Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 703
Filter
1.
PeerJ ; 12: e17296, 2024.
Article in English | MEDLINE | ID: mdl-38756442

ABSTRACT

Background: Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers. Chemotherapy remains one dominant therapeutic strategy, while a substantial proportion of patients may develop chemotherapeutic resistance; therefore, it is particularly significant to identify the patients who could achieve maximum benefits from chemotherapy. Presently, four pyroptosis genes are reported to correlate with the chemotherapeutic response or prognosis of HNSCC, while no study has assessed the combinatorial predicting efficacy of these four genes. Hence, this study aims to evaluate the predictive value of a multi-gene pyroptosis model regarding the prognosis and chemotherapeutic responsiveness in HNSCC. Methods: By utilizing RNA-sequencing data from The Cancer Genome Atlas database and the Gene Expression Omnibus database, the pyroptosis-related gene score (PRGscore) was computed for each HNSCC sample by performing a Gene Set Variation Analysis (GSVA) based on four genes (Caspase-1, Caspase-3, Gasdermin D, Gasdermin E). The prognostic significance of the PRGscore was assessed through Cox regression and Kaplan-Meier survival analyses. Additionally, chemotherapy sensitivity stratified by high and low PRGscore was examined to determine the potential association between pyroptosis activity and chemosensitivity. Furthermore, chemotherapy sensitivity assays were conducted in HNSCC cell lines in vitro. Results: As a result, our study successfully formulated a PRGscore reflective of pyroptotic activity in HNSCC. Higher PRGscore correlates with worse prognosis. However, patients with higher PRGscore were remarkably more responsive to chemotherapy. In agreement, chemotherapy sensitivity tests on HNSCC cell lines indicated a positive association between overall pyroptosis levels and chemosensitivity to cisplatin and 5-fluorouracil; in addition, patients with higher PRGscore may benefit from the immunotherapy. Overall, our study suggests that HNSCC patients with higher PRGscore, though may have a less favorable prognosis, chemotherapy and immunotherapy may exhibit better benefits in this population.


Subject(s)
Head and Neck Neoplasms , Pyroptosis , Squamous Cell Carcinoma of Head and Neck , Humans , Pyroptosis/drug effects , Pyroptosis/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/pathology , Prognosis , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Caspase 1/genetics , Caspase 1/metabolism , Male , Female , Caspase 3/genetics , Caspase 3/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Drug Resistance, Neoplasm/genetics , Middle Aged , Cisplatin/pharmacology , Cisplatin/therapeutic use , Gene Expression Regulation, Neoplastic , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Kaplan-Meier Estimate , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Aged , Gasdermins
2.
Front Immunol ; 15: 1386780, 2024.
Article in English | MEDLINE | ID: mdl-38756773

ABSTRACT

Introduction: Intracerebral hemorrhage (ICH) often triggers oxidative stress through reactive oxygen species (ROS). Transforming growth factor-ß-activated kinase 1 (TAK1) plays a pivotal role in regulating oxidative stress and inflammation across various diseases. 5Z-7-Oxozeaenol (OZ), a specific inhibitor of TAK1, has exhibited therapeutic effects in various conditions. However, the impact of OZ following ICH and its underlying molecular mechanisms remain elusive. This study aimed to explore the possible role of OZ in ICH and its underlying mechanisms by inhibiting oxidative stress-mediated pyroptosis. Methods: Adult male Sprague-Dawley rats were subjected to an ICH model, followed by treatment with OZ. Neurobehavioral function, blood-brain barrier integrity, neuronal pyroptosis, and oxidative stress markers were assessed using various techniques including behavioral tests, immunofluorescence staining, western blotting, transmission electron microscopy, and biochemical assays. Results: Our study revealed that OZ administration significantly inhibited phosphorylated TAK1 expression post-ICH. Furthermore, TAK1 blockade by OZ attenuated blood-brain barrier (BBB) disruption, neuroinflammation, and oxidative damage while enhancing neurobehavioral function. Mechanistically, OZ administration markedly reduced ROS production and oxidative stress by facilitating nuclear factor-erythroid 2-related factor 2 (NRF2) nuclear translocation. This was accompanied by a subsequent suppression of the NOD-like receptor protein 3 (NLRP3) activation-mediated inflammatory cascade and neuronal pyroptosis. Discussion: Our findings highlight that OZ alleviates brain injury and oxidative stress-mediated pyroptosis via the NRF2 pathway. Inhibition of TAK1 emerges as a promising approach for managing ICH.


