Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 211: 108724, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744084

ABSTRACT

Heavy metal pollution is a global environmental problem, and Quercus variabilis has a stronger tolerance to Cd stress than do other species. We aimed to explore the physiological response and molecular mechanisms of Q. variabilis to Cd stress. In this study, the antioxidant enzyme activities of leaves were determined, while the photosynthetic parameters of leaves were measured using Handy PEA, and ion fluxes and DEGs in the roots were investigated using noninvasive microtest technology (NMT) and RNA sequencing techniques, respectively. Cd stress at different concentrations and for different durations affected the uptake patterns of Cd2+ and H+ by Q. variabilis and affected the photosynthetic efficiency of leaves. Moreover, there was a positive relationship between antioxidant enzyme (CAT and POD) activity and Cd concentration. Transcriptome analysis revealed that many genes, including genes related to the cell wall, glutathione metabolism, ion uptake and transport, were significantly upregulated in response to cadmium stress in Q. variabilis roots. WGCNA showed that these DEGs could be divided into eight modules. The turquoise and blue modules exhibited the strongest correlations, and the most significantly enriched pathways were the phytohormone signaling pathway and the phenylpropanoid biosynthesis pathway, respectively. These findings suggest that Q. variabilis can bolster plant tolerance by modulating signal transduction and increasing the synthesis of compounds, such as lignin, under Cd stress. In summary, Q. variabilis can adapt to Cd stress by increasing the activity of antioxidant enzymes, and regulating the fluxes of Cd2+ and H+ ions and the expression of Cd stress-related genes.


Subject(s)
Cadmium , Gene Expression Regulation, Plant , Quercus , Stress, Physiological , Quercus/metabolism , Quercus/drug effects , Quercus/genetics , Cadmium/toxicity , Cadmium/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Gene Expression Regulation, Plant/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Photosynthesis/drug effects , Antioxidants/metabolism
2.
Sci Rep ; 12(1): 284, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997162

ABSTRACT

Soils and oak trees (Quercus brantii Lindl.) in Zagros forests are suffering from the air pollution caused by the Ilam Gas Refinery. Thus, for the first time, we investigated the contamination level of sulfur and trace elements in these ecosystems. Sampling of soil and tree leaves was carried out in different seasons of 2019 and at different distances from the gas refinery. The results showed that soils and leaves at the various distances compared with control distance (10,000 m) were more affected by the gas refinery. Distance from the pollution source and physicochemical properties of soils were the main factors affecting contamination of soil elements contents. The soils with pollution load indices (PLI) of 4.54 were in the highly polluted category. Sulfur was at highly polluted category in soils and were highly enriched in trees. The trees mainly absorbed studied elements via their aerial organs. Our findings indicated that oak trees with the highest value of metal accumulation index are influence tools for monitoring various elements in the polluted air produced by the gas refinery. It is recommended that the ecosystem components near the refinery be studied to accurately evaluate disorders in the food chain.


Subject(s)
Air Pollutants/analysis , Air Pollution , Forests , Metals/analysis , Oil and Gas Industry , Quercus/chemistry , Soil/chemistry , Sulfur/analysis , Trees/chemistry , Air Pollutants/toxicity , Ecosystem , Environmental Exposure , Environmental Monitoring , Iran , Metals/toxicity , Plant Leaves/chemistry , Plant Leaves/drug effects , Quercus/drug effects , Risk Assessment , Seasons , Sulfur/toxicity , Trees/drug effects
3.
J Nat Prod ; 84(9): 2600-2605, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34469140

ABSTRACT

Two new bioactive trisubstituted furanones, named pinofuranoxins A and B (1 and 2), were isolated from Diplodia sapinea, a worldwide conifer pathogen causing severe disease. Pinofuranoxins A and B were characterized essentially by NMR and HRESIMS spectra, and their relative and absolute configurations were assigned by NOESY experiments and computational analyses of electronic circular dichroism spectra. They induced necrotic lesions on Hedera helix L., Phaseolus vulgaris L., and Quercus ilex L. Compound 1 completely inhibited the growth of Athelia rolfsii and Phytophthora cambivora, while 2 showed antioomycetes activity against P. cambivora. In the Artemia salina assay both toxins showed activity inducing larval mortality.


