Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 489
Filter
1.
Biochem Biophys Res Commun ; 717: 149992, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38714013

ABSTRACT

Insects have about 50 neuropeptide genes and about 70 genes, coding for neuropeptide G protein-coupled receptors (GPCRs). An important, but small family of evolutionarily related insect neuropeptides consists of adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP). Normally, insects have one specific GPCR for each of these neuropeptides. The tick Ixodes scapularis is not an insect, but belongs to the subphylum Chelicerata, which comprises ticks, scorpions, mites, spiders, and horseshoe crabs. Many of the neuropeptides and neuropeptide GPCRs occurring in insects, also occur in chelicerates, illustrating that insects and chelicerates are evolutionarily closely related. The tick I. scapularis is an ectoparasite and health risk for humans, because it infects its human host with dangerous pathogens during a blood meal. Understanding the biology of ticks will help researchers to prevent tick-borne diseases. By annotating the I. scapularis genome sequence, we previously found that ticks contain as many as five genes, coding for presumed ACP receptors. In the current paper, we cloned these receptors and expressed each of them in Chinese Hamster Ovary (CHO) cells. Each expressed receptor was activated by nanomolar concentrations of ACP, demonstrating that all five receptors were functional ACP receptors. Phylogenetic tree analyses showed that the cloned tick ACP receptors were mostly related to insect ACP receptors and, next, to insect AKH receptors, suggesting that ACP receptor genes and AKH receptor genes originated by gene duplications from a common ancestor. Similar duplications have probably occurred for the ligand genes, during a process of ligand/receptor co-evolution. Interestingly, chelicerates, in contrast to all other arthropods, do not have AKH or AKH receptor genes. Therefore, the ancestor of chelicerates might have lost AKH and AKH receptor genes and functionally replaced them by ACP and ACP receptor genes. For the small family of AKH, ACP, and corazonin receptors and their ligands, gene losses and gene gains occur frequently between the various ecdysozoan clades. Tardigrades, for example, which are well known for their survival in extreme environments, have as many as ten corazonin receptor genes and six corazonin peptide genes, while insects only have one of each, or none.


Subject(s)
Insect Hormones , Ixodes , Neuropeptides , Oligopeptides , Pyrrolidonecarboxylic Acid , Receptors, G-Protein-Coupled , Animals , Neuropeptides/metabolism , Neuropeptides/genetics , Insect Hormones/metabolism , Insect Hormones/genetics , Ixodes/metabolism , Ixodes/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Oligopeptides/metabolism , Oligopeptides/genetics , Oligopeptides/chemistry , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Phylogeny , Amino Acid Sequence , Cricetulus , CHO Cells , Insect Proteins/genetics , Insect Proteins/metabolism , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/genetics
2.
Rev Assoc Med Bras (1992) ; 70(5): e20231337, 2024.
Article in English | MEDLINE | ID: mdl-38775506

ABSTRACT

OBJECTIVE: It has been previously shown that brain-derived neurotrophic factor is linked with various types of cancer. Brain-derived neurotrophic factor is found to be highly expressed in multiple human cancers and associated with tumor growth, invasion, and metastasis. Adipokinetic hormones are functionally related to the vertebrate glucagon, as they have similar functionalities that manage the nutrient-dependent secretion of these two hormones. Migrasomes are new organelles that contain numerous small vesicles, which aid in transmitting signals between the migrating cells. Therefore, the aim of this study was to investigate the effects of Anax imperator adipokinetic hormone on brain-derived neurotrophic factor expression and ultrastructure of cells in the C6 glioma cell line. METHODS: The rat C6 glioma cells were treated with concentrations of 5 and 10 Anax imperator adipokinetic hormone for 24 h. The effects of the Anax imperator adipokinetic hormone on the migrasome formation and brain-derived neurotrophic factor expression were analyzed using immunocytochemistry and transmission electron microscope. RESULTS: The rat C6 glioma cells of the 5 and 10 µM Anax imperator adipokinetic hormone groups showed significantly high expressions of brain-derived neurotrophic factor and migrasomes numbers, compared with the control group. CONCLUSION: A positive correlation was found between the brain-derived neurotrophic factor expression level and the formation of migrasome, which indicates that the increased expression of brain-derived neurotrophic factor and the number of migrasomes may be involved to metastasis of the rat C6 glioma cell line induced by the Anax imperator adipokinetic hormone. Therefore, the expression of brain-derived neurotrophic factor and migrasome formation may be promising targets for preventing tumor proliferation, invasion, and metastasis in glioma.


