifungal Agents/pharmacology , Botrytis/drug effects , Light , Pyrans/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Chromatography, High Pressure Liquid , Molecular Conformation , Photolysis/radiation effects , Pyrans/chemical synthesis , Pyrans/pharmacology , Spectrophotometry, Ultraviolet
8.
Inorg Chem ; 60(19): 15010-15023, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34533947

ABSTRACT

A novel catalyst has been afforded by attaching of a Cu(proline)2 complex to magnetic nanoparticles through cheap, simple, and readily available chemicals. This catalyst was characterized by Fourier transform infrared, energy-dispersive X-ray, X-ray diffraction, vibrating-sample magnetometry, transmission electron microscopy, scanning electron microscopy, and inductively coupled plasma analyses. The catalytic activity of the Fe3O4@NH2@TCT@HProCu nanocatalyst was investigated in a green and effective synthesis of pyran derivatives in high yields by applying three-component reactions of malononitrile, dimedone, and aldehydes in ethanol. Conversion was high under optimal conditions. The obtained nanocatalyst could be easily separated from the mixture of the reaction and was recyclable nine times via a simple magnet without considerable reduction of its catalytic efficiency. Operational simplicity, high product yields, environmental friendliness, ecofriendliness, economical processing, and easy workup are the features of this methodology.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Hydroxyproline/chemistry , Magnetite Nanoparticles/chemistry , Pyrans/chemical synthesis , Catalysis , Coordination Complexes/chemical synthesis , Cyclization , Molecular Structure , Pyrans/chemistry
9.
Eur J Med Chem ; 225: 113820, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34509879

ABSTRACT

Bruton's tyrosine kinase (BTK) is a key drug target for B-cell related malignancies. Irreversible covalent BTK inhibitors have been approved for the treatment of B-cell malignancies, yet BTK C481S mutation at the covalent binding site has caused drug-resistance of BTK covalent binding inhibitors. The proteolysis targeting chimera (PROTAC) technology increases the sensitivity to drug-resistant targets compared to classic inhibitors, which provides a new strategy for mutant BTK related B-cell malignancies. ARQ531, a reversible non-covalent BTK inhibitor that inhibits wild type (WT) and mutated BTK with high selectivity, could be an ideal warhead for PROTACs targeting the mutant BTK. Herein, we designed a novel series of PROTACs using the selective non-covalent BTK inhibitor ARQ531 as warhead, with the goal of improving the degradation of both wild-type and C481S mutant BTKs, and increasing the selectivity of BTK over other kinases. This effort will provide some basis for further preclinical study of BTK PROTACs as a novel strategy for treatment of B-cell lymphomas.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Drug Discovery , Lymphoma, B-Cell/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrans/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proteolysis/drug effects , Pyrans/chemical synthesis , Pyrans/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
10.
J Med Chem ; 64(18): 13658-13675, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34432448

ABSTRACT

Enlightened by the available structural biology information, a novel series of dihydrothiopyrano[4,3-d]pyrimidine derivatives were rationally designed via scaffold hopping and molecular hybridization strategies. Notably, compound 20a yielded exceptionally potent antiviral activities (EC50 = 4.44-54.5 nM) against various HIV-1 strains and improved resistance profiles (RF = 0.5-5.6) compared to etravirine and rilpivirine. Meanwhile, 20a exhibited reduced cytotoxicity (CC50 = 284 µM) and higher SI values (SI = 5210-63992). Molecular dynamics simulations were performed to rationalize the distinct resistance profiles. Besides, 20a displayed better solubility (sol. = 12.8 µg/mL) and no significant inhibition of the main CYP enzymes. Furthermore, 20a was characterized for prominent metabolic stability and in vivo safety properties. Most importantly, the hERG inhibition profile of 20a (IC50 = 19.84 µM) was a remarkable improvement. Overall, 20a possesses huge potential to serve as a promising drug candidate due to its excellent potency, low toxicity, and favorable drug-like properties.


