Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.469
Filter
1.
PLoS One ; 19(5): e0303027, 2024.
Article in English | MEDLINE | ID: mdl-38728353

ABSTRACT

Insecticide resistance in mosquitoes is spreading worldwide and represents a growing threat to vector control. Insecticide resistance is caused by different mechanisms including higher metabolic detoxication, target-site modification, reduced penetration and behavioral changes that are not easily detectable with simple diagnostic methods. Indeed, most molecular resistance diagnostic tools are costly and labor intensive and then difficult to use for routine monitoring of insecticide resistance. The present study aims to determine whether mosquito susceptibility status against the pyrethroid insecticides (mostly used for mosquito control) could be established by the protein signatures of legs and/or thoraxes submitted to MALDI-TOF Mass Spectrometry (MS). The quality of MS spectra for both body parts was controlled to avoid any bias due to unconformity protein profiling. The comparison of MS profiles from three inbreeds Ae. aegypti lines from French Guiana (IRF, IR03, IR13), with distinct deltamethrin resistance genotype / phenotype and the susceptible reference laboratory line BORA (French Polynesia), showed different protein signatures. On both body parts, the analysis of whole protein profiles revealed a singularity of BORA line compared to the three inbreeding lines from French Guiana origin, suggesting that the first criteria of differentiation is the geographical origin and/or the breeding history rather than the insecticide susceptibility profile. However, a deeper analysis of the protein profiles allowed to identify 10 and 11 discriminating peaks from leg and thorax spectra, respectively. Among them, a specific peak around 4870 Da was detected in legs and thoraxes of pyrethroid resistant lines compared to the susceptible counterparts hence suggesting that MS profiling may be promising to rapidly distinguish resistant and susceptible phenotypes. Further work is needed to confirm the nature of this peak as a deltamethrin resistant marker and to validate the routine use of MS profiling to track insecticide resistance in Ae. aegypti field populations.


Subject(s)
Aedes , Insecticide Resistance , Insecticides , Nitriles , Pyrethrins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Pyrethrins/pharmacology , Aedes/drug effects , Aedes/genetics , Aedes/metabolism , Insecticide Resistance/genetics , Nitriles/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Insecticides/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Dengue/virology , Insect Proteins/genetics , Insect Proteins/metabolism , Female
2.
Parasit Vectors ; 17(1): 230, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760849

ABSTRACT

BACKGROUND: Anopheles funestus is a leading vector of malaria in most parts of East and Southern Africa, yet its ecology and responses to vector control remain poorly understood compared with other vectors such as Anopheles gambiae and Anopheles arabiensis. This study presents the first large-scale survey of the genetic and phenotypic expression of insecticide resistance in An. funestus populations in Tanzania. METHODS: We performed insecticide susceptibility bioassays on An. funestus mosquitoes in nine regions with moderate-to-high malaria prevalence in Tanzania, followed by genotyping for resistance-associated mutations (CYP6P9a, CYP6P9b, L119F-GSTe2) and structural variants (SV4.3 kb, SV6.5 kb). Generalized linear models were used to assess relationships between genetic markers and phenotypic resistance. An interactive R Shiny tool was created to visualize the data and support evidence-based interventions. RESULTS: Pyrethroid resistance was universal but reversible by piperonyl-butoxide (PBO). However, carbamate resistance was observed in only five of the nine districts, and dichloro-diphenyl-trichloroethane (DDT) resistance was found only in the Kilombero valley, south-eastern Tanzania. Conversely, there was universal susceptibility to the organophosphate pirimiphos-methyl in all sites. Genetic markers of resistance had distinct geographical patterns, with CYP6P9a-R and CYP6P9b-R alleles, and the SV6.5 kb structural variant absent or undetectable in the north-west but prevalent in all other sites, while SV4.3 kb was prevalent in the north-western and western regions but absent elsewhere. Emergent L119F-GSTe2, associated with deltamethrin resistance, was detected in heterozygous form in districts bordering Mozambique, Malawi and the Democratic Republic of Congo. The resistance landscape was most complex in western Tanzania, in Tanganyika district, where all five genetic markers were detected. There was a notable south-to-north spread of resistance genes, especially CYP6P9a-R, though this appears to be interrupted, possibly by the Rift Valley. CONCLUSIONS: This study underscores the need to expand resistance monitoring to include An. funestus alongside other vector species, and to screen for both the genetic and phenotypic signatures of resistance. The findings can be visualized online via an interactive user interface and could inform data-driven decision-making for resistance management and vector control. Since this was the first large-scale survey of resistance in Tanzania's An. funestus, we recommend regular updates with greater geographical and temporal coverage.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Malaria , Mosquito Vectors , Animals , Anopheles/genetics , Anopheles/drug effects , Insecticide Resistance/genetics , Tanzania/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Insecticides/pharmacology , Malaria/transmission , Malaria/epidemiology , Genetic Markers , Pyrethrins/pharmacology , Genotype , Mutation
3.
J Agric Food Chem ; 72(20): 11663-11671, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718292

