Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Immunol ; 13: 936967, 2022.
Article in English | MEDLINE | ID: mdl-35967360

ABSTRACT

Pyruvate kinase (PK) is a key enzyme that catalyzes the dephosphorylation of phosphoenolpyruvate (PEP) into pyruvate, and is responsible for the production of ATP during glycolysis. As another important isozyme of PK, pyruvate kinase M2 (PKM2) exists in cells with high levels of nucleic acid synthesis, such as normal proliferating cells (e.g., lymphocytes and intestinal epithelial cells), embryonic cells, adult stem cells, and tumor cells. With further research, PKM2, as an important regulator of cellular pathophysiological activity, has attracted increasing attention in the process of autoimmune response and inflammatory. In this re]view, we examine the contribution of PKM2 to the human immune response. Further studies on the immune mechanisms of PKM2 are expected to provide more new ideas and drug targets for immunotherapy of inflammatory and autoimmune diseases, guiding drug development and disease treatment.


Subject(s)
Carrier Proteins , Glycolysis , Immunity , Membrane Proteins , Pyruvate Kinase , Thyroid Hormones , Autoimmunity/genetics , Autoimmunity/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Glycolysis/genetics , Glycolysis/immunology , Humans , Immunity/genetics , Immunity/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Pyruvate Kinase/genetics , Pyruvate Kinase/immunology , Pyruvic Acid/immunology , Thyroid Hormones/genetics , Thyroid Hormones/immunology , Thyroid Hormone-Binding Proteins
2.
Front Immunol ; 10: 944, 2019.
Article in English | MEDLINE | ID: mdl-31134063

ABSTRACT

Metabolic reprogramming during macrophage polarization supports the effector functions of these cells in health and disease. Here, we demonstrate that pyruvate dehydrogenase kinase (PDK), which inhibits the pyruvate dehydrogenase-mediated conversion of cytosolic pyruvate to mitochondrial acetyl-CoA, functions as a metabolic checkpoint in M1 macrophages. Polarization was not prevented by PDK2 or PDK4 deletion but was fully prevented by the combined deletion of PDK2 and PDK4; this lack of polarization was correlated with improved mitochondrial respiration and rewiring of metabolic breaks that are characterized by increased glycolytic intermediates and reduced metabolites in the TCA cycle. Genetic deletion or pharmacological inhibition of PDK2/4 prevents polarization of macrophages to the M1 phenotype in response to inflammatory stimuli (lipopolysaccharide plus IFN-γ). Transplantation of PDK2/4-deficient bone marrow into irradiated wild-type mice to produce mice with PDK2/4-deficient myeloid cells prevented M1 polarization, reduced obesity-associated insulin resistance, and ameliorated adipose tissue inflammation. A novel, pharmacological PDK inhibitor, KPLH1130, improved high-fat diet-induced insulin resistance; this was correlated with a reduction in the levels of pro-inflammatory markers and improved mitochondrial function. These studies identify PDK2/4 as a metabolic checkpoint for M1 phenotype polarization of macrophages, which could potentially be exploited as a novel therapeutic target for obesity-associated metabolic disorders and other inflammatory conditions.


Subject(s)
Macrophage Activation/immunology , Macrophages/immunology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/immunology , Pyruvate Dehydrogenase Complex/immunology , Acetyl Coenzyme A/immunology , Acetyl Coenzyme A/metabolism , Animals , Cytosol/immunology , Cytosol/metabolism , Diet, High-Fat/adverse effects , Insulin Resistance/genetics , Insulin Resistance/immunology , Macrophages/classification , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/immunology , Mitochondria/metabolism , Obesity/etiology , Obesity/genetics , Obesity/immunology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/deficiency , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/immunology , Pyruvic Acid/metabolism
3.
J Clin Invest ; 127(7): 2725-2738, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28604383

ABSTRACT

Patients with coronary artery disease (CAD) are at high risk for reactivation of the varicella zoster virus (VZV) and development of herpes zoster (HZ). Here, we found that macrophages from patients with CAD actively suppress T cell activation and expansion, leading to defective VZV-specific T cell immunity. Monocyte-derived and plaque-infiltrating macrophages from patients with CAD spontaneously expressed high surface density of the immunoinhibitory ligand programmed death ligand-1 (PD-L1), thereby providing negative signals to programmed death-1+ (PD-1+) T cells. We determined that aberrant PD-L1 expression in patient-derived macrophages was metabolically controlled. Oversupply of the glycolytic intermediate pyruvate in mitochondria from CAD macrophages promoted expression of PD-L1 via induction of the bone morphogenetic protein 4/phosphorylated SMAD1/5/IFN regulatory factor 1 (BMP4/p-SMAD1/5/IRF1) signaling pathway. Thus, CAD macrophages respond to nutrient excess by activating the immunoinhibitory PD-1/PD-L1 checkpoint, leading to impaired T cell immunity. This finding indicates that metabolite-based immunotherapy may be a potential strategy for restoring adaptive immunity in CAD.