Subject(s)
Ascomycota/chemistry , Furans/pharmacology , Plant Diseases/microbiology , Animals , Artemia/drug effects , Basidiomycota/drug effects , Fungicides, Industrial/isolation & purification , Fungicides, Industrial/pharmacology , Furans/isolation & purification , Hedera/drug effects , Molecular Structure , Phaseolus/drug effects , Phytophthora/drug effects , Quercus/drug effects , Tunisia
4.
PLoS One ; 16(7): e0243954, 2021.
Article in English | MEDLINE | ID: mdl-34264949

ABSTRACT

Light spectra of sunlight transmittance can generate an interactive effect with deposited nitrogen (N) on regenerated plants across varied shading conditions. Total N content in understory plants can be accounted for by both exogeneous and endogenous sources of derived N, but knowledge about the response of inner N cycling to interactive light and N input effects is unclear. We conducted a bioassay on Chinese cork oak (Quercus variabilis Blume) seedlings subjected to five-month N pulsing with 15NH4Cl (10.39 atom %) at 120 mg 15N plant-1 under the blue (48.5% blue, 33.7% green, and 17.8% red), red (14.6% blue, 71.7% red, 13.7% green), and green (17.4% blue, 26.2% red, 56.4% green) lighting-spectra. Half of the seedlings were fed twice a week using a 250 ppm N solution with micro-nutrients, while the other half just received distilled water. Two factors showed no interaction and neither affected growth and morphology. Compared to the red-light spectrum, that in blue light increased chlorophyll and soluble protein contents and glutamine synthetase (GS) activity, root N concentration, and N derived from the pulses. The green-light spectrum induced more biomass allocation to roots and a higher percentage of N derived from internal reserves compared to the red-light spectrum. The 15N pulses reduced the reliance on N remobilization from acorns but strengthened shoot biomass, chlorophyll content, GS activity, and N concentration. In conclusion, light spectrum imposed an independent force from external N pulse to modify the proportion of N derived from internal sources in total N content in juvenile Q. variabilis.


Subject(s)
Nitrogen Isotopes/pharmacology , Plant Leaves/anatomy & histology , Quercus/growth & development , Seedlings/growth & development , Sunlight , Biomass , Chlorophyll/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Quercus/drug effects , Quercus/radiation effects , Seedlings/drug effects , Seedlings/radiation effects
5.
Sci Rep ; 10(1): 15166, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938968

ABSTRACT

Holm oak trees (Quercus ilex L.) mortality is increasing worryingly in the Mediterranean area in the last years. To a large degree this mortality is caused by the oomycete Phytophthora spp., which is responsible for forest decline and dieback in evergreen oak forest areas of the southwestern Iberian Peninsula. This study is based on the possibility of applying chemical elicitors or filtered oomycete extracts to holm oak somatic embryos (SE) in order to induce epigenetic memory, priming, that may increase tolerance to the pathogen in future infections. To this end, we first examined the effect of priming treatments on SE development and its oxidative stress state, to avoid elicitors that may cause damage to embryogenic tissues. Both, the sterile oomycete extracts and the chemical elicitor methyl jasmonate (MeJA) did not produce any detrimental effect on SE growth and development, unlike the elicitors benzothiadiazole (BTH) and p-aminobenzoic acid (PABA) that reduced the relative weight gain and resulted in necrotic and deformed SE when were applied at high concentrations (25 µM BTH or 50 µM PABA) in accordance with their high malondialdehyde content. No significant differences among elicitation treatments were found in dual culture bioassays, although those SEs elicited with 50 µM MeJA increased H2O2 production after challenged against active oomycete indicating the activation of stress response. Since this elicitation treatment did not produce any adverse effect in the embryogenic process we suggest that could be used in further priming experiments to produce holm oak plants adapted to biotic stress.


Subject(s)
Phytophthora/pathogenicity , Plant Diseases/microbiology , Plant Diseases/prevention & control , Quercus/embryology , Quercus/microbiology , 4-Aminobenzoic Acid/toxicity , Acetates/pharmacology , Cyclopentanes/pharmacology , Forests , Host Microbial Interactions/drug effects , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Oxylipins/pharmacology , Phytophthora/chemistry , Proteins/pharmacology , Quercus/drug effects , Seeds/drug effects , Seeds/embryology , Seeds/metabolism , Spain , Thiadiazoles/toxicity
6.
Biol Aujourdhui ; 214(1-2): 55-61, 2020.
Article in French | MEDLINE | ID: mdl-32773030