ABSTRACT

The appropriate use of human biomonitoring data to model population chemical exposures is challenging, especially for rapidly metabolized chemicals, such as agricultural chemicals. The objective of this study is to demonstrate a novel approach integrating model predicted dietary exposures and biomonitoring data to potentially inform regulatory risk assessments. We use lambda-cyhalothrin as a case study, and for the same representative U.S. population in the National Health and Nutrition Examination Survey (NHANES), an integrated exposure and pharmacokinetic model predicted exposures are calibrated to measurements of the urinary metabolite 3-phenoxybenzoic acid (3PBA), using an approximate Bayesian computing (ABC) methodology. We demonstrate that the correlation between modeled urinary 3PBA and the NHANES 3PBA measurements more than doubled as ABC thresholding narrowed the acceptable tolerance range for predicted versus observed urinary measurements. The median predicted urinary concentrations were closer to the median measured value using ABC than using current regulatory Monte Carlo methods.


Subject(s)
Biological Monitoring , Dietary Exposure , Nitriles , Pyrethrins , Humans , Pyrethrins/urine , Pyrethrins/metabolism , Nitriles/urine , Nitriles/metabolism , Dietary Exposure/analysis , Biological Monitoring/methods , Adult , Bayes Theorem , Male , Female , Middle Aged , Insecticides/urine , Insecticides/metabolism , Young Adult , Adolescent , Nutrition Surveys , Benzoates
4.
J Chromatogr A ; 1726: 464967, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38749275

ABSTRACT

Infant formulas (IF) can contain harmful chemical substances, such as pesticides and mycotoxins, resulting from the contamination of raw materials and inputs used in the production chain, which can cause adverse effects to infants. Therefore, the quick, easy, cheap, effective, rugged, and safe (QuEChERS) methodology prior ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPL-QqQ-MS/MS) analysis was applied for the determination of 23 contaminants, in 30 samples of Brazilian IF. The method was validated in terms of limit of detection (0.2 to 0.4 µg/kg), limits of quantification (1 and 10 µg/kg), and recovery (64 % to 122 %); precision values, in terms of relative standard deviation (RSD), were ≤ 20 %. Fenitrothion, chlorpyrifos, and bifenthrin were the pesticides detected in the samples, but the values did not exceed the limit set by the European Union (EU), and ANVISA, and they were detected under their limits of quantification. Additionally, suspect screening and unknown analysis were conducted to tentatively identify 32 substances, including some compounds not covered in this study, such as pesticides, hormones, and veterinary drugs. Carbofuran was identified, confirmed and quantified in 10 % of the samples.


Subject(s)
Food Contamination , Infant Formula , Limit of Detection , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Brazil , Infant Formula/chemistry , Food Contamination/analysis , Pesticides/analysis , Humans , Pesticide Residues/analysis , Reproducibility of Results , Mycotoxins/analysis , Infant , Pyrethrins/analysis
5.
Parasit Vectors ; 17(1): 222, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745242