Subject(s)
Cerebral Hemorrhage , MAP Kinase Kinase Kinases , NF-E2-Related Factor 2 , Neurons , Oxidative Stress , Pyroptosis , Rats, Sprague-Dawley , Signal Transduction , Animals , Pyroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/drug therapy , Male , Rats , Signal Transduction/drug effects , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , Neurons/drug effects , Neurons/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Disease Models, Animal , Brain Injuries/etiology , Brain Injuries/metabolism , Brain Injuries/drug therapy , Reactive Oxygen Species/metabolism , Lactones , Resorcinols , Zearalenone/administration & dosage
3.
BMC Cardiovasc Disord ; 24(1): 266, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773462

ABSTRACT

BACKGROUND: Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS: Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3ßi and Ac/AKT1/GSK3ßa groups were injected with shRNA, inhibitor and agonist of GSK3ß respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein ß(S100ß) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS: Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3ß. The agonist of GSK3ß recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS: Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3ß pathway.


Subject(s)
Cardiopulmonary Bypass , Disease Models, Animal , Glycogen Synthase Kinase 3 beta , Proto-Oncogene Proteins c-akt , Pyroptosis , Rats, Sprague-Dawley , Signal Transduction , Animals , Cardiopulmonary Bypass/adverse effects , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyroptosis/drug effects , Male , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Neurons/enzymology , Neuroprotective Agents/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Brain Edema/prevention & control , Brain Edema/metabolism , Brain Edema/enzymology , Brain Edema/pathology , Anti-Inflammatory Agents/pharmacology , Rats , S100 Calcium Binding Protein beta Subunit/metabolism , Inflammation Mediators/metabolism
4.
J Cell Mol Med ; 28(10): e18239, 2024 May.
Article in English | MEDLINE | ID: mdl-38774996

ABSTRACT

The occurrence and development of diabetic vascular diseases are closely linked to inflammation-induced endothelial dysfunction. Puerarin (Pue), the primary component of Pueraria lobata, possesses potent anti-inflammatory properties. However, its vasoprotective role remains elusive. Therefore, we investigated whether Pue can effectively protect against vascular damage induced by diabetes. In the study, Pue ameliorated lipopolysaccharide-adenosine triphosphate (LPS-ATP) or HG-primed cytotoxicity and apoptosis, while inhibited reactive oxygen species (ROS)-mediated NLR family pyrin domain containing 3 (NLRP3) inflammasome in HUVECs, as evidenced by significantly decreased ROS level, NOX4, Caspase-1 activity and expression of NLRP3, GSDMD, cleaved caspase-1, IL-1ß and IL-18. Meanwhile, ROS inducer CoCI2 efficiently weakened the effects of Pue against LPS-ATP-primed pyroptosis. In addition, NLRP3 knockdown notably enhanced Pue's ability to suppress pyroptosis in LPS-ATP-primed HUVECs, whereas overexpression of NLRP3 reversed the inhibitory effects of Pue. Furthermore, Pue inhibited the expression of ROS and NLRP3 inflammasome-associated proteins on the aorta in type 2 diabetes mellitus rats. Our findings indicated that Pue might ameliorate LPS-ATP or HG-primed damage in HUVECs by inactivating the ROS-NLRP3 signalling pathway.


Subject(s)
Adenosine Triphosphate , Human Umbilical Vein Endothelial Cells , Inflammasomes , Isoflavones , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Signal Transduction , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Isoflavones/pharmacology , Isoflavones/therapeutic use , Humans , Animals , Signal Transduction/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Rats , Male , Adenosine Triphosphate/metabolism , Inflammasomes/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Pyroptosis/drug effects , Rats, Sprague-Dawley , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Glucose/metabolism , Apoptosis/drug effects
5.
Int J Nanomedicine ; 19: 4007-4019, 2024.
Article in English | MEDLINE | ID: mdl-38715701

ABSTRACT

Introduction: Nanosized outer membrane vesicles (OMVs) from Gram-negative bacteria have attracted increasing interest because of their antitumor activity. However, the antitumor effects of MVs isolated from Gram-positive bacteria have rarely been investigated. Methods: MVs of Staphylococcus aureus USA300 were prepared and their antitumor efficacy was evaluated using tumor-bearing mouse models. A gene knock-in assay was performed to generate luciferase Antares2-MVs for bioluminescent detection. Cell counting kit-8 and lactic dehydrogenase release assays were used to detect the toxicity of the MVs against tumor cells in vitro. Active caspase-1 and gasdermin D (GSDMD) levels were determined using Western blot, and the tumor inhibition ability of MVs was determined in B16F10 cells treated with a caspase-1 inhibitor. Results: The vesicular particles of S. aureus USA300 MVs were 55.23 ± 8.17 nm in diameter, and 5 µg of MVs remarkably inhibited the growth of B16F10 melanoma in C57BL/6 mice and CT26 colon adenocarcinoma in BALB/c mice. The bioluminescent signals correlated well with the concentrations of the engineered Antares2-MVs (R2 = 0.999), and the sensitivity for bioluminescence imaging was 4 × 10-3 µg. Antares2-MVs can directly target tumor tissues in vivo, and 20 µg/mL Antares2-MVs considerably reduced the growth of B16F10 and CT26 tumor cells, but not non-carcinomatous bEnd.3 cells. MV treatment substantially increased the level of active caspase-1, which processes GSDMD to trigger pyroptosis in tumor cells. Blocking caspase-1 activation with VX-765 significantly protected tumor cells from MV killing in vitro and in vivo. Conclusion: S. aureus MVs can kill tumor cells by activating the pyroptosis pathway, and the induction of pyroptosis in tumor cells is a promising strategy for cancer treatment.


