Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 323
Filter
1.
J Agric Food Chem ; 72(20): 11804-11819, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717061

ABSTRACT

Apples (Malus × domestica Borkh.) and pears (Pyrus communis L.) are valuable crops closely related within the Rosaceae family with reported nutraceutical properties derived from secondary metabolites including phloridzin and arbutin, which are distinctive phenolic metabolites characterizing apples and pears, respectively. Here, we generated a de novo transcriptome assembly of an intergeneric hybrid between apple and pear, accumulating intermediate levels of phloridzin and arbutin. Combining RNA-seq, in silico functional annotation prediction, targeted gene expression analysis, and expression-metabolite correlations, we identified candidate genes for functional characterization, resulting in the identification of active arbutin synthases in the hybrid and parental genotypes. Despite exhibiting an active arbutin synthase in vitro, the natural lack of arbutin in apples is reasoned by the absence of the substrate and broad substrate specificity. Altogether, our study serves as the basis for future assessment of potential physiological roles of identified genes by genome editing of hybrids and pears.


Subject(s)
Arbutin , Chalcones , Fruit , Malus , Plant Proteins , Pyrus , Transcriptome , Malus/genetics , Malus/metabolism , Malus/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Pyrus/genetics , Pyrus/metabolism , Pyrus/chemistry , Arbutin/metabolism , Arbutin/chemistry , Fruit/genetics , Fruit/metabolism , Fruit/chemistry , Chalcones/metabolism , Chalcones/chemistry , Gene Expression Regulation, Plant , Hybridization, Genetic
2.
Food Chem ; 449: 139213, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38631134

ABSTRACT

This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.


Subject(s)
Fermentation , Flavoring Agents , Odorants , Pyrus , Saccharomyces cerevisiae , Sorbitol , Taste , Wine , Wine/analysis , Wine/microbiology , Pyrus/chemistry , Pyrus/microbiology , Pyrus/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Sorbitol/metabolism , Sorbitol/analysis , Odorants/analysis , Ethanol/metabolism , Ethanol/analysis , Pichia/metabolism , Metschnikowia/metabolism , Fruit/chemistry , Fruit/microbiology , Fruit/metabolism
3.
Int J Biol Macromol ; 267(Pt 1): 131482, 2024 May.
Article in English | MEDLINE | ID: mdl-38599423

ABSTRACT

The aim of this study was to explore the dynamic changes in the physicochemical properties of Laiyang pear residue polysaccharide (LPP) during in vitro digestion, as well as its protective effect on the intestines. Monosaccharide composition and molecular weight analysis showed that there was no significant change in LPP during the oral digestion stage. However, during the gastric and intestinal digestion stages, the glycosidic bonds of LPP were broken, leading to the dissociation of large molecular aggregates and a significant increase in reducing sugar content (CR) accompanied by a decrease in molecular weight. In addition, LPP exerted the intestinal protective ability via inhibiting gut inflammation, improving intestinal barrier, and regulating intestinal flora in DSS-induced mice. Specifically, LPP mitigated DSS-induced intestinal pathological damage of mice via enhancing intestinal barrier integrity and upregulating expressions of TJ proteins, and suppressed inflammation by inhibiting NF-κB signaling axis. Furthermore, LPP decreased the ratio of Firmicutes/Bacteroidetes, increased the relative abundance of Lactobacillus, and altered the diversity and the composition of gut microbiota in DSS-induced mice. Therefore, LPP had the potential to be a functional food that improved gut microbiota environment to enhance health and prevent diseases, such as a prebiotic.


Subject(s)
Dextran Sulfate , Gastrointestinal Microbiome , Polysaccharides , Animals , Gastrointestinal Microbiome/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Mice , Dextran Sulfate/adverse effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Pyrus/chemistry , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Digestion/drug effects , Male , NF-kappa B/metabolism
4.
J Food Sci ; 89(5): 2597-2610, 2024 May.
Article in English | MEDLINE | ID: mdl-38558325