ABSTRACT

BACKGROUND: Culex pipiens pallens is a well-known mosquito vector for several diseases. Deltamethrin, a commonly used pyrethroid insecticide, has been frequently applied to manage adult Cx. pipiens pallens. However, mosquitoes can develop resistance to these insecticides as a result of insecticide misuse and, therefore, it is crucial to identify novel methods to control insecticide resistance. The relationship between commensal bacteria and vector resistance has been recently recognized. Bacteriophages (= phages) are effective tools by which to control insect commensal bacteria, but there have as yet been no studies using phages on adult mosquitoes. In this study, we isolated an Aeromonas phage vB AhM-LH that specifically targets resistance-associated symbiotic bacteria in mosquitoes. We investigated the impact of Aeromonas phage vB AhM-LH in an abundance of Aeromonas hydrophila in the gut of Cx. pipiens pallens and its effect on the status of deltamethrin resistance. METHODS: Phages were isolated on double-layer agar plates and their biological properties analyzed. Phage morphology was observed by transmission electron microscopy (TEM) after negative staining. The phage was then introduced into the mosquito intestines via oral feeding. The inhibitory effect of Aeromonas phage vB AhM-LH on Aeromonas hydrophila in mosquito intestines was assessed through quantitative real-time PCR analysis. Deltamethrin resistance of mosquitoes was assessed using WHO bottle bioassays. RESULTS: An Aeromonas phage vB AhM-LH was isolated from sewage and identified as belonging to the Myoviridae family in the order Caudovirales using TEM. Based on biological characteristics analysis and in vitro antibacterial experiments, Aeromonas phage vB AhM-LH was observed to exhibit excellent stability and effective bactericidal activity. Sequencing revealed that the Aeromonas phage vB AhM-LH genome comprises 43,663 bp (51.6% CG content) with 81 predicted open reading frames. No integrase-related gene was detected in the vB AH-LH genome, which marked it as a potential biological antibacterial. Finally, we found that Aeromonas phage vB AhM-LH could significantly reduce deltamethrin resistance in Cx. pipiens pallens, in both the laboratory and field settings, by decreasing the abundance of Aeromonas hydrophila in their midgut. CONCLUSIONS: Our findings demonstrate that Aeromonas phage vB AhM-LH could effectively modulate commensal bacteria Aeromonas hydrophila in adult mosquitoes, thus representing a promising strategy to mitigate mosquito vector resistance.


Subject(s)
Aeromonas hydrophila , Bacteriophages , Culex , Insecticide Resistance , Nitriles , Pyrethrins , Animals , Aeromonas hydrophila/virology , Aeromonas hydrophila/drug effects , Culex/virology , Culex/microbiology , Bacteriophages/physiology , Bacteriophages/isolation & purification , Bacteriophages/genetics , Pyrethrins/pharmacology , Nitriles/pharmacology , Insecticides/pharmacology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Female
6.
PLoS One ; 19(5): e0303238, 2024.
Article in English | MEDLINE | ID: mdl-38709762

ABSTRACT

The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important potato pest with known resistance to pyrethroids and organophosphates in Czechia. Decreased efficacy of neonicotinoids has been observed in last decade. After the restriction of using chlorpyrifos, thiacloprid and thiamethoxam by EU regulation, growers seek for information about the resistance of CPB to used insecticides and recommended antiresistant strategies. The development of CPB resistance to selected insecticides was evaluated in bioassays in 69 local populations from Czechia in 2017-2022 and in 2007-2022 in small plot experiments in Zabcice in South Moravia. The mortality in each subpopulation in the bioassays was evaluated at the field-recommended rates of insecticides to estimate the 50% and 90% lethal concentrations (LC50 and LC90, respectively). High levels of CPB resistance to lambda-cyhalothrin and chlorpyrifos were demonstrated throughout Czechia, without significant changes between years and regions. The average mortality after application of the field-recommended rate of lambda-cyhalothrin was influenced by temperature before larvae were sampled for bioassays and decreased with increasing temperature in June. Downwards trends in the LC90 values of chlorpyrifos and the average mortality after application of the field-recommended rate of acetamiprid in the bioassay were recorded over a 6-year period. The baseline LC50 value (with 95% confidence limit) of 0.04 mg/L of chlorantraniliprole was established for Czech populations of CPBs for the purpose of resistance monitoring in the next years. Widespread resistance to pyrethroids, organophosphates and neonicotinoids was demonstrated, and changes in anti-resistant strategies to control CPBs were discussed.


Subject(s)
Chlorpyrifos , Coleoptera , Insecticide Resistance , Insecticides , Neonicotinoids , Thiazines , Animals , Coleoptera/drug effects , Insecticides/pharmacology , Neonicotinoids/pharmacology , Chlorpyrifos/pharmacology , Pyrethrins/pharmacology , Nitriles/pharmacology , Larva/drug effects , Czech Republic , Thiamethoxam , Solanum tuberosum/parasitology
7.
Anal Chim Acta ; 1307: 342624, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719414