Subject(s)
Brain-Derived Neurotrophic Factor , Glioma , Oligopeptides , Pyrrolidonecarboxylic Acid , Glioma/metabolism , Glioma/pathology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Rats , Cell Line, Tumor , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Oligopeptides/pharmacology , Insect Hormones/metabolism , Cell Movement/drug effects , Immunohistochemistry , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Organelles/metabolism , Organelles/drug effects , Organelles/ultrastructure
3.
mBio ; 14(5): e0098023, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37750700

ABSTRACT

IMPORTANCE: Exclusively in the Bacteroidetes phylum, most proteins exported across the inner membrane via the Sec system and released into the periplasm by type I signal peptidase have N-terminal glutamine converted to pyroglutamate. The reaction is catalyzed by the periplasmic enzyme glutaminyl cyclase (QC), which is essential for the growth of Porphyromonas gingivalis and other periodontopathogens. Apparently, pyroglutamyl formation stabilizes extracytoplasmic proteins and/or protects them from proteolytic degradation in the periplasm. Given the role of P. gingivalis as the keystone pathogen in periodontitis, P. gingivalis QC is a promising target for the development of drugs to treat and/or prevent this highly prevalent chronic inflammatory disease leading to tooth loss and associated with severe systemic diseases.


Subject(s)
Aminoacyltransferases , Periodontitis , Humans , Aminoacyltransferases/genetics , Aminoacyltransferases/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Glutamine
4.
Sci Rep ; 13(1): 10894, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407598

ABSTRACT

Adipokinetic hormones (AKHs) in Arthopoda are characterized by special sequence features including limited choices of amino acid residues in certain positions, such as Trp in position 8. Over 100 different AKHs have been described, but de novo sequencing of novel peptide hormones can be a challenge. In a project of analyzing corpora cardiaca extracts from two fly species, two different moths, a termite and a beetle for their AKHs, we noted specific patterns in the fragmentation spectra of octapeptides in electrospray Q-TOF experiments resulting from the presence of Pro in position 6. The preference for cleavage N-terminal to Pro residues created an abundant y3″-ion, which, in conjunction with the two b-ions resulting from the fragmentation before and after Pro, provided a marker pattern. As Pro6 occurs in about 61% of known AKHs, this information is highly relevant for sequence elucidation. Moreover, the default presence of Trp8 allowed the use of its immonium ion for AKH candidate identification. In addition, we assembled the known AKH sequences from the literature and sequences of AKH-type format found in the Uniprot database in a single online resource. These efforts assisted in the analysis workflow and led to the assignment of two novel AKHs and evidence for the presence of Melme-CC and Dorpa-AKH in the corpus cardiacum of the scarab beetle Sinodendron cylindricum.


Subject(s)
Coleoptera , Insect Hormones , Moths , Animals , Tryptophan/metabolism , Amino Acid Sequence , Proline/metabolism , Insect Hormones/metabolism , Corpora Allata/metabolism , Moths/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Coleoptera/metabolism
5.
J Neuroimmunol ; 382: 578150, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37467699

ABSTRACT

Epidemiological studies showed that Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) frequently co-occur; however, the precise mechanism is not well understood. A unique animal model (Tg-SwDI mice) was developed to investigate the early-onset and robust accumulation of both parenchymal and vascular Aß in the brain. Tg-SwDI mice have been extensively used to study the mechanisms of cerebrovascular dysfunction, neuroinflammation, neurodegeneration, and cognitive decline observed in AD/CAA patients and to design biomarkers and therapeutic strategies. In the present study, we documented interesting new features in the thalamus of Tg-SwDI mice: 1) a sharp increase in the expression of ionized calcium-binding adapter molecule 1 (Iba-1) in microglia in 6-month-old animals; 2) microglia clustering at six months that disappeared in old animals; 3) N-truncated/modified AßN3(pE) peptide in 9-month-old female and 12-month-old male mice; 4) an age-dependent increase in translocator protein (TSPO) expression. These findings reinforce the versatility of this model for studying multiple pathological issues involved in AD and CAA.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Animals , Female , Male , Mice , Alzheimer Disease/complications , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Brain/metabolism , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/genetics , Cerebral Amyloid Angiopathy/metabolism , Disease Models, Animal , Mice, Transgenic , Microglia/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Pyrrolidonecarboxylic Acid/therapeutic use , Thalamus/metabolism
6.
Insect Mol Biol ; 32(6): 615-633, 2023 12.
Article in English | MEDLINE | ID: mdl-37382487