Subject(s)
Caspase 1 , Mice, Inbred BALB C , Pyroptosis , Staphylococcus aureus , Animals , Pyroptosis/drug effects , Caspase 1/metabolism , Cell Line, Tumor , Staphylococcus aureus/physiology , Staphylococcus aureus/drug effects , Mice , Mice, Inbred C57BL , Phosphate-Binding Proteins/metabolism , Melanoma, Experimental/pathology , Colonic Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Bacterial Outer Membrane/drug effects , Female
6.
Exp Cell Res ; 438(2): 114061, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38692345

ABSTRACT

Acute myocardial infarction (AMI) is a prevalent cardiovascular disease with high morbidity and mortality rates worldwide. Pyroptosis is an inflammatory form of programmed cell death that has been linked to various pathological conditions. However, its exact contribution to the onset and progression of heart injury in AMI has not yet fully elucidated. Herein, we established mouse AMI model by ligating the left anterior descending artery and performed transcriptome analysis during the early phase of AMI. Mouse HL-1 and human AC-16 cardiomyocytes were subjected to hypoxia to simulate ischemic injury in vitro. Our results revealed a significant activation of the inflammatory response at 3 h post-ligation, as confirmed by RNA sequencing. We identified the occurrence of NLRP3 inflammasome-mediated pyroptosis in the cardiac tissues of human cases with AMI, as well as in mouse models of AMI and hypoxia-induced cardiomyocytes, using immunohistochemistry staining and Western blotting assays. Concurrently, pharmacological inhibition of NLRP3 inflammasome-mediated pyroptosis with MCC950 and VX-765 effectively decreased hypoxia-induced cardiomyocytes injury, while mitigating myocardial oxidative stress, apoptosis and inflammation caused by hypoxia. Moreover, the circulating levels of gasdermin D (GSDMD), the pyroptosis executor, were remarkably elevated in the plasma of mice with early AMI and in the supernatant of hypoxia-exposed cardiomyocytes in a time-dependent manner using ELISA and Western blotting. Furthermore, the change in circulating GSDMD positively correlated with Creatine Kinase-MB (CK-MB) in the plasma of early-stage AMI mouse. In summary, these findings indicated a critical role for NLRP3 inflammasome-mediated pyroptosis in the progression of AMI, the administration of MCC950 and VX-765 may be attractive candidate therapeutic approaches for cardiac injury caused by acute hypoxia or even AMI. Additionally, the circulating GSDMD exhibits potential as a newly diagnostic biomarker for AMI.


Subject(s)
Apoptosis , Furans , Inflammation , Mice, Inbred C57BL , Myocardial Infarction , Myocytes, Cardiac , Oxidative Stress , Pyroptosis , Sulfonamides , Pyroptosis/drug effects , Animals , Mice , Apoptosis/drug effects , Oxidative Stress/drug effects , Sulfonamides/pharmacology , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/drug therapy , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Male , Furans/pharmacology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/drug therapy , Indenes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , para-Aminobenzoates/pharmacology , Inflammasomes/metabolism , Inflammasomes/drug effects , Disease Models, Animal , Myocardium/metabolism , Myocardium/pathology , Hypoxia/metabolism , Hypoxia/complications , Dipeptides
7.
ACS Nano ; 18(19): 12386-12400, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38699808

ABSTRACT

Current cancer vaccines face challenges due to an immunosuppressive tumor microenvironment and their limited ability to produce an effective immune response. To address the above limitations, we develop a 3-(2-spiroadamantyl)-4-methoxy-4-(3-phosphoryloxy)-phenyl-1,2-dioxetane (alkaline phosphatase substrate) and XMD8-92 (extracellular signal-regulated kinase 5 inhibitor)-codelivered copper-tetrahydroxybenzoquinone (Cu-THBQ/AX) nanosized metal-organic framework to in situ-generate therapeutic vaccination. Once inside the early endosome, the alkaline phosphatase overexpressed in the tumor cells' membrane activates the in situ type I photodynamic effect of Cu-THBQ/AX for generating •O2-, and the Cu-THBQ/AX catalyzes O2 and H2O2 to •O2- and •OH via semiquinone radical catalysis and Fenton-like reactions. This surge of ROS in early endosomes triggers caspase-3-mediated proinflammatory pyroptosis via activating phospholipase C. Meanwhile, Cu-THBQ/AX can also induce the oligomerization of dihydrolipoamide S-acetyltransferase to trigger tumor cell cuproptosis. The production of •OH could also trigger the release of XMD8-92 for effectively inhibiting the efferocytosis of macrophages to convert immunosuppressive apoptosis of cancer cells into proinflammatory secondary necrosis. The simultaneous induction of pyroptosis, cuproptosis, and secondary necrosis effectively converts the tumor microenvironment from "cold" to "hot" conditions, making it an effective antigen pool. This transformation successfully activates the antitumor immune response, inhibiting tumor growth and metastasis.