ABSTRACT

BACKGROUND: Pesticides are used in agricultural production for prevent and control crop diseases and pests, but it is easy to cause excessive pesticides residues in agricultural products, polluting the environment and endangering human health. Due to their unmatched and sustainable capabilities, nanoextraction procedures are becoming every day more important in Analytical Chemistry. In particular, nanoconfined liquid phase extraction has shown extraction capabilities toward polar, medium polar, and/or nonpolar substances, which can be easily modulated depending on the nanoconfined solvent used. Furthermore, this "green" technique showed excellent characteristics in terms of recoveries, extraction time (≤1 min), reliability, and versatility. (97) RESULTS: In this work, the advantages of this technique have been coupled with those of filtration membrane extraction, making use of carbon nanofibers (CnFs) growth on carbon microspheres (CµS). This substrate has been deposited on a filter, which combined with gas chromatographic mass spectrometry (GC-MS) analysis successfully employed for the nanoextraction of 30 pesticides (18 organochlorine and 12 pyrethroids) in tea samples. Under the optimized extraction conditions, the linear range with standard solutions was from 1 to 1000 ng mL-1 (R2 ≥ 0.99), the limit of detections in tea samples were in the range 0.56-17.98 µg kg-1. The accuracy of the developed method was evaluated by measuring the extraction recovery of the spiked tea samples, and recoveries between 74.41 % and 115.46 %. (119) SIGNIFICANCE: Considering the versatility of nanoconfined liquid phase extraction and the functionality of the filtration membrane extraction procedure, this new extraction method can be considered a powerful candidate for automatized high-throughput analyses of real samples. (34).


Subject(s)
Filtration , Hydrocarbons, Chlorinated , Liquid-Liquid Extraction , Pesticides , Pyrethrins , Tea , Tea/chemistry , Pyrethrins/analysis , Pyrethrins/isolation & purification , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/isolation & purification , Liquid-Liquid Extraction/methods , Filtration/methods , Pesticides/analysis , Pesticides/isolation & purification , Gas Chromatography-Mass Spectrometry/methods , Membranes, Artificial
8.
BMC Genomics ; 25(1): 348, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582836

ABSTRACT

BACKGROUND: Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS: Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION: Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.


Subject(s)
Anopheles , Insecticides , Malaria , Nitriles , Pyrethrins , Animals , Insecticides/pharmacology , Anopheles/genetics , Benin , Organophosphates/pharmacology , Mosquito Vectors , Pyrethrins/pharmacology , Insecticide Resistance/genetics , Gene Expression Profiling
9.
Trop Anim Health Prod ; 56(3): 113, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557923

ABSTRACT

The study explores the relationship between flumethrin resistance and Anaplasma marginale infection in Rhipicephalus (Boophilus) microplus of cattle in South Gujarat, India. Adult Immersion Test (AIT) was used to assess flumethrin resistance and polymerase chain reaction (PCR) to confirm A. marginale infection. Species-specific PCR resulted in the amplification of 576 bp of msp5 gene of A. marginale in 17.69% (49/277) groups of ticks, and subsequent digestion with EcoRI cleaved it into two distinct segments. Navsari district, noted level Ι resistance [resistance factors (RF) = 1.78-3.34], and A. marginale prevalence was 16.67, 15.38, 23.08, 15.38, and 11.76% in Navsari, Jalalpore, Gandevi, Chikhli, and Vansda sub-districts, respectively. Similarly, Vyara and Dolvan sub-districts of Tapi observed level Ι resistance (RF = 1-3.63), with A. marginale positivity of 21.43 and 22.22%, while Valod and Songhad demonstrated susceptibility, with 14.29 and 12.50% of A. marginale, respectively. Moving to Surat, the Mahuva, Bardoli, Mandvi, Palsana, and Kamrej sub-districts observed the level Ι resistance (RF = 1.94-2.89), coupled with 14.29, 17.65, 20, 20, and 21.43% of A. marginale, respectively. Lastly, in Valsad district, Dharampur, Kaparada, Valsad, and Umbergaon noted level Ι resistance (RF = 1.67-1.81), and corresponding A. marginale positivity rates of 18.18, 19.23, 15.00, and 20.00%. The scatter plot unveiled a significant moderate positive correlation between RF and A. marginale positivity% (p = 0.0362), characterized by a Pearson correlation coefficient (r) of 0.4963. The covariance (1.1814) highlighted fluctuations, while the coefficient of determination (r2) (0.2463) clarified that 24.63% of the variability in A. marginale positivity% could be attributed to the RF.