ABSTRACT

Mechanical bruise is one of the most crucial factors affecting the quality of pears, which has a huge influence on postharvest transportation, storage, and sale of pears. To rapidly detect early bruises of pears across different bruise types, hyperspectral imaging technology coupled with transfer learning methods was performed in this study. Two transfer learning methods, that is, transfer component analysis (TCA) and manifold embedded distribution alignment (MEDA), were applied for two tasks (impact bruise â†’ crush bruise, crush bruise â†’ impact bruise). Supporting vector machine (SVM) was set as a baseline to conduct analysis and comparison of the transferability of the models. The result showed that, for task 1 (impact bruise â†’ crush bruise), MEDA and TCA-SVM model achieved a classification accuracy of 93.33% and 91.11% in target domain, individually. For task 2 (crush bruise â†’impact bruise), MEDA and TCA-SVM model achieved an accuracy of 88.89% and 85.19% in target domain, respectively. Both the two models improved the accuracy compared with SVM models (84.44% for task 1; 77.04% for task 2). Overall, the results indicated that transfer learning approaches could perform pear bruise detection across different bruise types. Hyperspectral imaging in combination with transfer learning methods is a promising possibility for the efficient and cost-saving field detection of fruit bruises among different bruise types. PRACTICAL APPLICATION: The production and export of pears are faced with problems of mechanical damage due to vibration, collision, impact, and other factors, which cause chemical changes in color, odor, and taste. Sometimes the bruise was too slight to be ignored which would infect with other fruits in the future. In this study, we used hyperspectral imaging combined with transfer learning method could detect these slight bruises caused by different factors. Distinguishing different types of damage can provide a reference for quick judgment of the process causing damage and take prompt measures to reduce economic losses.


Subject(s)
Fruit , Hyperspectral Imaging , Pyrus , Support Vector Machine , Pyrus/chemistry , Hyperspectral Imaging/methods , Contusions
5.
Molecules ; 28(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375349

ABSTRACT

To comprehensively understand the volatile compounds and assess the aroma profiles of different types of Pyrus ussuriensis Maxim. Anli, Dongmili, Huagai, Jianbali, Jingbaili, Jinxiangshui, and Nanguoli were detected via headspace solid phase microextraction (HS-SPME) coupled with two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC-TOFMS). The aroma composition, total aroma content, proportion and number of different aroma types, and the relative quantities of each compound were analyzed and evaluated. The results showed that 174 volatile aroma compounds were detected in various cultivars, mainly including esters, alcohols, aldehydes, and alkenes: Jinxiangshui had the highest total aroma content at 2825.59 ng/g; and Nanguoli had the highest number of aroma species detected at 108. The aroma composition and content varied among pear varieties, and the pears could be divided into three groups based on principal component analysis. Twenty-four kinds of aroma scents were detected; among them, fruit and aliphatic were the main fragrance types. The proportions of aroma types also varied among different varieties, visually and quantitatively displaying changes of the whole aroma of the different varieties of pears brought by the changes in aroma composition. This study contributes to further research on volatile compound analysis, and provides useful data for the improvement of fruit sensory quality and breeding work.


Subject(s)
Odorants , Pyrus , Volatile Organic Compounds , Odorants/analysis , Plant Breeding , Pyrus/chemistry , Pyrus/genetics , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry , China
6.
Plant Foods Hum Nutr ; 78(2): 445-451, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37354264

ABSTRACT

The quality of transgenic fruits was studied only for apple, plum and citrus. We first evaluated the transgenic fruit characteristics of pear, which is one of the most consumed fruit crops. The size, shape and biochemical composition of fruits from field-grown pear trees with marker genes were analyzed for 5 years. Soluble solids, vitamin C, and phenolic compounds varied significantly between transgenic lines, but these deviations were inconsistent. Arbutin content and sugar:acidity ratio were the most stable parameters. One transgenic line showed a stable increase in fruit weight (by 12.2-21.2%). The extremely dry and hot season increased the total phenolics (2.6-3.6 times) and tannin (3.2-3.6 times) levels, but not flavonoids. The harvest year had a stronger effect on analyzed fruit parameters than the genotype. Our study found no unintended effects of genetic transformation on pear fruit quality and confirms the importance of long-term field tests for perennial transgenic plants.