Subject(s)
Anti-HIV Agents/pharmacology , Pyrans/pharmacology , Pyrimidines/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Animals , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/metabolism , Anti-HIV Agents/toxicity , Cell Line , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Humans , Mice , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Pyrans/chemical synthesis , Pyrans/metabolism , Pyrans/toxicity , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Pyrimidines/toxicity , Rats, Sprague-Dawley , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/metabolism , Reverse Transcriptase Inhibitors/toxicity , Structure-Activity Relationship
11.
J Am Chem Soc ; 143(29): 11019-11025, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34264649

ABSTRACT

A gram-scale synthesis of iboxamycin, an antibiotic candidate bearing a fused bicyclic amino acid residue, is presented. A pivotal transformation in the route involves an intramolecular hydrosilylation-oxidation sequence to set the ring-fusion stereocenters of the bicyclic scaffold. Other notable features of the synthesis include a high-yielding, highly diastereoselective alkylation of a pseudoephenamine amide, a convergent sp3-sp2 Negishi coupling, and a one-pot transacetalization-reduction reaction to form the target compound's oxepane ring. Implementation of this synthetic strategy has provided ample quantities of iboxamycin to allow for its in vivo profiling in murine models of infection.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Oxepins/chemical synthesis , Pyrans/chemical synthesis , Anti-Bacterial Agents/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Oxepins/chemistry , Pyrans/chemistry , Stereoisomerism
12.
Bioorg Chem ; 114: 105136, 2021 09.
Article in English | MEDLINE | ID: mdl-34328860

ABSTRACT

Pyranopyrazole and its derivatives are classified to be a pharmacologically significant active scaffold for almost all modes of biological activities. In this work, An efficient, green, and facile three-component reaction for preparing pyrano[2,3-c]pyrazole derivatives via the condensation reaction of 5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one, ethyl acetoacetate, and malononitrile in the presence of ZnO Nanoparticle. The products are produced with high yields and in shorter reaction times. It also is mild, safe, green, and environmentally friendly. The geometric parameters such as dipole moment, bond length, dihedral angles, total energy, heat of formation, atomic charges and energies at a highly accurate for prepared compounds were computed by Denisty Functional Theory along with the B3LYP functional. The newly synthesized compounds were screened for their anti-inflammatory and antioxidant activity. Some of the tested compounds displayed promising activities. The newly prepared compounds were found to be potent towards the antioxidant activity. Results indicated that compounds 11 and 12 exhibited significant (p ≥ 0.05) in vitro total antioxidant activity as 44.93 ± 0.15 and 39.60 ± 0.10 U/ML, respectively higher than standard ascorbic acid (29.40 ± 0.62).


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Density Functional Theory , Lipoxygenase Inhibitors/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Arachidonate 5-Lipoxygenase/metabolism , Catalysis , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Molecular Structure , Oxidative Stress/drug effects , Prostaglandin-Endoperoxide Synthases/metabolism , Pyrans/chemical synthesis , Pyrans/chemistry , Pyrans/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
13.
J Am Chem Soc ; 143(29): 11171-11179, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34260212

ABSTRACT

Campylobacter jejuni is the leading cause of human diarrheal diseases and has been designated as one of highly resistant pathogens by the World Health Organization. The C. jejuni capsular polysaccharides feature broad existence of uncommon 6dHepp residues and have proven to be potential antigens to develop innovative antibacterial glycoconjugation vaccines. To address the lack of synthetic methods for rare 6dHepp architectures of importance, we herein describe a novel and efficient approach for the preparation of uncommon d-/l-6dHepp fluorides that have power as glycosylating agents. The synthesis is achieved by a C1-to-C5 switch strategy relying on radical decarboxylative fluorination of uronic acids arising from readily available allyl d-C-glycosides. To further showcase the application of this protocol, a structurally unique hexasaccharide composed of →3)-ß-d-6didoHepp-(1→4)-ß-d-GlcpNAc-(1→ units, corresponding to the capsular polysaccharide of C. jejuni strain CG8486 has been assembled for the first time. The assembly is characterized by highly efficient construction of the synthetically challenging ß-(1,2-cis)-d-ido-heptopyranoside by inversion of the C2 configuration of ß-(1,2-trans)-d-gulo-heptopyranoside, which is conveniently obtained by anchimerically assisted stereoselective glycosylation of the orthogonally protected 6dgulHepp fluoride. Ready accessibility of 6dHepp fluorides and the resulting glycans could serve as a rational starting point for the further development of synthetic vaccines fighting Campylobacter infection.