ABSTRACT

Cherry tomato is very susceptible to fungal infections that can cause considerable damage in crops and during storage. Alternaria infection is one of the most common and dangerous alterations for this fruit. They are caused by Alternaria alternata or some other species belonging to the same genus. In this work, we tested the antifungal activity of methanol extracts from five plants harvested in the region of Jijel (Algeria) on A. alternata. The activity was first tested in vitro and then on greenhouse cherry tomato plants: extracts were applied to healthy plants before infection in order to test their preventive action, and after infection to determine whether they are able to knock out Alternaria. Results showed that Rosmarinus officinalis and Lavandula angustifolia extracts were the most active in vitro on A. alternata. Microscopic observations of the mold indicated that these extracts inhibited the dictyospores production. The antifungal activity tested on the plants grown in greenhouse revealed that R. officinalis extract still was the most active. Extracts of L. angustifolia and Punica granatum did not protect the plants from Alternaria infection, but provided a total cure at the end of the treatment. Extracts from Quercus suber and Eucalyptus globulus were the least active. They did not bestow any protection nor complete healing of the plants. Dictyospores counting on fruits at the end of the treatment confirmed the results obtained for the greenhouse crops.


TITLE: Utilisation d'extraits méthanoliques de plantes pour la protection des cultures de tomates-cerises (Solanum lycopersicum var. cerasiforme) contre l'infection fongique par Alternaria alternata. ABSTRACT: La tomate-cerise est un fruit très sujet aux infections fongiques qui peuvent causer des dégâts considérables dans les cultures et lors de la conservation. Les alternarioses comptent parmi les altérations les plus répandues et dangereuses pour ce fruit. Elles sont causées par Alternaria alternata ou d'autres espèces appartenant au même genre. Dans ce travail, nous avons testé l'activité antifongique d'extraits méthanoliques de cinq plantes récoltées dans la région de Jijel (Algérie) sur A. alternata. L'activité a d'abord été testée in vitro, puis sur des plants de tomates-cerises cultivés sous serre : les extraits ont été appliqués sur des plants sains, avant l'infection, afin de tester leur action préventive, et après l'infection pour déterminer s'ils sont capables de traiter l'alternariose. Les résultats ont montré que les extraits de Rosmarinus officinalis et Lavandula angustifolia étaient les plus actifs in vitro sur A. alternata. L'observation microscopique de la moisissure a indiqué que ces extraits agissaient en inhibant sa production de dictyospores. L'activité antifongique testée sur les plants cultivés sous serre a révélé que l'extrait de R. officinalis était toujours le plus actif. Venaient ensuite les extraits de L. angustifolia et Punica granatum qui n'ont pas permis la protection des plants contre l'alternariose, mais qui ont néanmoins donné une guérison totale à la fin du traitement. Les extraits de Quercus suber et Eucalyptus globulus étaient les moins actifs. Ils n'ont permis ni la prévention, ni la guérison complète des plants. Le comptage des dictyospores réalisé sur les fruits à la fin du traitement a confirmé les résultats obtenus pour les cultures sous serre.


Subject(s)
Alternaria/drug effects , Alternariosis/prevention & control , Plant Extracts/pharmacology , Solanum lycopersicum/chemistry , Agriculture/methods , Alternaria/pathogenicity , Alternariosis/microbiology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Biological Control Agents/chemistry , Biological Control Agents/pharmacology , Biological Products/pharmacology , Eucalyptus/drug effects , Eucalyptus/microbiology , Fruit/chemistry , Lavandula/drug effects , Lavandula/microbiology , Solanum lycopersicum/microbiology , Methanol/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Extracts/chemistry , Pomegranate/drug effects , Pomegranate/microbiology , Quercus/drug effects , Quercus/microbiology , Rosmarinus/drug effects , Rosmarinus/microbiology
7.
Sci Rep ; 10(1): 10038, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32572068

ABSTRACT

The response of plant CO2 diffusion conductances (mesophyll and stomatal conductances, gm and gsc) to soil drought has been widely studied, but few studies have investigated the effects of soil nitrogen addition levels on gm and gsc. In this study, we investigated the responses of gm and gsc of Manchurian ash and Mongolian oak to four soil nitrogen addition levels (control, low nitrogen, medium nitrogen and high nitrogen) and the changes in leaf anatomy and associated enzyme activities (aquaporin (AQP) and carbonic anhydrase (CA)). Both gm and gsc increased with the soil nitrogen addition levels for both species, but then decreased under the high nitrogen addition level, which primarily resulted from the enlargements in leaf and mesophyll cell thicknesses, mesophyll surface area exposed to intercellular space per unit leaf area and stomatal opening status with soil nitrogen addition. Additionally, the improvements in leaf N content and AQP and CA activities also significantly promoted gm and gsc increases. The addition of moderate levels of soil nitrogen had notably positive effects on CO2 diffusion conductance in leaf anatomy and physiology in Manchurian ash and Mongolian oak, but these positive effects were weakened with the addition of high levels of soil nitrogen.