Subject(s)
Malus , Pyrus , Pyrus/genetics , Pyrus/chemistry , Fruit/genetics , Fruit/chemistry , Trees/genetics , Tannins/analysis
7.
Int J Biol Macromol ; 242(Pt 1): 124719, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37150373

ABSTRACT

The most remarkable characteristic of European pears is extremely perishable and difficult to store after postharvest softening. Low-temperature storage is one of the most commonly used methods to prolong the shelf life of European pears. However, the regulatory mechanism of the low-temperature delay of the softening of European pears is still unclear. In this study, the fruit firmness, pectin polysaccharide content, pectin-degrading enzyme activity, and pectin degradation gene expression of 'Docteur Jules Guyot' pears under low temperature (LT) and room temperature (RT) were analyzed. It was found that water-soluble pectin (WSP) was significantly negatively correlated with fruit flesh firmness, and the activities of several pectin-degrading enzymes were inhibited under LT storage conditions. In addition, it was also found that the gene expression patterns of PcPME2, PcPME3, PcPG1, PcPG2, PcPL, PcGAL1, PcGAL2, PcGAL4, and PcARF1 were inhibited by LT. The C-repeat binding factors PcCBF1 and PcCBF2 were also inhibited by long-term LT storage. Correlation analysis showed that the expression of PcCBFs was positively correlated with pectin-degradation enzyme genes, and we found that the promoters of many pectin-degradation enzyme genes contain the CRT/DRE motif, which CBF can directly bind. Therefore, it is speculated that long-term low-temperature conditions inhibit pectin degradation through PcCBFs.


Subject(s)
Pyrus , Pyrus/chemistry , Temperature , Polysaccharides/metabolism , Pectins/metabolism , Fruit/chemistry
8.
Molecules ; 28(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37110793

ABSTRACT

BACKGROUND: The genetic diversity of Sardinian pear germplasm has received limited attention regarding its chemical composition. Understanding this composition can aid in the setting up of resilient, extensive groves that offer multiple products and ecosystem services. This research aimed at investigating the antioxidant properties and phenolic compounds of ancient pear cultivars grown extensively in Sardinia (Italy); Methods: the cultivars Buttiru, Camusina, Spadona, and Coscia (as a reference) were compared. Fruit samples were manually peeled and cut. Their flesh, peel, core, and peduncle were frozen separately, lyophilized, and milled before being analysed; Results: The content of total phenolics (TotP), total flavonoids (TotF), condensed tannins (CT), and antioxidant capacity in each fruit part varied significantly among the cultivars. The TotP content was high in the peduncle (42.2-58.8 g GAE kg-1 DM) and low in flesh (6.4-17.7 g GAE kg-1 DM); Conclusions: the highest values of antioxidant capacity, TotP, NTP, TotF, and CT were found in the flesh of the cultivar Buttiru and in the peel of the cultivar Camusina. Chlorogenic acid was the major individual phenolic compound in peel, flesh and core, whereas arbutin was mostly present in the peduncle. Results can contribute to revise target exploitations of underutilized ancient pear cultivars.


Subject(s)
Proanthocyanidins , Pyrus , Antioxidants/chemistry , Fruit/chemistry , Pyrus/chemistry , Ecosystem , Plant Extracts/chemistry , Phenols/chemistry , Flavonoids/analysis , Proanthocyanidins/analysis
9.
Food Chem ; 418: 135963, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-36944308

ABSTRACT

Aroma is one of the most important sensory characteristics of fruit quality. Here, the aroma composition of mature fruits of 202 pear cultivars was detected by headspace solid-phase microextraction (HS-SPME) with gas chromatography-mass spectrometry (GC-MS). As a result, 221 major volatile components were detected, among which aldehydes, esters and alcohols were the most dominant aroma components. We also found Pyrus communis L. had the highest volatile content, followed by Pyrus sinkiangensis Yu, Pyrus ussuriensis Maxim., Pyrus bretschneideri Rehd., Hybrid Breeding cultivar group, Chinese sand pears (Pyrus pyrifolia Nakai), and Japanese and Korean (J&K) sand pears (Pyrus pyrifolia Nakai). In addition, the aroma composition and contents varied greatly among the different ripening-period groups. Finally, the fruits of pear germplasms also showed geographical flavor characteristics. These basic data and results could help us better understanding the variations of aroma quality among pear varieties and promote the development of pear breeding program.