Subject(s)
Campylobacter jejuni/chemistry , Fluorides/chemical synthesis , Polysaccharides, Bacterial/chemistry , Pyrans/chemical synthesis , Carbohydrate Conformation , Fluorides/chemistry , Glycosylation , Pyrans/chemistry
14.
ACS Chem Biol ; 16(8): 1576-1586, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34296611

ABSTRACT

Cancer cells reprogram their metabolism to survive and grow. Small-molecule inhibitors targeting cancer are useful for studying its metabolic pathways and functions and for developing anticancer drugs. Here, we discovered that glutipyran and its derivatives inhibit glycolytic activity and cell growth in human pancreatic cancer cells. According to proteomic profiling of glutipyran-treated cells using our ChemProteoBase, glutipyran was clustered within the group of endoplasmic reticulum (ER) stress inducers that included glycolysis inhibitors. Glutipyran inhibited glucose uptake and suppressed the growth of various cancer cells, including A431 cells that express glucose transporter class I (GLUT1) and DLD-1 GLUT1 knockout cells. When cotreated with the mitochondrial respiration inhibitor metformin, glutipyran exhibited a synergistic antiproliferative effect. Metabolome analysis revealed that glutipyran markedly decreased most metabolites of the glycolytic pathway and the pentose phosphate pathway. Glutipyran significantly suppressed tumor growth in a xenograft mouse model of pancreatic cancer. These results suggest that glutipyran acts as a broad-spectrum GLUT inhibitor and reduces cancer cell growth.


Subject(s)
Antineoplastic Agents/therapeutic use , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Neoplasms/drug therapy , Pyrans/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Drug Synergism , Female , Glucose/metabolism , Glycolysis/drug effects , Humans , Metabolomics , Metformin/therapeutic use , Mice, Inbred BALB C , Mice, Nude , Proteomics , Pyrans/chemical synthesis , Pyrans/pharmacology , Xenograft Model Antitumor Assays
15.
Biomed Pharmacother ; 141: 111815, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34130123

ABSTRACT

Breast cancer remains one of the leading cancers among women. Cancer stem cells (CSCs) are tumor-initiating cells which drive progression, metastasis, and reoccurrence of the disease. CSCs are resistant to conventional chemo- and radio-therapies and their ability to survive such treatment enables tumor reestablishment. Metastasis is the main cause of mortality in women with breast cancer, thus advances in treatment will depend on therapeutic strategies targeting CSCs. Salinomycin (SAL) is a naturally occurring polyether ionophore antibiotic known for its anticancer activity towards several types of tumor cells. In the present work, a library of 17 C1-single and C1/C20-double modified SAL analogs was screened to identify compounds with improved activity against breast CSCs. Six single- and two double-modified analogs were more potent (IC50 range of 1.1 ± 0.1-1.4 ± 0.2 µM) toward the breast cancer cell line MDA-MB-231 compared to SAL (IC50 of 4.9 ± 1.6 µM). Double-modified compound 17 was found to be more efficacious than SAL against the majority of cancer cell lines in the NCI-60 Human Tumor Cell Line Panel. Compound 17 was more potent than SAL in inhibiting cell migration and cell renewal properties of MDA-MB-231 cells, as well as inducing selective loss of the CD44+/CD24/low stem-cell-like subpopulation in both monolayer (2D) and organoid (3D) culture. The present findings highlight the therapeutic potential of SAL analogs towards breast CSCs and identify select compounds that merit further study and clinical development.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Pyrans/pharmacology , Antibiotics, Antineoplastic/chemical synthesis , CD24 Antigen , Cell Division/drug effects , Cell Line, Tumor , Cell Movement , Drug Discovery , Drug Screening Assays, Antitumor , Female , Humans , Hyaluronan Receptors/metabolism , MCF-7 Cells , Pyrans/chemical synthesis
16.
Bull Exp Biol Med ; 171(2): 247-250, 2021 May.
Article in English | MEDLINE | ID: mdl-34173103