ABSTRACT

Adipokinetic hormone (AKH) is a neuropeptide produced in the insect corpora cardiaca that plays an essential role in mobilising carbohydrates and lipids from the fat body to the haemolymph. AKH acts by binding to a rhodopsin-like G protein-coupled receptor (GPCR), the adipokinetic hormone receptor (AKHR). In this study, we tackle AKH ligand and receptor gene evolution as well as the evolutionary origins of AKH gene paralogues from the order Blattodea (termites and cockroaches). Phylogenetic analyses of AKH precursor sequences point to an ancient AKH gene duplication event in the common ancestor of Blaberoidea, yielding a new group of putative decapeptides. In total, 16 different AKH peptides from 90 species were obtained. Two octapeptides and seven putatively novel decapeptides are predicted for the first time. AKH receptor sequences from 18 species, spanning solitary cockroaches and subsocial wood roaches as well as lower and higher termites, were subsequently acquired using classical molecular methods and in silico approaches employing transcriptomic data. Aligned AKHR open reading frames revealed 7 highly conserved transmembrane regions, a typical arrangement for GPCRs. Phylogenetic analyses based on AKHR sequences support accepted relationships among termite, subsocial (Cryptocercus spp.) and solitary cockroach lineages to a large extent, while putative post-translational modification sites do not greatly differ between solitary and subsocial roaches and social termites. Our study provides important information not only for AKH and AKHR functional research but also for further analyses interested in their development as potential candidates for biorational pest control agents against invasive termites and cockroaches.


Subject(s)
Cockroaches , Insect Hormones , Animals , Cockroaches/metabolism , Phylogeny , Oligopeptides/metabolism , Insect Hormones/metabolism , Pyrrolidonecarboxylic Acid/metabolism
7.
Article in English | MEDLINE | ID: mdl-37196854

ABSTRACT

In this study, the biochemical and physiological features of the firebug Pyrrhocoris apterus were investigated to understand the impact of the honeybee Apis mellifera venom on them using physiological methods (mortality, total level of metabolism), biochemical methods (ELISA, mass spectrometry, polyacrylamide gel electrophoresis, spectrophotometry) and molecular methods (real-time PCR). Together, the obtained findings suggest that venom injection increased the level of adipokinetic hormone (AKH) in the CNS of P. apterus, indicating that this hormone plays a key role in activating defence responses. Furthermore, histamine levels in the gut increased significantly after envenomation and did not seem to be modulated by AKH. In contrast, histamine levels in the haemolymph increased after treatment with AKH and AKH + venom. In addition, we found that vitellogenin levels in haemolymph decreased in both males and females after venom application. Lipids, which are the main energy metabolites used by Pyrrhocoris, were significantly exhausted from the haemolymph after the administration of venom and the co-application with AKH reversed this effect. However, we did not find much influence on the effect of digestive enzymes after the injection of venom. Our research has highlighted the noticeable effect of bee venom on P. apterus' body and provided new insights into the role of AKH in controlling defensive responses. However, it is also likely that there will be alternative defence mechanisms.


Subject(s)
Bee Venoms , Heteroptera , Insect Hormones , Female , Male , Animals , Bee Venoms/metabolism , Histamine/pharmacology , Heteroptera/metabolism , Insect Hormones/pharmacology , Pyrrolidonecarboxylic Acid/metabolism
8.
J Microbiol Biotechnol ; 33(2): 203-210, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36655284

ABSTRACT

Taste is classified into five types, each of which has evolved to play its respective role in mammalian survival. Sour taste is one of the important ways to judge whether food has gone bad, and the sour taste receptor (PKD2L1) is the gene behind it. Here, we investigated whether L-pyroglutamic acid interacts with sour taste receptors through electrophysiology and mutation experiments using Xenopus oocytes. R299 of hPKD2L1 was revealed to be involved in L-pyroglutamic acid binding in a concentration-dependent manner. As a result, it is possible to objectify the change in signal intensity according to the concentration of L-pyroglutamic acid, an active ingredient involved in the taste of kimchi, at the molecular level. Since the taste of other ingredients can also be measured with the method used in this experiment, it is expected that an objective database of taste can be created.


Subject(s)
Taste Buds , Taste , Animals , Humans , Calcium Channels/genetics , Calcium Channels/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Receptors, Cell Surface/genetics , Taste/genetics , Taste Buds/metabolism , Xenopus laevis
9.
Sci Rep ; 13(1): 505, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627316