Subject(s)
Pyrus , Volatile Organic Compounds , Pyrus/chemistry , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Microextraction/methods , Plant Breeding , Alcohols/analysis , Fruit/chemistry , Odorants/analysis , Volatile Organic Compounds/analysis
10.
Molecules ; 28(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36838724

ABSTRACT

The Cuiguan pear is called "June snow" and the skin is thin; the meat is crisp and juicy; the taste is thick and fresh; and the juice is rich and sweet. In this study, the volatile organic compounds and the sensory and physicochemical parameters of the Cuiguan pear from four different regions of China (Sichuan (SC), Shangdong (SD), Chongming (CM), Zhuanghang (ZH)) were assessed. The highest differences in the physicochemical parameters were observed between four regions. The volatile fingerprints of GC-IMS showed great differences in the volatile of the Cuiguan pear, which suggested that the aroma of pears could be largely impacted by origin areas. (E)-ethyl-2-hexenoate can be used to distinguish between the 'CM' and pears from other regions. High contents of 2-heptanone, 1-pentanol, 1-butanol, 3-methylbutanol, butyl 2-methylbutanoate, heptyl acetate and butyl acetate were observed in the 'SD'. Dimethyl trisulfide, 6-methyl-5-hepten-2-one, 3-hydroxy-2-butanone, 1-penten-3-one, beta-pinene, γ-terpinene, propanal, (e)-2-pentenal, (e)-2-heptenal, 1-pentanol and 3-methyl-1-pentanol were primarily contained in the 'ZH'. Principal component analysis showed that there was very good discrimination based on the information obtained from GC-IMS for four samples. These findings were in agreement with the sensory analysis. In the opinion of the respondents to the consumer test, 'ZH' resulted in the most appreciated sample based on the average scores of the acceptability. This study provides some reference for the development and utilization of the Cuiguan pear.


Subject(s)
Pyrus , Volatile Organic Compounds , Pyrus/chemistry , Fruit/chemistry , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Volatile Organic Compounds/analysis
11.
Biosensors (Basel) ; 13(2)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36831969

ABSTRACT

Browning is the most common physiological disease of Yali pears during storage. At the initial stage, browning only occurs in the tissues near the fruit core and cannot be detected from the appearance. The disease, if not identified and removed in time, will seriously undermine the quality and sale of the whole batch of fruit. Therefore, there is an urgent need to explore a method for early diagnosis of the browning in Yali pears. In order to realize the dynamic and online real-time detection of the browning in Yali pears, this paper conducted online discriminant analysis on healthy Yali pears and those with different degrees of browning using visible-near infrared (Vis-NIR) spectroscopy. The experimental results show that the prediction accuracy of the original spectrum combined with a 1D-CNN deep learning model reached 100% for the test sets of browned pears and healthy pears. Features extracted by the 1D-CNN method were converted into images by Gramian angular field (GAF) for PCA visual analysis, showing that deep learning had good performance in extracting features. In conclusion, Vis-NIR spectroscopy combined with the 1D-CNN discriminant model can realize online detection of browning in Yali pears.


Subject(s)
Pyrus , Pyrus/chemistry , Spectroscopy, Near-Infrared/methods , Fruit/chemistry
12.
Food Chem ; 409: 135302, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36623358

ABSTRACT

Cell wall polysaccharides and physicochemical properties are the major quality characteristics of fruit, but they are significantly affected by the postharvest disease. In this study, the influence of Alternaria alternata-induced disease on the contents of cell wall polysaccharides and physicochemical properties in 'Korla' pear flesh during storage, as well as their relationships of the optical absorption (µa) and reduced scattering (µs') were explored. The infected pear had lower individual sugars, covalent-soluble pectin, cellulose and hemicellulose contents than the healthy ones. The successive decreases of µa and increases of µs' in pears were observed while the process of pathogen infection. Path-coefficient analysis indicated the ionic-soluble pectin was the main reason responsible for the change of µs' in infected pear at 675 nm and 980 nm. This study indicated the optical properties have the possibility to present the physicochemical characteristics and cell wall polysaccharides of pears during postharvest pathogen infection.