Subject(s)
Cancer Vaccines , Copper , Macrophages , Metal-Organic Frameworks , Pyroptosis , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Animals , Mice , Pyroptosis/drug effects , Macrophages/drug effects , Macrophages/metabolism , Humans , Copper/chemistry , Copper/pharmacology , Cancer Vaccines/chemistry , Tumor Microenvironment/drug effects , Nanoparticles/chemistry , Phagocytosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Mice, Inbred BALB C , Efferocytosis , Nanovaccines
8.
Mol Biol Rep ; 51(1): 607, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704801

ABSTRACT

BACKGROUND: Intracerebral hemorrhage (ICH) is a critical neurological condition with few treatment options, where secondary immune responses and specific cell death forms, like pyroptosis, worsen brain damage. Pyroptosis involves gasdermin-mediated membrane pores, increasing inflammation and neural harm, with the NLRP3/Caspase-1/GSDMD pathway being central to this process. Peroxiredoxin II (Prx II), recognized for its mitochondrial protection and reactive oxygen species (ROS) scavenging abilities, appears as a promising neuronal pyroptosis modulator. However, its exact role and action mechanisms need clearer definition. This research aims to explore Prx II impact on neuronal pyroptosis and elucidate its mechanisms, especially regarding endoplasmic reticulum (ER) stress and oxidative stress-induced neuronal damage modulation. METHODS AND RESULTS: Utilizing MTT assays, Microscopy, Hoechst/PI staining, Western blotting, and immunofluorescence, we found Prx II effectively reduces LPS/ATP-induced pyroptosis and neuroinflammation in HT22 hippocampal neuronal cells. Our results indicate Prx II's neuroprotective actions are mediated through PI3K/AKT activation and ER stress pathway inhibition, diminishing mitochondrial dysfunction and decreasing neuronal pyroptosis through the ROS/MAPK/NF-κB pathway. These findings highlight Prx II potential therapeutic value in improving intracerebral hemorrhage outcomes by lessening secondary brain injury via critical signaling pathway modulation involved in neuronal pyroptosis. CONCLUSIONS: Our study not only underlines Prx II importance in neuroprotection but also opens new therapeutic intervention avenues in intracerebral hemorrhage, stressing the complex interplay between redox regulation, ER stress, and mitochondrial dynamics in neuroinflammation and cell death management.


Subject(s)
Endoplasmic Reticulum Stress , Neurons , Neuroprotective Agents , Oxidative Stress , Peroxiredoxins , Pyroptosis , Reactive Oxygen Species , Pyroptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Animals , Oxidative Stress/drug effects , Neurons/metabolism , Neurons/drug effects , Neuroprotective Agents/pharmacology , Mice , Reactive Oxygen Species/metabolism , Peroxiredoxins/metabolism , Signal Transduction/drug effects , Cell Line , Mitochondria/metabolism , Mitochondria/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/complications
9.
ACS Appl Mater Interfaces ; 16(19): 24295-24307, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38697643

ABSTRACT

Pyroptosis has garnered increasing attention because of its ability to trigger robust antitumor immunity. Pyroptosis is initiated by the activation of inflammasomes, which are regulated by various organelles. The collaboration among organelles offers several protective mechanisms to prevent activation of the inflammasome, thereby limiting the induction of efficient pyroptosis. Herein, a multiorganelle homeostasis disruptor (denoted BLL) is constructed by encapsulating liposomes and bortezomib (BTZ) within a layered double hydroxide (LDH) nanocage to continuously activate inflammasomes for inducing efficient pyroptosis. In lysosomes, the negatively charged liposomes are released to recruit the NLRP3 inflammasomes through electrostatic interactions. ER stress is induced by BTZ to enhance the activation of the NLRP3 inflammasome. Meanwhile, the BLL nanocage exhibited H+-scavenging ability due to the weak alkalinity of LDH, thus disrupting the homeostasis of the lysosome and alleviating the degradation of the NLRP3 inflammasome by lysosomal-associated autophagy. Our results suggest that the BLL nanocage induces homeostatic imbalance in various organelles and efficient pyroptosis. We hope this work can provide new insights into the design of an efficient pyroptosis inducer by disrupting the homeostatic balance of multiple organelles and promote the development of novel antineoplastic platforms.