ABSTRACT

Pyroglutamate amyloid-ß3-42 (AßpE3-42) is an N-terminally truncated and pyroglutamate-modified Aß peptide retaining highly hydrophobic, amyloidogenic, and neurotoxic properties. In Alzheimer's disease (AD) patients, AßpE3-42 peptides accumulate into oligomers and induce cellular toxicity and synaptic dysfunction. AßpE3-42 aggregates further seed the formation of amyloid plaques, which are the pathological hallmarks of AD. Given that AßpE3-42 peptides play critical roles in the development of neurodegeneration, a reliable and reproducible synthetic access to these peptides may support pathological and medicinal studies of AD. Here, we synthesized AßpE3-42 peptides through the microwave-assisted solid-phase peptide synthesis (SPPS). Utilizing thioflavin T fluorescence assay and dot blotting analysis with anti-amyloid oligomer antibody, the amyloidogenic activity of synthesized AßpE3-42 peptides was confirmed. We further observed the cytotoxicity of AßpE3-42 aggregates in cell viability test. To examine the cognitive deficits induced by synthetic AßpE3-42 peptides, AßpE3-42 oligomers were intracerebroventricularly injected into imprinting control region mice and Y-maze and Morris water maze tests were performed. We found that AßpE3-42 aggregates altered the expression level of postsynaptic density protein 95 in cortical lysates. Collectively, we produced AßpE3-42 peptides in the microwave-assisted SPPS and evaluated the amyloidogenic and pathological function of the synthesized peptides.


Subject(s)
Alzheimer Disease , Pyrrolidonecarboxylic Acid , Animals , Mice , Pyrrolidonecarboxylic Acid/metabolism , Solid-Phase Synthesis Techniques , Peptide Fragments/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism
10.
Gen Comp Endocrinol ; 330: 114145, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36244431

ABSTRACT

The adipokinetic hormone/corazonin-related peptide (ACP) is an insect neuropeptide structurally intermediate between corazonin (CRZ) and adipokinetic hormone (AKH). Unlike the AKH and CRZ signaling systems that are widely known for their roles in the mobilization of energy substrates and stress responses, respectively, the main role of ACP and its receptor (ACPR) remains unclear in most arthropods. The current study aimed to localize the distribution of ACP in the nervous system and provide insight into its physiological roles in the disease vector mosquito, Aedes aegypti. Immunohistochemical analysis and fluorescence in situ hybridization localized the ACP peptide and transcript within a number of cells in the central nervous system, including two pairs of laterally positioned neurons in the protocerebrum of the brain and a few ventrally localized neurons within the pro- and mesothoracic regions of the fused thoracic ganglia. Further, extensive ACP-immunoreactive axonal projections with prominent blebs and varicosities were observed traversing the abdominal ganglia. Given the prominent enrichment of ACPR expression within the abdominal ganglia of adult A. aegypti mosquitoes as determined previously, the current results indicate that ACP may function as a neurotransmitter and/or neuromodulator facilitating communication between the brain and posterior regions of the nervous system. In an effort to elucidate a functional role for ACP signaling, biochemical measurement of energy substrates in female mosquitoes revealed a reduction in abdominal fat body in response to ACP that matched the actions of AKH, but interestingly, a corresponding hypertrehalosaemic effect was only found in response to AKH since ACP did not influence circulating carbohydrate levels. Comparatively, both ACP and AKH led to a significant increase in haemolymph carbohydrate levels in male mosquitoes while both peptides had no influence on their glycogen stores. Neither ACP nor AKH influenced circulating or stored lipid levels in both male and female mosquitoes. Collectively, these results reveal ACP signaling in mosquitoes may have complex sex-specific actions, and future research should aim to expand knowledge on the role of this understudied neuropeptide.


Subject(s)
Aedes , Insect Hormones , Neuropeptides , Humans , Animals , Male , Female , Aedes/genetics , Aedes/metabolism , In Situ Hybridization, Fluorescence , Mosquito Vectors , Phylogeny , Insect Hormones/genetics , Insect Hormones/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Carbohydrates
11.
J Assist Reprod Genet ; 39(12): 2737-2746, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36322230

ABSTRACT

PURPOSE: Polycystic ovary syndrome is a complex heterogeneous endocrine disorder associated with established metabolic abnormalities and is a common cause of infertility in females. Glutathione metabolism in the cumulus cells (CCs) of women with PCOS may be correlated to the quality of oocytes for infertility treatment; therefore, we used a metabolomics approach to examine changes in CCs from women with PCOS and oocyte quality. METHODS: Among 135 women undergoing fertility treatment in the present study, there were 43 women with PCOS and 92 without. CCs were collected from the two groups and levels of pyroglutamic acid were measured using LC-MS/MS followed by qPCR and Western blot analysis to examine genes and proteins involved in pyroglutamic acid metabolism related to glutathione synthesis. RESULTS: Women with PCOS showed increased levels of L-pyroglutamic acid, L-glutamate, and L-phenylalanine and decreased levels of Cys-Gly and N-acetyl-L-methionine. Gene expression of OPLAH, involved in pyroglutamic synthesis, was significantly increased in women with PCOS compared with those without. Gene expression of GSS was significantly decreased in women with PCOS and synthesis of glutathione synthetase protein was decreased. Expression of nuclear factor erythroid 2-related factor 2, involved in resistance to oxidative stress, was significantly increased in women with PCOS. CONCLUSIONS: CCs of women with PCOS showed high concentrations of pyroglutamic acid and reduced glutathione synthesis, which causes oxidative stress in CCs, suggesting that decreased glutathione synthesis due to high levels of pyroglutamic acid in CCs may be related to the quality of oocytes in women with PCOS.