Subject(s)
Pyrus , Pyrus/chemistry , Polysaccharides/chemistry , Cell Wall/chemistry , Pectins/analysis , Alternaria , Fruit/chemistry
13.
BMC Microbiol ; 22(1): 239, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36199024

ABSTRACT

BACKGROUND: Fruit bagging is an effective technique for fruit protection in the orchard management. Bagging can create a micro-environment for fruit growth and affect fruit quality during storage, in which the diversity of microorganisms may play an important role. Therefore, various methods including biochemistry, analytical chemistry, and bioinformatics methods were used to reveal the influences of fruit bagging on postharvest fruit quality, physiological characters, decay and surface fungal community of 'Yali' pear fruit were investigated in this study. RESULTS: Fruit bagging significantly decreased the postharvest decay after 15 days of ambient storage. There were no significant differences in fruit firmness, titratable acid and ethylene production rate between the fruit-bagging and non-bagging group after 15 days of storage, while the soluble solids contents (SSC) and respiration rate in non-bagging fruit was significantly higher than that in fruit-bagging after 15 days of storage. Furthermore, the surface microbes of pear were collected and determined by the new generation sequencing technology. The alpha diversity of fungi in non-bagging fruit decreased significantly after 15 days of storage, while there were no significant changes in bagging fruit. Ascomycota and Basidiomycota were the two major phyla detected in the bagging fruit, and the dominant fungal genera were Alternaria (23.7%), Mycosphaerella (17.25%), Vishniacozyma (16.14%), and Aureobasidium (10.51%) after 15 days of storage. For the non-bagging pear, Ascomycota was the only phylum detected, and the dominant genera was Pichia (83.32%) after 15 days of storage. The abundance of Pichia may be regarded as the biomarker to indicate the degree of fruit decay. CONCLUSIONS: This study showed that fruit bagging could significantly reduce postharvest fruit decay and respiration rate of 'Yali' pear. Significant differences were found in fungal composition between bagging and non-bagging pear after storage for 0 or 15 days. Fruit bagging maintained the diversity of fungi on the fruit surface, increased the abundance of non-pathogenic fungi, and even antagonistic fungi such as Aureobasidium, Vishniacozyma, and Mycosphaerella. A reduction in the abundance of pathogenic fungi and incidence of postharvest decay during the storage of 'Yali' pear were also recorded. In conclusion, fruit-bagging changed the fungal diversity on fruit surface of 'Yali' pear, which had significant effect on reducing postharvest fruit decay, and thus prolong the storage period of 'Yali' pears. The future thrust of this study will focus on the isolation of fungi or bacteria from pear fruit surface and identify their roles in causing fruit decay and changing fruit quality during storage.


Subject(s)
Mycobiome , Pyrus , Alternaria , Ethylenes/analysis , Fruit/chemistry , Pyrus/chemistry
14.
J Food Biochem ; 46(10): e14278, 2022 10.
Article in English | MEDLINE | ID: mdl-35748399

ABSTRACT

Our previous study on differential proteome and transcriptome of refrigerated "Nanguo" pears found that the PuLOX2S gene was very active in the LOX pathway of aroma synthesis, but the regulation of expression behavior of the gene and how to mediate the aroma synthesis were still unknown. Partial genome sequences of PuLOX2S were cloned, and its promoter was analyzed by Tail-PCR. The PuLOX2S promoter sequences of 610 bp were isolated and identified using Plant CARE, which were composed of cis-acting elements, such as ABRE, AE-box, ARE, CAAT-box, Box 4, TCCC-motif, CAT-box, CGTCA-motif, G-Box, TATA-box, TCA-element, TGA-element, and TGACG-motif. The Y1H technology was used to determine whether proteins interacted with PuLOX2S based on the pGADT7-Chinese white pear cDNA library. The Y1H results were shown that 52 proteins could interact with the PuLOX2S promoter, which was compared with sequences in the GenBank database. The three genes PuERF12, PuMYB44, and PuRF2a were the candidate transcription factors of PuLOX2S and PuCDPK10 played an important role in the gene expression in Nanguo pears. Therefore, the results of this study supply important information for revealing new function of PuLOX2S and the regulation mechanism of expression behavior of the gene. It provides new ideas for the regulation of aroma synthesis in Nanguo pears. PRACTICAL APPLICATIONS: The gene PuLOX2S was very active in the LOX pathway of aroma synthesis, but the regulation of expression behavior of the gene and how to mediate the aroma synthesis were still unknown. We have successfully cloned the partial sequence of the gene and the 610 bp promoter sequence upstream of PuLOX2S and analyzed the structure of cis-acting elements. There are 52 proteins that interact with the PuLOX2S promoter revealed by the Y1H technique. Three transcription factors among the proteins can regulate the level of PuLOX2S expression, which provides new ideas for the regulation of aroma synthesis in "Nanguo" pears. Moreover, the study results could supply scientific information for the quality improvement and genetic modification of Nanguo pears.