Subject(s)
Anaplasma marginale , Anaplasmosis , Cattle Diseases , Pyrethrins , Rhipicephalus , Cattle , Animals , Anaplasma marginale/genetics , Cattle Diseases/epidemiology , Anaplasmosis/epidemiology , Anaplasma
10.
Malar J ; 23(1): 107, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632650

ABSTRACT

BACKGROUND: Achieving effective control and elimination of malaria in endemic regions necessitates a comprehensive understanding of local mosquito species responsible for malaria transmission and their susceptibility to insecticides. METHODS: The study was conducted in the highly malaria prone Ujina Primary Health Center of Nuh (Mewat) district of Haryana state of India. Monthly entomological surveys were carried out for adult mosquito collections via indoor resting collections, light trap collections, and pyrethrum spray collections. Larvae were also collected from different breeding sites prevalent in the region. Insecticide resistance bioassay, vector incrimination, blood meal analysis was done with the collected vector mosquitoes. RESULTS: A total of 34,974 adult Anopheles mosquitoes were caught during the survey period, out of which Anopheles subpictus was predominant (54.7%). Among vectors, Anopheles stephensi was predominant (15.5%) followed by Anopheles culicifacies (10.1%). The Human Blood Index (HBI) in the case of An. culicifacies and An. stephensi was 6.66 and 9.09, respectively. Vector incrimination results revealed Plasmodium vivax positivity rate of 1.6% for An. culicifacies. Both the vector species were found resistant to DDT, malathion and deltamethrin. CONCLUSION: The emergence of insecticide resistance in both vector species, compromises the effectiveness of commonly used public health insecticides. Consequently, the implementation of robust insecticide resistance management strategies becomes imperative. To effectively tackle the malaria transmission, a significant shift in vector control strategies is warranted, with careful consideration and adaptation to address specific challenges encountered in malaria elimination efforts.


Subject(s)
Anopheles , Insecticides , Malaria , Pyrethrins , Animals , Humans , Insecticides/pharmacology , Insecticide Resistance , Malaria/prevention & control , DDT , Mosquito Control/methods , Mosquito Vectors , Nitriles , India/epidemiology
11.
Chemosphere ; 355: 141863, 2024 May.
Article in English | MEDLINE | ID: mdl-38579955

ABSTRACT

Bifenthrin (BF) is ubiquitous in aquatic environments, and studies have indicated that environmental concentrations of BF could cause neurotoxicity and oxidative damage in fish and decrease the abundance of aquatic insects. However, little information is available on the toxicity of BF in freshwater benthic mollusks. Bellamya aeruginosa (B. aeruginosa) is a key benthic fauna species in aquatic ecosystems, and has extremely high economic and ecological values. In this study, larval B. aeruginosa within 24 h of birth were exposed to 0, 30 or 300 ng/L of BF for 30 days, and then the toxic effects from molecular to individual levels were comprehensively evaluated in all the three treatment groups. It was found that BF at 300 ng/L caused the mortality of snails. Furthermore, BF affected snail behaviors, evidenced by reduced crawling distance and crawling speed. The hepatopancreas of snails in the two BF exposure groups showed significant pathological changes, including increase in the number of yellow granules and occurrence of hemocyte infiltration, epithelial cell thinning, and necrosis. The levels of ROS and MDA were significantly increased after exposure to 300 ng/L BF, and the activities of two antioxidant enzymes SOD and CAT were increased significantly. GSH content decreased significantly after BF exposure, indicating the occurrence of oxidative damage in snails. Transcriptomic results showed that differentially expressed genes (DEGs) were significantly enriched in pathways related to metabolism and neurotoxicity (e.g., oxidative phosphorylation and Parkinson disease), and these results were consistent with those in individual and biochemical levels above. The study indicates that environmental concentration of BF results in decreased survival rates, sluggish behavior, histopathological lesions, oxidative damage, and transcriptomic changes in the larvae of B. aeruginosa. Thus, exposure of larval snails to BF in the wild at concentrations similar to those used in this study might have adverse consequences at the population level. These findings provide a theoretical basis for further assessing the ecological risk of BF to aquatic gastropods.


Subject(s)
Gastropoda , Pseudomonas aeruginosa , Pyrethrins , Animals , Ecosystem , Larva , Fresh Water
12.
Molecules ; 29(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38611726

ABSTRACT

A fungal isolate Aspergillus terreus PDB-B (accession number: MT774567.1), which could tolerate up to 500 mg/L of cypermethrin, was isolated from the lake sediments of Kulamangalam tropical lake, Madurai, and identified by internal transcribed spacer (ITS) sequencing followed by phylogenetic analysis. The biotransformation potential of the strain was compared with five other strains (A, J, UN2, M1 and SM108) as a consortium, which were tentatively identified as Aspergillus glaucus, Aspergillus niger, Aspergillus flavus, Aspergillus terreus, and Aspergillus flavus, respectively. Batch culture and soil microcosm studies were conducted to explore biotransformation using plate-based enzymatic screening and GC-MS. A mycotransformation pathway was predicted based on a comparative analysis of the transformation products (TPs) obtained. The cytotoxicity assay revealed that the presence of (3-methylphenyl) methanol and isopropyl ether could be relevant to the high rate of lethality.