ABSTRACT

We studied the effect of nanostructured clathrate complex 9-phenyl-symm-octahydoselenoxanthene (selenopyran) with ß-cyclodextrin on the generation of ОН· radicals in the Fenton system and parameters of oxidative stress in rat liver cells incubated at 37°Ð¡ for 1 h. The complex inhibits the development of free-radical oxidative processes induced by ROS and the most toxic ОН· radicals, reduces the increased level of ROS induced by prooxidants, and exhibits antioxidant activity.


Subject(s)
Antioxidants/pharmacology , Oxidative Stress/drug effects , beta-Cyclodextrins/pharmacology , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cells, Cultured , Hepatocytes/drug effects , Hepatocytes/metabolism , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Macromolecular Substances/pharmacology , Male , Models, Biological , Nanostructures/chemistry , Pyrans/chemical synthesis , Pyrans/chemistry , Pyrans/pharmacology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Selenium Compounds/chemical synthesis , Selenium Compounds/chemistry , Selenium Compounds/pharmacology , Terpenes/chemistry , Terpenes/pharmacology , beta-Cyclodextrins/chemical synthesis , beta-Cyclodextrins/chemistry
17.
J Nat Prod ; 84(5): 1681-1706, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33974423

ABSTRACT

Spliceostatins and thailanstatins are intriguing natural products due to their structural features as well as their biological significance. This family of natural products has been the subject of immense synthetic interest because they exhibit very potent cytotoxicity in representative human cancer cell lines. The cytotoxic properties of these natural products are related to their ability to inhibit spliceosomes. FR901564 and spliceostatins have been shown to inhibit spliceosomes by binding to their SF3B component. Structurally, these natural products contain two highly functionalized tetrahydropyran rings with multiple stereogenic centers joined by a diene moiety and an acyclic side chain linked with an amide bond. Total syntheses of this family of natural products led to the development of useful synthetic strategies, which enabled the synthesis of potent derivatives. The spliceosome modulating properties of spliceostatins and synthetic derivatives opened the door for understanding the underlying spliceosome mechanism as well as the development of new therapies based upon small-molecule splicing modulators. This review outlines the total synthesis of spliceostatins, synthetic studies of structural derivatives, and their bioactivity.


Subject(s)
Antineoplastic Agents/pharmacology , Pyrans/pharmacology , RNA Splicing/drug effects , Spliceosomes/drug effects , Antineoplastic Agents/chemical synthesis , Biological Products/chemical synthesis , Biological Products/pharmacology , Humans , Molecular Structure , Pyrans/chemical synthesis
18.
Mar Drugs ; 19(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921137

ABSTRACT

2,5-Bis-[8-(4,8-dimethyl-nona-3,7-dienyl)-5,7-dihydroxy-8-methyl-3-keto-1,2,7,8-teraahydro-6H-pyran[a]isoindol-2-yl]-pentanoic acid (FGFC1) is a marine pyran-isoindolone derivative isolated from a rare marine microorganism Stachybotrys longispora FG216, which showed moderate antithrombotic(fibrinolytic) activity. To further enhance its antithrombotic effect, a series of new FGFC1 derivatives (F1-F7) were synthesized via chemical modification at C-2 and C-2' phenol groups moieties and C-1″ carboxyl group. Their fibrinolytic activities in vitro were evaluated. Among the derivatives, F1-F4 and F6 showed significant fibrinolytic activities with EC50 of 59.7, 87.1, 66.6, 82.8, and 42.3 µM, respectively, via enhancement of urokinase activity. Notably, derivative F6 presented the most remarkable fibrinolytic activity (2.72-fold than that of FGFC1). Furthermore, the cytotoxicity of derivative F6 was tested as well as expression of Fas/Apo-1 and IL-1 on HeLa cells. The results showed that, compared to FGFC1, derivative F6 possessed moderate cytotoxicity and apoptotic effect on HeLa cells (statistical significance p > 0.1), making F6 a potential antithrombotic agent towards clinical application.