Subject(s)
Homeostasis , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Pyroptosis/drug effects , Inflammasomes/metabolism , Inflammasomes/drug effects , Homeostasis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , Mice , Bortezomib/pharmacology , Bortezomib/chemistry , Liposomes/chemistry , Animals , Lysosomes/metabolism , Lysosomes/drug effects , Hydroxides/chemistry , Hydroxides/pharmacology , Nanostructures/chemistry , Nanoparticles/chemistry
10.
Cell Biol Toxicol ; 40(1): 33, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769285

ABSTRACT

Fumonisin B1 (FB1), a water-soluble mycotoxin released by Fusarium moniliforme Sheld, is widely present in corn and its derivative products, and seriously endangers human life and health. Recent studies have reported that FB1 can lead to pyroptosis, however, the mechanisms by which FB1-induced pyroptosis remain indistinct. In the present study, we aim to investigate the mechanisms of pyroptosis in intestinal porcine epithelial cells (IPEC-J2) and the relationship between FB1-induced endoplasmic reticulum stress (ERS) and pyroptosis. Our experimental results showed that the pyroptosis protein indicators in IPEC-J2 were significantly increased after exposure to FB1. The ERS markers, including glucose-regulated Protein 78 (GRP78), PKR-like ER kinase protein (PERK), and preprotein translocation factor (Sec62) were also significantly increased. Using small interfering RNA silencing of PERK or Sec62, the results demonstrated that upregulation of Sec62 activates the PERK pathway, and activation of the PERK signaling pathway is upstream of FB1-induced pyroptosis. After using the ERS inhibitor 4-PBA reduced the FB1-triggered intestinal injury by the Sec62-PERK pathway. In conclusion, we found that FB1 induced pyroptosis by upregulating Sec62 to activate the PERK pathway, and mild ERS alleviates FB1-triggered damage. It all boils down to one fact, the study provides a new perspective for further, and improving the toxicological mechanism of FB1.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Pyroptosis , Signal Transduction , eIF-2 Kinase , Pyroptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Animals , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Swine , Signal Transduction/drug effects , Endoplasmic Reticulum Chaperone BiP/metabolism , Cell Line , Intestines/drug effects , Intestines/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Fumonisins
11.
J Vis Exp ; (207)2024 May 03.
Article in English | MEDLINE | ID: mdl-38767387

ABSTRACT

Cell death is a fundamental process in all living organisms. The protocol establishes a lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-induced phorbol-12-myristate-13-acetate (PMA)-differentiated lipid deposition in human monocyte (THP-1) macrophage model to observe cell death. LPS combined with ATP is a classic inflammatory induction method, often used to study pyroptosis, but apoptosis and necroptosis also respond to stimulation by LPS/ATP. Under normal circumstances, phosphatidylserine is only localized in the inner leaflet of the plasma membrane. However, in the early stages of pyroptosis, apoptosis, and necroptosis, the cell membrane remains intact and exposed to phosphatidylserine, and in the later stages, the cell membrane loses its integrity. Here, flow cytometry was used to analyze Annexin V and 7-Aminoactinomycin D (AAD) double staining to detect the cell death from the whole cells. The results show that substantial cells died after stimulation with LPS/ATP. Using scanning electron microscopy, we observe the possible forms of cell death in individual cells. The results indicate that cells may undergo pyroptosis, apoptosis, or necroptosis after stimulation with LPS/ATP. This protocol focuses on observing the death of macrophages after stimulation with LPS/ATP. The results showed that cell death after LPS and ATP stimulation is not limited to pyroptosis and that apoptosis and necrotic apoptosis can also occur, helping researchers better understand cell death after LPS and ATP stimulation and choose a better experimental method.


Subject(s)
Adenosine Triphosphate , Lipopolysaccharides , Macrophages , Humans , Macrophages/drug effects , Macrophages/cytology , Adenosine Triphosphate/metabolism , Lipopolysaccharides/pharmacology , THP-1 Cells , Tetradecanoylphorbol Acetate/pharmacology , Cell Death/drug effects , Pyroptosis/drug effects , Pyroptosis/physiology , Flow Cytometry/methods , Cell Differentiation/drug effects
12.
Int J Oncol ; 64(6)2024 06.
Article in English | MEDLINE | ID: mdl-38757345

ABSTRACT

Hepatocellular carcinoma (HCC), one of the leading causes of cancer­related mortality worldwide, is challenging to identify in its early stages and prone to metastasis, and the prognosis of patients with this disease is poor. Treatment options for HCC are limited, with even radical treatments being associated with a risk of recurrence or transformation in the short term. Furthermore, the multi­tyrosine kinase inhibitors approved for first­line therapy have marked drawbacks, including drug resistance and side effects. The rise and breakthrough of immune checkpoint inhibitors (ICIs) have provided a novel direction for HCC immunotherapy but these have the drawback of low response rates. Since avoiding apoptosis is a universal feature of cancer, the induction of non­apoptotic regulatory cell death (NARCD) is a novel strategy for HCC immunotherapy. At present, NARCD pathways, including ferroptosis, pyroptosis and necroptosis, are novel potential forms of immunogenic cell death, which have synergistic effects with antitumor immunity, transforming immune 'cold' tumors into immune 'hot' tumors and exerting antitumor effects. Therefore, these pathways may be targeted as a novel treatment strategy for HCC. In the present review, the roles of ferroptosis, pyroptosis and necroptosis in antitumor immunity in HCC are discussed, and the relevant targets and signaling pathways, and the current status of combined therapy with ICIs are summarized. The prospects of targeting ferroptosis, pyroptosis and necroptosis in HCC immunotherapy are also considered.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Immunotherapy , Liver Neoplasms , Necroptosis , Pyroptosis , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Pyroptosis/drug effects , Pyroptosis/immunology , Ferroptosis/drug effects , Necroptosis/immunology , Necroptosis/drug effects , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Signal Transduction/drug effects , Animals
13.
J Med Virol ; 96(5): e29643, 2024 May.
Article in English | MEDLINE | ID: mdl-38695269