Subject(s)
Fraxinus/drug effects , Nitrogen/pharmacology , Plant Stomata/drug effects , Plant Transpiration/drug effects , Quercus/drug effects , Fraxinus/physiology , Plant Leaves/drug effects , Plant Leaves/physiology , Plant Stomata/physiology , Plant Transpiration/physiology , Quercus/physiology , Soil
8.
J Agric Food Chem ; 67(49): 13617-13623, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31661270

ABSTRACT

A new tetrasubstituted octanoic acid, named hyfraxinic acid (1), was isolated together with known 1-deoxyviridiol (2), viridiol (3), nodulisporiviridin M (4), and demethoxyviridiol (5) from the organic extract of Hymenoscyphus fraxineus responsible for ash (Fraxinus excelsior L.) dieback in Europe. Hyfraxinic acid (1) was characterized, using spectroscopic methods, as 2,4-dihydroxy-7-methyl-6-methyleneoctanoic acid. Furthermore, the advanced Mosher method was used to determine the absolute configuration (3R) of 1-deoxyviridiol. Nodulisporiviridin M (4) was isolated for the first time from H. fraxineus. The phytotoxicity of each compound was tested by a leaf puncture assay on Celtis australis L., Quercus suber L., Hedera elix L., Juglans regia L., and Fraxinus angustifolia L. leaves. Compounds 1, 3, and 5 exhibited remarkable phytotoxicity on all plants tested, inducing necrotic lesions at concentrations of 1.0 and 0.5 mg/mL, while compounds 2 and 4 were found to be inactive in this bioassay. These results could contribute to a deeper understanding of the pathogenicity of H. fraxineus.


Subject(s)
Androstenediols/chemistry , Androstenediols/metabolism , Ascomycota/metabolism , Caprylates/chemistry , Caprylates/metabolism , Fraxinus/microbiology , Plant Diseases/microbiology , Androstenediols/toxicity , Ascomycota/pathogenicity , Caprylates/toxicity , Juglans/drug effects , Molecular Structure , Quercus/drug effects , Virulence
9.
Environ Sci Pollut Res Int ; 26(30): 30930-30940, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31452119

ABSTRACT

While it is well-known that the toxicity of mercury for plants is related to its bioavailability in the environment in which the plant lives, few studies have addressed Hg effects under controlled conditions of life-limiting available Hg concentrations. This study examines the effects of Hg on the holm oak (Quercus ilex L.) exposed to medium-high available Hg concentrations. Holm oak seeds were sown in a perlite substrate and grown in the presence of a nutrient solution containing 0, 5, 25, or 50 µM Hg. The variables determined as outcome measures were impacts on germination, growth, and nutrient accumulation along with Hg concentration in leaves, stems, and roots at different growth stages. Our findings suggest no overall detrimental effects of the metal on germination, nutrient accumulation, and plant growth, although root morphology was clearly modified. Mercury accumulation in the plant varied according to time, organ, Hg treatment dose, and plant growth stage. When comparing Hg build-up in the different organs, highest concentrations of the metal were detected in the roots, followed by the leaves and stems. The Hg accumulation pattern was positively correlated with time and Hg dose, whereas negative correlation was observed with growth stage. The impacts of all these factors on Hg accumulation were not additive pointing to interesting interaction effects that should be explored in future work.


Subject(s)
Environmental Pollutants/toxicity , Germination/drug effects , Mercury/toxicity , Quercus/drug effects , Quercus/growth & development , Environmental Pollutants/pharmacokinetics , Mercury/pharmacokinetics , Mining , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/growth & development , Seeds/drug effects
10.
Chemosphere ; 218: 340-346, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30476765