Subject(s)
Infertility , Polycystic Ovary Syndrome , Humans , Female , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Cumulus Cells/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Oocytes/metabolism , Infertility/metabolism , Glutathione/metabolism
12.
Molecules ; 27(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36235010

ABSTRACT

The importance of insects in our ecosystems is undeniable. The indiscriminate use of broad-spectrum insecticides is a factor in the decline in insect biomass. We identify and sequence a prominent neuropeptide hormone in insects with an overarching goal to elucidate relatedness and create a database of bioactive peptides that could inform possible cross-activity in biological assays for the identification of a biorational lead compound. The major task of an adipokinetic hormone (AKH) in an insect is the regulation of metabolic events, such as carbohydrate and lipid breakdown in storage tissue during intense muscular work. From genomic and/or transcriptomic information one may predict the genes encoding neuropeptides such as the AKHs of insects. Definite elucidation of the primary structure of the mature peptide with putative post-translational modifications needs analytical chemical methods. Here we use high-resolution mass spectrometry coupled with liquid chromatography to identify unequivocally the AKHs of five insect species (one cockroach, two moths, and two flies) of which either genomic/transcriptomic information was available or sequences from related species. We confirm predicted sequences and discover novel AKH sequences, including one with a post-translational hydroxyproline modification. The additional sequences affirm an evolutionary pattern of dipteran AKHs and a conserved pattern in crambid moths.


Subject(s)
Insect Hormones , Insecticides , Moths , Neuropeptides , Amino Acid Sequence , Animals , Carbohydrates , Ecosystem , Hydroxyproline/metabolism , Insect Hormones/chemistry , Insecta/metabolism , Insecticides/analysis , Lipids , Mass Spectrometry , Moths/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Oligopeptides , Peptides/chemistry , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism
13.
Molecules ; 27(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36235127

ABSTRACT

Accumulated clinical and biomedical evidence indicates that the gut microbiota and their metabolites affect brain function and behavior in various central nervous system disorders. This study was performed to investigate the changes in brain metabolites and composition of the fecal microbial community following injection of amyloid ß (Aß) and donepezil treatment of Aß-injected mice using metataxonomics and metabolomics. Aß treatment caused cognitive dysfunction, while donepezil resulted in the successful recovery of memory impairment. The Aß + donepezil group showed a significantly higher relative abundance of Verrucomicrobia than the Aß group. The relative abundance of 12 taxa, including Blautia and Akkermansia, differed significantly between the groups. The Aß + donepezil group had higher levels of oxalate, glycerol, xylose, and palmitoleate in feces and oxalate, pyroglutamic acid, hypoxanthine, and inosine in brain tissues than the Aß group. The levels of pyroglutamic acid, glutamic acid, and phenylalanine showed similar changes in vivo and in vitro using HT-22 cells. The major metabolic pathways in the brain tissues and gut microbiota affected by Aß or donepezil treatment of Aß-injected mice were related to amino acid pathways and sugar metabolism, respectively. These findings suggest that alterations in the gut microbiota might influence the induction and amelioration of Aß-induced cognitive dysfunction via the gut-brain axis. This study could provide basic data on the effects of Aß and donepezil on gut microbiota and metabolites in an Aß-induced cognitive impairment mouse model.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Gastrointestinal Microbiome , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Disease Models, Animal , Donepezil/pharmacology , Donepezil/therapeutic use , Glutamic Acid/metabolism , Glycerol/metabolism , Hypoxanthines/metabolism , Hypoxanthines/pharmacology , Hypoxanthines/therapeutic use , Inosine/metabolism , Mice , Oxalates/metabolism , Phenylalanine/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Xylose/metabolism
14.
BMC Plant Biol ; 22(1): 430, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36076171