Subject(s)
Pyrus , Cloning, Molecular , Esters/chemistry , Food Storage/methods , Fruit/chemistry , Gene Expression Regulation, Plant , Plant Proteins/chemistry , Proteome/analysis , Pyrus/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
15.
J Agric Food Chem ; 70(16): 5137-5150, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35426665

ABSTRACT

The phenolic profiles and other major metabolites in juices made from fruits of 17 cultivars and selections of European pears were investigated using UHPLC-DAD-ESI-QTOF-MS and GC-FID, respectively. A total of 39 phenolic compounds were detected, including hydroxybenzoic acids, hydroxycinnamic acids, flavan-3-ols, procyanidins, flavonols, and arbutin. Among these compounds, 5-O-caffeoylquinic acid was the most predominant, accounting for 14-39% of total quantified phenolic contents (TPA) determined in this study. The variations were mainly cultivar dependent. The genetic background effect on the chemical compositions is complex, and breeding selections from the same parental cultivars varied dramatically in chemical compositions. Putative perry pears contained more 4-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, caffeoyl N-trytophan, caffeoylshikimic acid, coumaroylquinic acid isomer, syringic acid hexoside, procyanidin dimer B2, (+)-catechin, and malic acid, whereas putative dessert pears had higher esters, alcohols, and aldehydes. The results will be helpful in providing industry with phytochemical compositional information, assisting pear selections in commercial utilization.


Subject(s)
Pyrus , Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Fruit/genetics , Phenols/chemistry , Plant Breeding , Pyrus/chemistry , Pyrus/genetics
16.
J Sci Food Agric ; 102(11): 4435-4445, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35092628

ABSTRACT

BACKGROUND: Acibenzolar-S-methyl (ASM), a well-known plant activator, has been used to protect fruit and vegetable from fungal invasion and maintain quality. However, little is known about the molecular mechanism of ASM in regulating chlorophyll and carotenoid metabolisms. Therefore, Docteur Jules Guyot pears were used as the materials to study the changes of hydrogen peroxide (H2 O2 ) production, mitogen-activated protein kinase (MAPK) cascade, transcription factors, chlorophyll, and carotenoid metabolisms after ASM and PD98059 (a MAPK cascade blocker) treatments. RESULTS: ASM increased NADPH oxidase (NOX) and superoxide dismutase (SOD) activities, and H2 O2 content, promoted PcMAPKKK1, PcMAPKK3, and PcMAPK6 expressions, and down-regulated PcMYC2, PcPIF1, PcPIF3, and PcPIF4 expressions in exocarp of pears. ASM also delayed the decrease of chlorophyll a and b contents, and inhibited the accumulation of ß-carotene, lycopene and lutein, PcNYC1, PcHCAR, PcPPH, PcSGR1/2, PcPAO, PcPSY, PcLCYB, PcCRTZ2, PcCCS1 expressions, and promoted PcLCYE expression. PD98059 + ASM treatments depressed SOD and NOX activities and H2 O2 content, inhibited PcMAPKKK1, PcMAPKK3, PcMAPK6, PcPIF1, and PcPIF3 expressions, and promoted PcMYC2 and PcPIF4 expressions in exocarp of pears. Additionally, PD98059 + ASM accelerated PcNYC1, PcHCAR, PcPPH, PcSGR1/2, PcPAO, PcPSY, PcCYB, PcCRTZ2, and PcCCS1 expressions, thereby reducing chlorophyll a and b contents, and promoting ß-carotene, lycopene and lutein contents. CONCLUSIONS: Postharvest ASM treatment promoted the production of H2 O2 to activate the MAPK cascade, then phosphorylated/dephosphorylated transcription factors expression, and delayed chlorophyll decomposition and carotenoid synthesis in pears. © 2022 Society of Chemical Industry.