Subject(s)
Aspergillus niger , Aspergillus , Lakes , Pyrethrins , Phylogeny , India
13.
Sci Rep ; 14(1): 8650, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622230

ABSTRACT

Resistance to insecticides and adaptation to a diverse range of environments present challenges to Anopheles gambiae s.l. mosquito control efforts in sub-Saharan Africa. Whole-genome-sequencing is often employed for identifying the genomic basis underlying adaptation in Anopheles, but remains expensive for large-scale surveys. Reduced coverage whole-genome-sequencing can identify regions of the genome involved in adaptation at a lower cost, but is currently untested in Anopheles mosquitoes. Here, we use reduced coverage WGS to investigate population genetic structure and identify signatures of local adaptation in Anopheles mosquitoes across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion, with Anopheles coluzzii and Anopheles gambiae populations largely displaying the hallmarks of large, unstructured populations. However, we find signatures of selection at insecticide resistance loci that appear ubiquitous across ecoregions in An. coluzzii, and strongest in forest ecoregions in An. gambiae. Our study highlights resistance candidate genes in this region, and validates reduced coverage WGS, potentially to very low coverage levels, for population genomics and exploratory surveys for adaptation in Anopheles taxa.


Subject(s)
Anopheles , Insecticides , Pyrethrins , Animals , Insecticide Resistance/genetics , Ghana/epidemiology , Insecticides/pharmacology , Mosquito Control
14.
Infect Dis Poverty ; 13(1): 29, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622750

ABSTRACT

BACKGROUND: Culex pipiens pallens and Culex pipiens quinquefasciatus are the dominant species of Culex mosquitoes in China and important disease vectors. Long-term use of insecticides can cause mutations in the voltage-gated sodium channel (vgsc) gene of mosquitoes, but little is known about the current status and evolutionary origins of vgsc gene in different geographic populations. Therefore, this study aimed to determine the current status of vgsc genes in Cx. p. pallens and Cx. p. quinquefasciatus in China and to investigate the evolutionary inheritance of neighboring downstream introns of the vgsc gene to determine the impact of insecticides on long-term evolution. METHODS: Sampling was conducted from July to September 2021 in representative habitats of 22 provincial-level administrative divisions in China. Genomic DNA was extracted from 1308 mosquitoes, the IIS6 fragment of the vgsc gene on the nerve cell membrane was amplified using polymerase chain reaction, and the sequence was used to evaluate allele frequency and knockdown resistance (kdr) frequency. MEGA 11 was used to construct neighbor-joining (NJ) tree. PopART was used to build a TCS network. RESULTS: There were 6 alleles and 6 genotypes at the L1014 locus, which included the wild-type alleles TTA/L and CTA/L and the mutant alleles TTT/F, TTC/F, TCT/S and TCA/S. The geographic populations with a kdr frequency less than 20.00% were mainly concentrated in the regions north of 38° N, and the geographic populations with a kdr frequency greater than 80.00% were concentrated in the regions south of 30° N. kdr frequency increased with decreasing latitude. And within the same latitude, the frequency of kdr in large cities is relatively high. Mutations were correlated with the number of introns. The mutant allele TCA/S has only one intron, the mutant allele TTT/F has three introns, and the wild-type allele TTA/L has 17 introns. CONCLUSIONS: Cx. p. pallens and Cx. p. quinquefasciatus have developed resistance to insecticides in most regions of China. The neighboring downstream introns of the vgsc gene gradually decreased to one intron with the mutation of the vgsc gene. Mutations may originate from multiple mutation events rather than from a single origin, and populations lacking mutations may be genetically isolated.