Subject(s)
Fibrinolysis/drug effects , Fibrinolytic Agents/pharmacology , Isoindoles/pharmacology , Pyrans/pharmacology , Stachybotrys/metabolism , Apoptosis/drug effects , Cell Survival/drug effects , Fibrinolytic Agents/chemical synthesis , Fibrinolytic Agents/isolation & purification , Fibrinolytic Agents/toxicity , HeLa Cells , Humans , Isoindoles/chemical synthesis , Isoindoles/isolation & purification , Isoindoles/toxicity , Molecular Structure , Pyrans/chemical synthesis , Pyrans/isolation & purification , Pyrans/toxicity , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 42: 128042, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33862226

ABSTRACT

In an effort to identify novel inhibitors of nuclear factor kappa B (NF-κB), twenty five pyranochalcone derivatives were synthesized and evaluated for their in vitro activities against TNF-α induced NF-κB inhibition in HEK293T cells. Among all of these derivatives, several displaying the same acrylate moiety on the B ring exhibited potent inhibition, with IC50 values ranging from 0.29 to 10.46 µM. A functional study of the most potent of these compounds, designated 6b, revealed that it significantly suppressed the transcriptional expression of inflammatory factor IL-1ß in lipopolysaccharide-induced RAW 264.7 macrophages, and also mildly inhibited CCL2, IL6 and TNF-α. In addition, compound 6b was found to inhibit IL-1ß released in LPS-induced BMDM cells. This study demonstrates that the inhibitory effect of 6b on LPS-stimulated inflammatory mediator production in the mouse macrophage cell line RAW 264.7 correlates with the suppression of the NF-κB and MAPK signaling pathways.


Subject(s)
Chalcones/pharmacology , NF-kappa B/antagonists & inhibitors , Pyrans/pharmacology , Chalcones/chemical synthesis , Chalcones/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , NF-kappa B/metabolism , Pyrans/chemical synthesis , Pyrans/chemistry , Structure-Activity Relationship
20.
Bioorg Chem ; 112: 104915, 2021 07.
Article in English | MEDLINE | ID: mdl-33905973

ABSTRACT

A series of new benzo[b]thiophenes 2a-f and benzo[4,5]thieno[3,2-b]pyran derivatives 3a-f and 4a-f were synthesized and their structures were confirmed by elemental analyses and spectral data. All synthesized compounds were evaluated by the National Cancer Institute (NCI, USA) against 60 human tumor cell lines. Compounds 3a-f and 4a-f showed potent cytotoxic effects in one dose assay with mean growth inhibition ranging from 62% to 80%. Six compounds 3a, 3d, 3e, 3f, 4d and 4e were selected by NCI, USA for five dose evaluation against 60 human tumor cell lines. Compounds 3a, 3d, 3e and 3f exhibited very potent and broad spectrum cytotoxicity against almost all cancer cell lines with mean concentration that yield 50% growth inhibition (MG-MID GI50) of 0.1-0.58 µM and mean concentration that produce 100% growth inhibition (MG-MID TGI) of 6.03-10.00 µM. Compounds 4d and 4e exhibited very potent and selective cytotoxic activity against MDA-MB-435 subpanel (melanoma cancer) with GI50 of 0.45 µM and 0.59 µM, respectively. The mechanism of antiproliferative activity was determined for the most active compounds 3a, 3d, 3e, 3f, 4d, and 4evia measuring their half maximal inhibitory concentration (IC50) against topoisomerase I enzyme at different concentrations. Compounds 3a and 3e exhibited excellent activity compared with reference drugs with IC50 of 0.295 µM and 0.219 µM, respectively. Plasmid DNA nicking assay verified that these compounds are topoisomerase I poisons not suppressors. The active compound 3e induced a significant disruption in the cell cycle profile parallel to its effect on apoptosis induction.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type I/metabolism , Pyrans/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Pyrans/chemical synthesis , Pyrans/chemistry , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...