Subject(s)
Pyrus , Chlorophyll/metabolism , Chlorophyll A , Lutein , Lycopene , Mitogen-Activated Protein Kinases , Pyrus/chemistry , Superoxide Dismutase , Thiadiazoles , Transcription Factors , beta Carotene/metabolism
17.
J Sci Food Agric ; 102(11): 4425-4434, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35089595

ABSTRACT

BACKGROUND: Epidermal wax is an important factor affecting the storage quality of fruits and vegetables. Previous studies have shown that the epidermal wax of fruits undergoes significant changes during storage, but there are few studies on the effects of different storage methods on the changes in waxes and the relationship with storage quality. To investigate the effect of cuticular wax on the postharvest physiology in fragrant pear, equal numbers of fragrant pear fruits were stored in room temperature storage (control), cold storage and controlled atmosphere (CA) storage environs, respectively. RESULTS: Gas chromatography-mass spectrometry analysis revealed that the prevailing compositions of cuticular wax of fragrant pear were alkanes, alkenes, alcohols, aldehydes, esters and fatty acids. Compared with the control, cold storage and CA storage significantly inhibited changes in postharvest physiology, total wax contents and wax compositions of fragrant pear, and the effects of CA storage were more pronounced than cold storage. Under different storage methods, total wax contents and wax compositions show different correlations with various physiological indicators. CONCLUSION: The results obtained in the present study indicate that cold storage and CA storage altered the fragrant pear cuticular wax contents and constituents, thus changing the postharvest physiology quality. The changes in the metabolism of wax components caused by the changes in storage environment mainly affect the changes in the hardness of fragrant pears. The present study provides a theoretical basis for the preservation and storage of fruits. © 2022 Society of Chemical Industry.


Subject(s)
Pyrus , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Odorants , Pyrus/chemistry , Waxes/chemistry
18.
Plant J ; 109(1): 47-63, 2022 01.
Article in English | MEDLINE | ID: mdl-34695268

ABSTRACT

Dwarfing rootstocks and dwarf cultivars are urgently needed for modern pear cultivation. However, germplasm resources for dwarfing pear are limited, and the underlying mechanisms remain unclear. We previously showed that dwarfism in pear is controlled by the single dominant gene PcDw (Dwarf). We report here that the expression of PcAGP7-1 (ARABINOGALACTAN PROTEIN 7-1), a key candidate gene for PcDw, is significantly higher in dwarf-type pear plants because of a mutation in an E-box in the promoter. Electrophoretic mobility shift assays and transient infiltration showed that the transcription factors PcBZR1 and PcBZR2 could directly bind to the E-box of the PcAGP7-1 promoter and repress transcription. Moreover, transgenic pear lines overexpressing PcAGP7-1 exhibited obvious dwarf phenotypes, whereas RNA interference pear lines for PcAGP7-1 were taller than controls. PcAGP7-1 overexpression also enhanced cell wall thickness, affected cell morphogenesis, and reduced brassinolide (BL) content, which inhibited BR signaling via a negative feedback loop, resulting in further dwarfing. Overall, we identified a dwarfing mechanism in perennial woody plants involving the BL-BZR/BES-AGP-BL regulatory module. Our findings provide insight into the molecular mechanism of plant dwarfism and suggest strategies for the molecular breeding of dwarf pear cultivars.