Subject(s)
Culex , Culicidae , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Insecticides/pharmacology , Introns/genetics , Mosquito Vectors/genetics , Culex/genetics , Mutation , Voltage-Gated Sodium Channels/genetics , Insecticide Resistance/genetics
15.
Parasit Vectors ; 17(1): 183, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600549

ABSTRACT

BACKGROUND: Clothianidin-based indoor residual spraying (IRS) formulations have become available for malaria control as either solo formulations of clothianidin or a mixture of clothianidin with the pyrethroid deltamethrin. While both formulations have been successfully used for malaria control, studies investigating the effect of the pyrethroid in IRS mixtures may help improve our understanding for development of future IRS products. It has been speculated that the irritant effect of the pyrethroid in the mixture formulation may result in shorter mosquito contact times with the treated walls potentially leading to a lower impact. METHODS: We compared contact irritancy expressed as the number of mosquito take-offs from cement surfaces treated with an IRS formulation containing clothianidin alone (SumiShield® 50WG) to clothianidin-deltamethrin mixture IRS formulations against pyrethroid-resistant Anopheles gambiae sensu lato under controlled laboratory conditions using a modified version of the World Health Organisation cone bioassay. To control for the pyrethroid, comparison was made with a deltamethrin-only formulation. Both commercial and generic non-commercial mixture formulations of clothianidin and deltamethrin were tested. RESULTS: The clothianidin solo formulation did not show significant contact irritancy relative to the untreated control (3.5 take-offs vs. 3.1 take-offs, p = 0.614) while all deltamethrin-containing IRS induced significant irritant effects. The number of take-offs compared to the clothianidin solo formulation (3.5) was significantly higher with the commercial clothianidin-deltamethrin mixture (6.1, p = 0.001), generic clothianidin-deltamethrin mixture (7.0, p < 0.001), and deltamethrin-only (8.2, p < 0.001) formulations. The commercial clothianidin-deltamethrin mixture induced similar contact irritancy as the generic clothianidin-deltamethrin mixture (6.1 take-offs vs. 7.0 take-offs, p = 0.263) and deltamethrin-only IRS (6.1 take-offs vs. 8.2, p = 0.071), showing that the irritant effect in the mixture was attributable to its deltamethrin component. CONCLUSIONS: This study provides evidence that the enhanced contact irritancy of the pyrethroid in clothianidin-deltamethrin IRS mixtures can shorten mosquito contact times with treated walls compared to the clothianidin solo formulation. Further trials are needed to directly compare the efficacy of these formulation types under field conditions and establish the impact of this enhanced contact irritancy on the performance of IRS mixture formulations containing pyrethroids.


Subject(s)
Anopheles , Guanidines , Insecticides , Malaria , Neonicotinoids , Nitriles , Pyrethrins , Thiazoles , Animals , Insecticides/pharmacology , Irritants/pharmacology , Mosquito Control , Pyrethrins/pharmacology , Malaria/prevention & control , Insecticide Resistance , Mosquito Vectors
16.
Chemosphere ; 357: 142096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663676

ABSTRACT

Cypermethrin (CYP) is a chemical of emerging concern which has persistent and bioaccumulating impacts as it can be found extensively in freshwater ecosystem and agricultural products. It has exposure risk and toxic effects over human edible fish, as common carp. Four groups were designed for toxicity assessment and detoxification approach: control group (CL), CYP exposure group (CYP), CYP + 10% M. oleifera leaves and 10% M. oleifera seeds (CMO group), 10% M. oleifera leaves and 10% M. oleifera seeds (MO group). Trial period was forty days during which cohort of 240 fish in CYP and CMO group was exposed to 1/5 of 96h LC50 of CYP (0.1612 µg/L). CYP-exposed carp exhibited lower growth parameters, but carp fed with 10% M. oleifera seeds and leaves showed significant improvement in growth rate (SGR, RGR) and weight gain (WG) as compared to the control group. CYP exposure negatively affected haemato-biochemical parameters. Moreover, CYP exposure also led to oxidative stress, damaged immunological parameters, genotoxicity and histopathological damage in liver and intestinal cells. Whereas, M. oleifera supplementation has ameliorated these conditions. Thereby, supplementation with M. oleifera is potential and novel therapeutic detoxication approach for common carp and human health against persistent and bioaccumulating emerging chemicals.