ABSTRACT

Severe pneumonia caused by respiratory viruses has become a major threat to humans, especially with the SARS-CoV-2 outbreak and epidemic. The aim of this study was to investigate the universal molecular mechanism of severe pneumonia induced by multiple respiratory viruses and to search for therapeutic strategies targeting this universal molecular mechanism. The common differential genes of four respiratory viruses, including respiratory syncytial virus (RSV), rhinovirus, influenza, and SARS-CoV-2, were screened by GEO database, and the hub gene was obtained by Sytohubba in Cytoscape. Then, the effect of hub genes on inflammasome and pyrodeath was investigated in the model of RSV infection in vitro and in vivo. Finally, through virtual screening, drugs targeting the hub gene were obtained, which could alleviate severe viral pneumonia in vitro and in vivo. The results showed that CMPK2 is one of the hub genes after infection by four respiratory viruses. CMPK2 activates the inflammasome by activating NLRP3, and promotes the releases of inflammatory factors interleukin (IL)-1ß and IL-18 to induce severe viral pneumonia. Z25 and Z08 can reduce the expression level of CMPK2 mRNA and protein, thereby inhibiting NLRP3 and alleviating the development of severe viral pneumonia. In conclusion, the inflammatory response mediated by CMPK2 is the common molecular mechanism of severe pneumonia induced by viral infection, and Z25 and Z08 can effectively alleviate viral infection and severe pneumonia through this mechanism.


Subject(s)
Inflammasomes , Pyroptosis , Pyroptosis/drug effects , Humans , Animals , Inflammasomes/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Interleukin-18/metabolism , Interleukin-18/genetics , SARS-CoV-2 , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/virology
14.
Sci Total Environ ; 931: 172938, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703850

ABSTRACT

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.


Subject(s)
Cadmium , Mitochondria , Pyroptosis , Testis , Animals , Cadmium/toxicity , Male , Mice , Testis/drug effects , Testis/metabolism , Pyroptosis/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Environmental Pollutants/toxicity , Proteostasis , Mitochondrial Proteins/metabolism , Environmental Exposure/adverse effects , DNA, Mitochondrial , ATP-Dependent Proteases/metabolism , Proteotoxic Stress
15.
ACS Nano ; 18(20): 12830-12844, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38709246

ABSTRACT

The immunosuppressive microenvironment of cervical cancer significantly hampers the effectiveness of immunotherapy. Herein, PEGylated manganese-doped calcium sulfide nanoparticles (MCSP) were developed to effectively enhance the antitumor immune response of the cervical cancer through gas-amplified metalloimmunotherapy with dual activation of pyroptosis and STING pathway. The bioactive MCSP exhibited the ability to rapidly release Ca2+, Mn2+, and H2S in response to the tumor microenvironment. H2S disrupted the calcium buffer system of cancer cells by interfering with the oxidative phosphorylation pathway, leading to calcium overload-triggered pyroptosis. On the other hand, H2S-mediated mitochondrial dysfunction further promoted the release of mitochondrial DNA (mtDNA), enhancing the activation effect of Mn2+ on the cGAS-STING signaling axis and thereby activating immunosuppressed dendritic cells. The released H2S acted as an important synergist between Mn2+ and Ca2+ by modulating dual signaling mechanisms to bridge innate and adaptive immune responses. The combination of MCSP NPs and PD-1 immunotherapy achieved synergistic antitumor effects and effectively inhibited tumor growth. This study reveals the potential collaboration between H2S gas therapy and metalloimmunotherapy and provides an idea for the design of nanoimmunomodulators for rational regulation of the immunosuppressive tumor microenvironment.