Subject(s)
Brassinosteroids/metabolism , Galactans/metabolism , Plant Proteins/metabolism , Pyrus/genetics , Steroids, Heterocyclic/metabolism , Mucoproteins/genetics , Mucoproteins/metabolism , Mutation , Phenotype , Phylogeny , Plant Proteins/genetics , Promoter Regions, Genetic/genetics , Pyrus/chemistry , Pyrus/growth & development , Pyrus/ultrastructure , Nicotiana/chemistry , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/ultrastructure
19.
J Ethnopharmacol ; 282: 114628, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34517063

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pyrus pashia Buch ham ex. D. Don (Kainth) fruit from the Himalayan region is traditionally consumed by native people in the form of decoctions for various clinical conditions including inflammatory diseases. However, scientific studies on the biofunctional properties of Kainth fruits are still scarce. AIM OF THE STUDY: The study is aimed to investigate the anti-inflammatory effects of Kainth fruit extracts using in vitro and in vivo inflammation models. MATERIAL AND METHODS: Free, esterified and bound fractions from the Kainth ethanolic extracts were prepared for determining the anti-inflammatory effect. The levels of 5-LOX and COX-2 were determined in vitro. The protein levels of cytokines (IL-6, TNF-α & IL-10) were quantitated by ELISA method in lipopolysaccharide-stimulated RAW macrophages. Also, the anti-inflammatory potential of the Kainth fruit extracts was determined using the carrageenan-induced mice paw edema model. The bioaccessibility of Kainth fruit extracts was measured using a simulated in vitro digestion system (salivary, gastric and intestinal). RESULTS: The Kainth fruit extracts were partially purified to yield free, esterified and bound phenolics. Free and bound phenolics of Kainth fruits inhibited 5-Lipoxygenase, Cyclooxygenase-2 activities and pro-inflammatory cytokines (Interleukin-6 and tumour necrosis factor-α) expression in vitro. Also, oral administration of these extracts to the carrageenan-injected mice showed an anti-inflammatory effect by decreasing the pro-inflammatory cytokines and reducing the cellular infiltration in paw tissues. Also, both the extracts showed better bioavailability and bioaccessibility in in vitro and in vivo studies. CONCLUSIONS: The results indicated that free and bound phenolics from Kainth fruits that are rich in catechin, epicatechin, arbutin and chlorogenic acid exhibited anti-inflammatory effects and could potentially be used to treat inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Fruit/chemistry , Inflammation/drug therapy , Plant Extracts/pharmacology , Polyphenols/pharmacology , Pyrus/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Carrageenan/toxicity , Cell Survival/drug effects , Edema/chemically induced , Edema/drug therapy , Lipopolysaccharides/toxicity , Mice , Phytotherapy , Plant Extracts/chemistry , Polyphenols/chemistry , RAW 264.7 Cells
20.
Sci Rep ; 11(1): 20253, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34642358

ABSTRACT

This paper presents characterization of healthy potential new sources of functional constituents with reference to basic plant sources. In this study, the phenolics, triterpene, isoprenoids (chlorophylls and carotenoids), amino acids, minerals, sugars and organic acids of different cultivars of pome species-apple, pear, quince-leaves vs. fruits and their enzymatic in vitro enzyme inhibition of hyperglycemic (α-glucosidase, α-amylase), obesity (pancreatic lipase), cholinesterase (acetylcholinesterase, butylcholinesterase), inflammatory (15-LOX, COX-1 and -2) and antioxidant capacity (ORAC, FRAP, ABTS) were evaluated. Leaves of pome species as a new plant sources were characterized by higher content of bioactive and nutritional compounds than basic fruits. The dominant fraction for quince, pear, and apple fruits was polymeric procyanidins. In quince and pear leaves flavan-3-ols, and in apple dihydrochalcones dominated. Triterpene was present in equal content in leaves and fruits. Leaves are excellent sources of amino acids and minerals (especially Ca, Mg, Fe, and K), with high content of organic acids and low content of sugars compared to fruits of pome species. Leaves of apples and pears most effectively inhibited COX-1, COX-2, α-amylase, and α-glucosidase enzyme but quince leaves showed the most effective inhibition of pancreatic lipase, AChE and BuChE, 15-LOX, and antioxidant capacity, which particularly correlated with bioactive compounds. Present study shows that leaves are promising sources of valuable compounds and may be used to produce functional foods as well as for medical purposes.


Subject(s)
Malus/chemistry , Phytochemicals/pharmacology , Pyrus/chemistry , Rosaceae/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacology , Fruit/chemistry , Functional Food , Health Promotion , Phytochemicals/chemistry , Plant Leaves/chemistry , Proanthocyanidins/chemistry , Proanthocyanidins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...