ABSTRACT

BACKGROUND: Sugar beet is an important crop for sugar production. Sugar beet roots are stored up to several weeks post-harvest waiting for processing in the sugar factories. During this time, sucrose loss and invert sugar accumulation decreases the final yield and processing quality. To improve storability, more information about post-harvest metabolism is required. We investigated primary and secondary metabolites of six sugar beet varieties during storage. Based on their variety-specific sucrose loss, three storage classes representing well, moderate, and bad storability were compared. Furthermore, metabolic data were visualized together with transcriptome data to identify potential mechanisms involved in the storage process. RESULTS: We found that sugar beet varieties that performed well during storage have higher pools of 15 free amino acids which were already observable at harvest. This storage class-specific feature is visible at harvest as well as after 13 weeks of storage. The profile of most of the detected organic acids and semi-polar metabolites changed during storage. Only pyroglutamic acid and two semi-polar metabolites, including ferulic acid, show higher levels in well storable varieties before and/or after 13 weeks of storage. The combinatorial OMICs approach revealed that well storable varieties had increased downregulation of genes involved in amino acid degradation before and after 13 weeks of storage. Furthermore, we found that most of the differentially genes involved in protein degradation were downregulated in well storable varieties at both timepoints, before and after 13 weeks of storage. CONCLUSIONS: Our results indicate that increased levels of 15 free amino acids, pyroglutamic acid and two semi-polar compounds, including ferulic acid, were associated with a better storability of sugar beet taproots. Predictive metabolic patterns were already apparent at harvest. With respect to elongated storage, we highlighted the role of free amino acids in the taproot. Using complementary transcriptomic data, we could identify potential underlying mechanisms of sugar beet storability. These include the downregulation of genes for amino acid degradation and metabolism as well as a suppressed proteolysis in the well storable varieties.


Subject(s)
Beta vulgaris , Beta vulgaris/genetics , Beta vulgaris/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Sucrose/metabolism , Sugars/metabolism
15.
Sci Rep ; 12(1): 15975, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153368

ABSTRACT

5-Oxoproline (5OP) is a poorly researched ubiquitous natural amino acid found in all life forms. We have previously shown that Salmonella enterica serovar Typhimurium (Salmonella) responds to 5OP exposure by reducing cyclic-di-GMP levels, and resultant cellulose dependent cellular aggregation in a YfeA and BcsA dependent manner. To understand if 5OP was specifically sensed by Salmonella we compared the interaction of Salmonella with 5OP to that of the chemically similar and biologically relevant molecule, L-proline. We show that L-proline but not 5OP can be utilized by Salmonella as a nutrient source. We also show that 5OP but not L-proline regulates cellulose dependent cellular aggregation. These results imply that 5OP is utilized by Salmonella as a specific signal. However, L-proline is a 5OP aggregation inhibitor implying that while it cannot activate the aggregation pathway by itself, it can inhibit 5OP dependent activation. We then show that in a L-proline transporter knockout mutant L-proline competition remain unaffected, implying sensing of 5OP is extracellular. Last, we identify a transcriptional effect of 5OP exposure, upregulation of the mgtCBR operon, known to be activated during host invasion. While mgtCBR is known to be regulated by both low pH and L-proline starvation, we show that 5OP regulation of mgtCBR is indirect through changes in pH and is not dependent on the 5OP chemical structure similarity to L-proline. We also show this response to be PhoPQ dependent. We further show that the aggregation response is independent of pH modulation, PhoPQ and MgtC and that the mgtCBR transcriptional response is independent of YfeA and BcsA. Thus, the two responses are mediated through two independent signaling pathways. To conclude, we show Salmonella responds to 5OP specifically to regulate aggregation and not specifically to regulate gene expression. When and where in the Salmonella life cycle does 5OP sensing takes place remains an open question. Furthermore, because 5OP inhibits c-di-GMP through the activation of an external sensor, and does not require an internalization step like many studied biofilm inhibitors, 5OP or derivatives might be developed into useful biofilm inhibitors.


Subject(s)
Pyrrolidonecarboxylic Acid , Salmonella typhimurium , Bacterial Proteins/metabolism , Cellulose/metabolism , Gene Expression Regulation, Bacterial , Proline/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Serogroup
16.
Eur J Pharmacol ; 931: 175178, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35948163