Subject(s)
B7-H1 Antigen/metabolism , Coronary Artery Disease/metabolism , Immunity, Cellular , Pyruvic Acid/metabolism , T-Lymphocytes/immunology , Aged , B7-H1 Antigen/immunology , Bone Morphogenetic Protein 4/immunology , Bone Morphogenetic Protein 4/metabolism , Coronary Artery Disease/immunology , Coronary Artery Disease/pathology , Female , Humans , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-1/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Middle Aged , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Pyruvic Acid/immunology , Smad1 Protein/immunology , Smad1 Protein/metabolism , Smad5 Protein/immunology , Smad5 Protein/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
4.
Angew Chem Int Ed Engl ; 54(34): 10016-9, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26212109

ABSTRACT

Carbohydrate modifications are believed to strongly affect the immunogenicity of glycans. Capsular polysaccharides (CPS) from bacterial pathogens are frequently equipped with a pyruvate that can be placed across the 4,6-, 3,4-, or 2,3-positions. A trans-2,3-linked pyruvate is present on the CPS of the Gram-positive bacterium Streptococcus pneumoniae serotype 4 (ST4), a pathogen responsible for pneumococcal infections. To assess the immunological importance of this modification within the CPS repeating unit, the first total synthesis of the glycan was carried out. Glycan microarrays containing a series of synthetic antigens demonstrated how antibodies raised against natural ST4 CPS specifically recognize the pyruvate within the context of the tetrasaccharide repeating unit. The pyruvate modification is a key motif for designing minimal synthetic carbohydrate vaccines for ST4.


Subject(s)
Polysaccharides, Bacterial/chemical synthesis , Pyruvic Acid/chemistry , Streptococcus pneumoniae/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/immunology , Pyruvic Acid/immunology , Serogroup , Streptococcus pneumoniae/immunology
5.
Glycobiology ; 22(8): 1103-17, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22556058

ABSTRACT

Bacillus anthracis CDC 684 is a naturally occurring, avirulent variant and close relative of the highly pathogenic B. anthracis Vollum. Bacillus anthracis CDC 684 contains both virulence plasmids, pXO1 and pXO2, yet is non-pathogenic in animal models, prompting closer scrutiny of the molecular basis of attenuation. We structurally characterized the secondary cell wall polysaccharide (SCWP) of B. anthracis CDC 684 (Ba684) using chemical and NMR spectroscopy analysis. The SCWP consists of a HexNAc trisaccharide backbone having identical structure as that of B. anthracis Pasteur, Sterne and Ames, →4)-ß-d-ManpNAc-(1 â†’ 4)-ß-d-GlcpNAc-(1 â†’ 6)-α-d-GlcpNAc-(1→. Remarkably, although the backbone is fully polymerized, the SCWP is the devoid of all galactosyl side residues, a feature which normally comprises 50% of the glycosyl residues on the highly galactosylated SCWPs from pathogenic strains. This observation highlights the role of defective wall assembly in virulence and indicates that polymerization occurs independently of galactose side residue attachment. Of particular interest, the polymerized Ba684 backbone retains the substoichiometric pyruvate acetal, O-acetate and amino group modifications found on SCWPs from normal B. anthracis strains, and immunofluorescence analysis confirms that SCWP expression coincides with the ability to bind the surface layer homology (SLH) domain containing S-layer protein extractable antigen-1. Pyruvate was previously demonstrated as part of a conserved epitope, mediating SLH-domain protein attachment to the underlying peptidoglycan layer. We find that a single repeating unit, located at the distal (non-reducing) end of the Ba684 SCWP, is structurally modified and that this modification is present in identical manner in the SCWPs of normal B. anthracis strains. These polysaccharides terminate in the sequence: (S)-4,6-O-(1-carboxyethylidene)-ß-d-ManpNAc-(1 â†’ 4)-[3-O-acetyl]-ß-d-GlcpNAc-(1 â†’ 6)-α-d-GlcpNH(2)-(1→.


Subject(s)
Bacillus anthracis/immunology , Bacillus anthracis/pathogenicity , Cell Wall/metabolism , Epitopes/immunology , Galactose/deficiency , Polysaccharides/metabolism , Pyruvic Acid/immunology , Virulence/immunology , Bacillus anthracis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cells, Cultured , Fluorescent Antibody Technique , Magnetic Resonance Spectroscopy , Membrane Glycoproteins/metabolism , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...