Subject(s)
Immunotherapy , Membrane Proteins , Pyroptosis , Tumor Microenvironment , Uterine Cervical Neoplasms , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/therapy , Female , Humans , Mice , Animals , Pyroptosis/drug effects , Membrane Proteins/metabolism , Manganese/chemistry , Manganese/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticles/chemistry , Signal Transduction/drug effects , Cell Proliferation/drug effects , Calcium/metabolism , Mice, Inbred BALB C , Drug Screening Assays, Antitumor
16.
ACS Nano ; 18(20): 13196-13213, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717096

ABSTRACT

There is an increasingly growing demand to balance tissue repair guidance and opportunistic infection (OI) inhibition in clinical implant surgery. Herein, we developed a nanoadjuvant for all-stage tissue repair guidance and biofilm-responsive OI eradication via in situ incorporating Cobaltiprotoporphyrin (CoPP) into Prussian blue (PB) to prepare PB-CoPP nanozymes (PCZs). Released CoPP possesses a pro-efferocytosis effect for eliminating apoptotic and progressing necrotic cells in tissue trauma, thus preventing secondary inflammation. Once OIs occur, PCZs with switchable nanocatalytic capacity can achieve bidirectional pyroptosis regulation. Once reaching the acidic biofilm microenvironment, PCZs possess peroxidase (POD)-like activity that can generate reactive oxygen species (ROS) to eradicate bacterial biofilms, especially when synergized with the photothermal effect. Furthermore, generated ROS can promote macrophage pyroptosis to secrete inflammatory cytokines and antimicrobial proteins for biofilm eradication in vivo. After eradicating the biofilm, PCZs possess catalase (CAT)-like activity in a neutral environment, which can scavenge ROS and inhibit macrophage pyroptosis, thereby improving the inflammatory microenvironment. Briefly, PCZs as nanoadjuvants feature the capability of all-stage tissue repair guidance and biofilm-responsive OI inhibition that can be routinely performed in all implant surgeries, providing a wide range of application prospects and commercial translational value.


Subject(s)
Biofilms , Pyroptosis , Biofilms/drug effects , Pyroptosis/drug effects , Animals , Mice , Reactive Oxygen Species/metabolism , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Prostheses and Implants , Macrophages/metabolism , Macrophages/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing/drug effects , Humans , Efferocytosis
17.
Physiol Res ; 73(2): 305-314, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710054

ABSTRACT

Netrin-1 (NTN-1) plays a vital role in the progress of nervous system development and inflammatory diseases. However, the role and underlying mechanism of NTN-1 in inflammatory pain (IP) are unclear. BV2 microglia were treated with LPS to mimic the cell status under IP. Adeno-associated virus carrying the NTN-1 gene (AAV-NTN-1) was used to overexpress NTN-1. Complete Freund's Adjuvant (CFA)-induced mouse was recruited as an in vivo model. MTT and commercial kits were utilized to evaluate cell viability and cell death of BV2 cells. The mRNA expressions and secretions of cytokines were measured using the ELISA method. Also, the pyroptosis and activation of BV2 cells were investigated based on western blotting. To verify the role of Rac1/NF-kappaB signaling, isochamaejasmin (ISO) and AAV-Rac1 were presented. The results showed that NTN-1 expression was decreased in LPS-treated BV2 microglia and spinal cord tissues of CFA-injected mice. Overexpressing NTN-1 dramatically reversed cell viability and decreased cell death rate of BV2 microglia under lipopolysaccharide (LPS) stimulation, while the level of pyroptosis was inhibited. Besides, AAV-NTN-1 rescued the activation of microglia and inflammatory injury induced by LPS, decreasing IBA-1 expression, as well as iNOS, IL-1beta and IL-6 secretions. Meanwhile AAV-NTN-1 promoted the anti-inflammation response, including increases in Arg-1, IL-4 and IL-10 levels. In addition, the LPS-induced activation of Rac1/NF-kappaB signaling was depressed by NTN-1 overexpression. The same results were verified in a CFA-induced mouse model. In conclusion, NTN-1 alleviated IP by suppressing pyroptosis and promoting M2 type activation of microglia via inhibiting Rac1/NF-?B signaling, suggesting the protective role of NTN-1 in IP. Keywords: Netrin-1, Inflammatory pain, Pyroptosis, Microglia M2 activation, Rac1/NF-kappaB.


Subject(s)
Inflammation , Microglia , NF-kappa B , Netrin-1 , Neuropeptides , Pyroptosis , Signal Transduction , rac1 GTP-Binding Protein , Animals , Pyroptosis/physiology , Pyroptosis/drug effects , Microglia/metabolism , Mice , Netrin-1/metabolism , rac1 GTP-Binding Protein/metabolism , NF-kappa B/metabolism , Inflammation/metabolism , Inflammation/pathology , Male , Mice, Inbred C57BL , Pain/metabolism , Cell Line , Lipopolysaccharides
18.
J Cell Mol Med ; 28(10): e18280, 2024 May.
Article in English | MEDLINE | ID: mdl-38758159