Subject(s)
Carps , Insecticides , Pyrethrins , Water Pollutants, Chemical , Toxicity Tests, Chronic , Insecticides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Moringa oleifera , Dietary Supplements , Seeds , Plant Leaves , Inactivation, Metabolic , Pyrethrins/toxicity
17.
Food Chem Toxicol ; 188: 114680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677402

ABSTRACT

Lambda-cyhalothrin (LCT) is a type II pyrethroid widely used in agriculture for plant protection against pests. However, pyrethroids represents a risk for rural female farmworkers, and few studies addressed LCT-behavioural alterations in mice. The present study evaluates the effect of LCT on behaviour of eight weeks aged female mice. Mice were divided into three groups including treated mice that received through gavage (i) 0.5 mg/kg bw and (ii) 2 mg/kg of LCT dissolved in corn oil, and (iii) the vehicle controls. Behavioural tests assess the locomotor activity using open field test, the anxiety by the dark-light box test, the learning memory with novel object recognition test, the memory retention by the elevated plus maze test, and the spatial working memory using the Y-maze test. Subacute treatment with low doses of LCT decreases total distance travelled, induces anxiogenic effect by reducing the time spent in the enlightened compartment, alters memory retention by increasing the latency time, and also affects learning memory by reducing the recognition index parameter. However, LCT does not significantly alter spatial working memory. In conclusion, LCT-treated female mice show an alteration in locomotor activity, mood state and memory abilities probably related to oxidative stress and altered neurotransmission.


Subject(s)
Locomotion , Memory , Nitriles , Pyrethrins , Animals , Pyrethrins/toxicity , Pyrethrins/pharmacology , Mice , Female , Nitriles/pharmacology , Nitriles/toxicity , Locomotion/drug effects , Memory/drug effects , Maze Learning/drug effects , Affect/drug effects , Insecticides/toxicity , Insecticides/pharmacology , Behavior, Animal/drug effects
18.
Chemosphere ; 357: 142108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657698

ABSTRACT

Numerous studies reported the concentration of agonists of aryl hydrocarbon receptor (AhR) in indoor dust by target chemical analysis or the biological effects of activating the AhR by indoor extracts, but the major AhR agonists identification in indoor dust were rarely researched. In the present study, the indoor dust samples were collected for 7-ethoxyresorufin O-deethylase (EROD) assay and both non-targeted and targeted chemical analysis for AhR agonists by gas chromatography quadrupole time-of-flight mass spectrometry and gas chromatography-mass spectrometry analysis. Coupled with non-targeted analysis and toxicity Forecaster (ToxCast)/Tox21 database, 104 ToxCast chemicals were screened to be able to induce EROD response. The combination of targeted chemical analyses and biological effects evaluation indicated that PAHs, dibutyl phthalate (DBP) and Cypermethrin might be the important AhR-agonists in different indoor dust and mainly contributed in 1.84%-97.56 % (median: 26.62%) of total observed biological effects through comparing toxic equivalency quotient derived from chemical analysis with biological equivalences derived from bioassay. DBP and cypermethrin seldom reported in the analysis of AhR agonists should raise great concern. In addition, the present results in experiment of synthetic solution of 4 selected AhR-agonists pointed out that some unidentified AhR agonists existed in indoor dust.


Subject(s)
Air Pollution, Indoor , Dust , Gas Chromatography-Mass Spectrometry , Receptors, Aryl Hydrocarbon , Dust/analysis , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/metabolism , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Environmental Monitoring/methods , Pyrethrins/analysis , Pyrethrins/toxicity , Cytochrome P-450 CYP1A1/metabolism , Humans , Air Pollutants/analysis , Air Pollutants/toxicity , Databases, Factual
19.
Mikrochim Acta ; 191(5): 269, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38630309

ABSTRACT

A molecularly-imprinted electrochemiluminescence sensor was constructed for the determination of fenpropathrin (FPT) by molecular imprinting technology. In this sensing platform, the introduction of CdS@MWCNTs significantly enhanced the initial ECL signal of the luminol-O2 system. Specifically, MWCNTs was used as a carrier to adsorb more CdS, in which CdS acted as a co-reaction promoter for luminescence. Molecularly imprinted polymer (MIP) containing specific recognition sites of FPT was used as the material for selective recognition. With increasing amount of FPT the ECL signal decreased. Under the optimum conditions, the ECL response was linearly related to the logarithm of FPT concentration. The developed ECL sensor allowed for sensitive determination of FPT and exhibited a wide linear range from 1.0 × 10- 10 mol L- 1 to 1.0 × 10- 6 mol L- 1. The limit of detection was 3.3 × 10- 11 mol L- 1 (S/N = 3). It can be used for the detection of FPT in vegetable samples.


Subject(s)
Luminescence , Molecular Imprinting , Pyrethrins , Luminol , Molecularly Imprinted Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...