ABSTRACT

Glutaminyl cyclases (QC) catalyze the cyclization of proteins and turn N-terminal glutamine or glutamic acid into N-terminal pyroglutamate, resulting in protection of proteins from aminopeptidases and an increase of their stabilities. The aberrant N-terminal pyroglutamate has been found in various diseases, including Alzheimer's disease (AD), Huntington's disease (HD) and cancer. Two kinds of human QC, the secretory sQC and the Golgi resident gQC, are identified to date. Several substrates of sQC involving beta amyloid (Aß), Huntington (HTT) protein and certain inflammatory mediators such as CCL2 and CX3CL1 have been observed to associate with neurodegenerative diseases and cancers. The Golgi resident gQC can modify N-terminus of CD47 that directly influences the interaction of CD47 and SIRPα resulting in the modulations of the immunological surveillance related mechanisms in cancer. Additionally, inflammatory chemokines CCL2 and CX3CL1 can also be modified by gQC. Several QC inhibitors with differential scaffold structures have been developed and investigated. Among these QC inhibitors, PQ912, a benzimidazole-based inhibitor, has been studied in a phase II clinical trial to treat AD. In this review, we will summarize the current knowledge about QCs' tissue expression patterns, their potential cellular substrates in the context of cancers, AD and HD. After introducing QCs' molecular structures and catalysis mechanisms, the structures and efficacies of the currently reported QCs' inhibitors will also be summarized.


Subject(s)
Alzheimer Disease , Aminoacyltransferases , Neoplasms , Neurodegenerative Diseases , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Aminoacyltransferases/chemistry , Aminoacyltransferases/metabolism , Aminoacyltransferases/therapeutic use , Amyloid beta-Peptides , CD47 Antigen/therapeutic use , Humans , Neoplasms/drug therapy , Neurodegenerative Diseases/drug therapy , Pyrrolidonecarboxylic Acid/metabolism , Pyrrolidonecarboxylic Acid/therapeutic use
17.
Int J Mol Sci ; 23(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35457083

ABSTRACT

In insects, adipokinetic hormone is the primary hormone responsible for the mobilization of stored energy. While a growing body of evidence has solidified the role of adipokinetic hormone (AKH) in modulating the physiological and behavioral responses to metabolic stress, little is known about the upstream endocrine circuit that directly regulates AKH release. We evaluated the AKH-producing cell (APC) transcriptome to identify potential regulatory elements controlling APC activity and found that a number of receptors showed consistent expression levels, including all known dopamine receptors and the pigment dispersing factor receptor (PDFR). We tested the consequences of targeted genetic knockdown and found that APC limited expression of RNAi elements corresponding to each dopamine receptor and caused a significant reduction in survival under starvation. In contrast, PDFR knockdown significantly extended lifespan under starvation, whereas expression of a tethered PDF in APCs resulted in significantly shorter lifespans. These manipulations caused various changes in locomotor activity under starvation. We used live-cell imaging to evaluate the acute effects of the ligands for these receptors on APC activation. Dopamine application led to a transient increase in intracellular calcium in a trehalose-dependent manner. Furthermore, coapplication of dopamine and ecdysone led to a complete loss of this response, suggesting that these two hormones act antagonistically. We also found that PDF application led to an increase in cAMP in APCs and that this response was dependent on expression of the PDFR in APCs. Together, these results suggest a complex circuit in which multiple hormones act on APCs to modulate metabolic state.


Subject(s)
Insect Hormones , Starvation , Animals , Dopamine/metabolism , Drosophila melanogaster/genetics , Insect Hormones/genetics , Insect Hormones/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Signal Transduction , Starvation/metabolism
18.
Sci Rep ; 12(1): 2450, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165334

ABSTRACT

The neuroplastic mechanism of sex reversal in the fish brain remains unclear due to the difficulty in identifying the key neurons involved. Mozambique tilapia show different reproductive behaviours between sexes; males build circular breeding nests while females hold and brood fertilized eggs in their mouth. In tilapia, gonadotropin-releasing hormone 3 (GnRH3) neurons, located in the terminal nerve, regulate male reproductive behaviour. Mature males have more GnRH3 neurons than mature females, and these neurons have been indicated to play a key role in the androgen-induced female-to-male sex reversal of the brain. We aimed to elucidate the signalling pathway involved in the androgen-induced increase in GnRH3 neurons in mature female tilapia. Applying inhibitors to organotypic cultures of brain slices, we showed that the insulin-like growth factor (IGF)-1 receptor (IGF-1R)/PI3K/AKT/mTOR pathway contributed to the androgen-induced increase in GnRH3 neurons. The involvement of IGF-1 and IGF-1R in 11-ketotestosterone (11-KT)-induced development of GnRH3 neurons was supported by an increase in Igf-1 mRNA shortly after 11-KT treatment, the increase of GnRH3 neurons after IGF-1 treatment and the expression of IGF-1R in GnRH3 neurons. Our findings highlight the involvement of IGF-1 and its downstream signalling pathway in the sex reversal of the tilapia brain.