ABSTRACT

Acute lung injury (ALI) is featured with a robust inflammatory response. Angiopoietin-like protein 2 (ANGPTL2), a pro-inflammatory protein, is complicated with various disorders. However, the role of ANGPTL2 in ALI remains to be further explored. The mice and MH-S cells were administrated with lipopolysaccharide (LPS) to evoke the lung injury in vivo and in vitro. The role and mechanism of ANGPTL was investigated by haematoxylin-eosin, measurement of wet/dry ratio, cell count, terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling, reverse transcription quantitative polymerase chain reaction, immunofluorescence, enzyme-linked immunosorbent assay, detection of autophagic flux and western blot assays. The level of ANGPTL2 was upregulated in lung injury. Knockout of ANGPTL2 alleviated LPS-induced pathological symptoms, reduced pulmonary wet/dry weight ratio, the numbers of total cells and neutrophils in BALF, apoptosis rate and the release of pro-inflammatory mediators, and modulated polarization of alveolar macrophages in mice. Knockdown of ANGPTL2 downregulated the level of pyroptosis indicators, and elevated the level of autophagy in LPS-induced MH-S cells. Besides, downregulation of ANGPTL2 reversed the LPS-induced the expression of leukocyte immunoglobulin (Ig)-like receptor B2 (LILRB2) and triggering receptor expressed on myeloid cells 2 (TREM2), which was reversed by the overexpression of LILRB2. Importantly, knockdown of TREM2 reversed the levels of autophagy- and pyroptosis-involved proteins, and the contents of pro-inflammatory factors in LPS-induced MH-S cells transfected with si ANGPTL2, which was further inverted with the treatment of rapamycin. Therefore, ANGPTL2 silencing enhanced autophagy to alleviate alveolar macrophage pyroptosis via reducing LILRB2-mediated inhibition of TREM2.


Subject(s)
Acute Lung Injury , Angiopoietin-Like Protein 2 , Autophagy , Lipopolysaccharides , Macrophages, Alveolar , Membrane Glycoproteins , Pyroptosis , Receptors, Immunologic , Animals , Pyroptosis/genetics , Pyroptosis/drug effects , Autophagy/genetics , Mice , Macrophages, Alveolar/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Acute Lung Injury/chemically induced , Gene Knockdown Techniques , Male , Mice, Inbred C57BL , Angiopoietin-like Proteins/metabolism , Angiopoietin-like Proteins/genetics , Mice, Knockout
19.
Chem Biol Interact ; 395: 111032, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38705442

ABSTRACT

Particulate matter (PM), the main component of air pollutants, emerges as a research hotspot, especially in the area of respiratory diseases. Paeoniflorin (PAE), known as anti-inflammatory and immunomodulatory effects, has been reported to alleviate acute lung injury (ALI). However, the effect of PAE on PM-induced ALI and the underlying mechanisms are still unclear yet. In this study, we established the PM-induced ALI model using C57BL/6J mice and BEAS-2B cells to explore the function of PAE. In vivo, mice were intraperitoneally injected with PAE (100 mg/kg) or saline 1 h before instilled with 4 mg/kg PM intratracheally and were euthanized on the third day. For lung tissues, HE staining and TUNEL staining were used to evaluate the degree of lung injury, ELISA assay was used to assess inflammatory mediators and oxidative stress level, Immunofluorescence staining and western blotting were applied to explore the role of pyroptosis and Nrf2 signaling pathway. In vitro, BEAS-2B cells were pretreated with 100 µM PAE before exposure to 200 µg/ml PM and were collected after 24h for the subsequent experiments. TUNEL staining, ROS staining, and western blotting were conducted to explore the underlying mechanisms of PAE on PM-induced ALI. According to the results, PAE can attenuate the degree of PM-induced ALI in mice and reduce PM-induced cytotoxicity in BEAS-2B cells. PAE can relieve PM-induced excessive oxidative stress and NLRP3 inflammasome-mediated pyroptosis. Additionally, PAE can also activate Nrf2 signaling pathway and inhibition of Nrf2 signaling pathway can impair the protective effect of PAE by aggravating oxidative stress and pyroptosis. Our findings demonstrate that PAE can attenuate PM-induced ALI by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis, which is mediated by Nrf2 signaling pathway.


Subject(s)
Acute Lung Injury , Glucosides , Inflammasomes , Mice, Inbred C57BL , Monoterpenes , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Particulate Matter , Pyroptosis , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , Oxidative Stress/drug effects , Particulate Matter/toxicity , Glucosides/pharmacology , Glucosides/therapeutic use , Signal Transduction/drug effects , Mice , Monoterpenes/pharmacology , Inflammasomes/metabolism , Male , Humans , Cell Line
20.
Cardiovasc Diabetol ; 23(1): 160, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715043

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS: Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION: These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Fibrosis , Growth Differentiation Factors , Inflammasomes , Mice, Inbred C57BL , Myocytes, Cardiac , Pyroptosis , Signal Transduction , Animals , Pyroptosis/drug effects , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Diabetes Mellitus, Experimental/metabolism , Cell Line , Inflammasomes/metabolism , Male , Growth Differentiation Factors/metabolism , Rats , Blood Glucose/metabolism , Mice , Glucose/metabolism , Glucose/toxicity , Bone Morphogenetic Proteins , PPAR alpha
SELECTION OF CITATIONS
SEARCH DETAIL
...