Subject(s)
Brain/metabolism , Gonadotropin-Releasing Hormone/metabolism , Methyltestosterone/pharmacology , Neurons/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Receptor, IGF Type 1/metabolism , Reproduction/drug effects , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , Brain/drug effects , Female , Insulin-Like Growth Factor I/pharmacology , Male , Neurons/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Testosterone/analogs & derivatives , Testosterone/pharmacology , Tilapia
19.
Nat Commun ; 13(1): 692, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121731

ABSTRACT

The intestine is a central regulator of metabolic homeostasis. Dietary inputs are absorbed through the gut, which senses their nutritional value and relays hormonal information to other organs to coordinate systemic energy balance. However, the gut-derived hormones affecting metabolic and behavioral responses are poorly defined. Here we show that the endocrine cells of the Drosophila gut sense nutrient stress through a mechanism that involves the TOR pathway and in response secrete the peptide hormone allatostatin C, a Drosophila somatostatin homolog. Gut-derived allatostatin C induces secretion of glucagon-like adipokinetic hormone to coordinate food intake and energy mobilization. Loss of gut Allatostatin C or its receptor in the adipokinetic-hormone-producing cells impairs lipid and sugar mobilization during fasting, leading to hypoglycemia. Our findings illustrate a nutrient-responsive endocrine mechanism that maintains energy homeostasis under nutrient-stress conditions, a function that is essential to health and whose failure can lead to metabolic disorders.


Subject(s)
Drosophila Proteins/metabolism , Eating/physiology , Energy Metabolism/physiology , Gastrointestinal Hormones/metabolism , Homeostasis , Nutrients/metabolism , Somatostatin/metabolism , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Eating/genetics , Energy Metabolism/genetics , Enteroendocrine Cells/metabolism , Gastrointestinal Hormones/genetics , Gene Knockout Techniques , Humans , Hypoglycemia/genetics , Hypoglycemia/metabolism , Insect Hormones/genetics , Insect Hormones/metabolism , Oligopeptides/genetics , Oligopeptides/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/genetics , Somatostatin/genetics , Survival Analysis
20.
Stem Cell Rev Rep ; 18(2): 585-594, 2022 02.
Article in English | MEDLINE | ID: mdl-34449012

ABSTRACT

Bone marrow mesenchymal stem cells (BMSCs) have been shown to promote stroke recovery, however, the underlying mechanisms are not well understood. In this study naïve rats were intravenously injected with syngeneic BMSCs to screen for potential differences in brain metabolite spectrum versus vehicle-treated controls by capillary electrophoresis-mass spectrometry. A total of 65 metabolites were significantly changed after BMSC treatment. Among them, 5-oxoproline, an intermediate in the biosynthesis of the endogenous glutathione (GSH), was increased. To confirm the obtained results and investigate the metabolic pathways, BMSCs were injected into rats 24 h after middle cerebral artery occlusion (MCAO). Rats receiving vehicle solution and sham-operated animals served as controls. High performance liquid chromatography, reverse transcription-quantitative polymerase chain reaction, and Western blotting revealed that intravenous BMSC application increased the levels of 5-oxoproline and GSH in MCAO rats, as well as the expression of key enzymes involved in GSH synthesis including, gamma-glutamylcyclotransferase and gamma-glutamylcysteine ligase. Subsequent clinical investigation confirmed that acute ischemic stroke patients had higher plasma 5-oxoproline and GSH levels than age- and sex-matched non-stroke controls. The optimal cutoff value for 5-oxoproline diagnosing acute ischemic stroke (≤ 7d) was 3.127 µg/mL (sensitivity, 63.4 %; specificity, 81.2 %) determined by receiver characteristic operator curve. The area under the curve was 0.782 (95 % confidence interval: 0.718-0.845). Our findings indicate that BMSCs play a protective role in ischemic stroke through upregulation of GSH and 5-oxoproline is a potential biomarker for acute ischemic stroke. Ischemic stroke causes oxidative stress and induction of endogenous, glutathione-dependent anti-oxidative mechanisms. 5-oxoproline, an important metabolite in glutathione biosynthesis, could serve as a biomarker of acute ischemic stroke. Moreover, intravenous bone marrow mesenchymal stem cell (BMSC) treatment after experimental stroke upregulates the expression of key enzymes involved in glutathione synthesis, which results in better antioxidative defense and improved stroke outcome.


Subject(s)
Ischemic Stroke , Mesenchymal Stem Cells , Stroke , Animals , Bone Marrow Cells/metabolism , Glutathione/metabolism , Glutathione/pharmacology , Glutathione/therapeutic use , Humans , Infarction, Middle Cerebral Artery/metabolism , Mesenchymal Stem Cells/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Pyrrolidonecarboxylic Acid/pharmacology , Pyrrolidonecarboxylic Acid/therapeutic use , Rats , Stroke/metabolism , Stroke/therapy , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...