ABSTRACT

The study of particulate matter pollution in urban areas is of great concern due its adverse effects on human health. Roadside vegetation, intercepting and filtering it, contributes to improve air quality. The aim of the research was to investigate the capability of Q. ilex leaves, already known good biomonitors of air quality, in filtering air metals. Besides, the main derivation (i.e. air or root uptake) of the investigated metals in leaf tissue was evaluated. The concentrations of Cd, Cr, Cu, Ni and Pb were measured in three groups of Q. ilex leaves (unwashed, water washed and chloroform washed). Besides, several leaf traits (i.e. length, width, petiole length, leaf area, leaf mass area and thickness) were evaluated. The findings highlighted that Cd, Cr, Cu, Ni and Pb in Q. ilex leaves exceeded the chemical fingerprint. In particular, Cd and Pb appeared the main contaminants of the investigated area as also after water washing of the leaves, their concentrations exceeded the chemical fingerprint. Ni, Cr and Pb appeared to be accumulated on leaf deposit; whereas, Cd appeared mainly adsorbed to leaf cuticle. Higher leaf width, lower leaf area and shorter petiole favoured leaf metal accumulation. Root uptake and translocation to leaves cannot be excluded for Cr and Ni; whereas, leaf Cu content would seem to depend on both leaf deposit and soil content. In conclusion, Q. ilex can be useful in filtering air metal pollution, especially for Ni, Cd, Cr and Pb, and improving air quality.


Subject(s)
Air Pollutants/analysis , Metals, Heavy/analysis , Plant Leaves/chemistry , Quercus/chemistry , Air Pollutants/pharmacokinetics , Air Pollution , Environmental Monitoring , Humans , Italy , Metals, Heavy/pharmacokinetics , Particulate Matter/analysis , Plant Leaves/physiology , Plant Roots/chemistry , Quercus/drug effects , Soil/chemistry , Soil Pollutants/analysis
11.
Sci Total Environ ; 657: 379-390, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30550902

ABSTRACT

There is a lack of knowledge about the possibility that plants facing abiotic stressors, such as drought, have an altered perception of a pulse of O3 and incur in alterations of their signalling network. This poses some concerns as to whether defensive strategy to cope episodic O3 peaks in healthy plants may fail under stress. In this study, a set of saplings of two Mediterranean deciduous species, Quercus cerris and Q. pubescens, was subjected to water withholding (20% of daily evapotranspiration for 15 days) while another set was kept well-watered. Saplings were then subjected to a pulse of O3 (200 nl l-1 for 5 h) or maintained in filtered air. Q. pubescens had a more severe decline of photosynthesis and leaf PDΨw (about -65% and 5-fold lower than in well-watered ones) and events of cell death were observed under drought when compared to Q. cerris, which is supportive for a higher sensitivity to drought exhibited by this species. When O3 was applied after drought, patterns of signalling compounds were altered in both species. Only in Q. pubescens, the typical O3-induced accumulation of apoplastic reactive oxygen species, which is the first necessary step for the activation of signalling cascade, was completely lost. In Q. cerris the most frequent changes encompassed the weakening of peaks of key signalling molecules (ethylene and salicylic acid), whereas in Q. pubescens both delayed (salicylic and jasmonic acid) or weakened (ethylene and salicylic acid) peaks were observed. This is translated to a higher ability of Q. cerris to maintain a prompt activation of defensive reaction to counteract oxidative damage due to the pollutant. Our results reveal the complexity of the signalling network in plants facing multiple stresses and highlight the need to further investigate possible alteration of defensive mechanism of tree species to predict their behavior.


Subject(s)
Air Pollutants/adverse effects , Droughts , Ozone/adverse effects , Quercus/physiology , Mediterranean Region , Ozone/metabolism , Quercus/drug effects , Species Specificity , Trees/drug effects , Trees/physiology
12.
BMC Genomics ; 19(1): 872, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30514212

ABSTRACT

BACKGROUND: Similar to other urban trees, holm oaks (Quercus ilex L.) provide a physiological, ecological and social service in the urban environment, since they remove atmospheric pollution. However, the urban environment has several abiotic factors that negatively influence plant life, which are further exacerbated due to climate change, especially in the Mediterranean area. Among these abiotic factors, increased uptake of Na + and Cl - usually occurs in trees in the urban ecosystem; moreover, an excess of the tropospheric ozone concentration in Mediterranean cities further affects plant growth and survival. Here, we produced and annotated a de novo leaf transcriptome of Q. ilex as well as transcripts over- or under-expressed after a single episode of O3 (80 nl l-1, 5 h), a salt treatment (150 mM for 15 days) or a combination of these treatments, mimicking a situation that plants commonly face, especially in urban environments. RESULTS: Salinity dramatically changed the profile of expressed transcripts, while the short O3 pulse had less effect on the transcript profile. However, the short O3 pulse had a very strong effect in inducing over- or under-expression of some genes in plants coping with soil salinity. Many differentially regulated genes were related to stress sensing and signalling, cell wall remodelling, ROS sensing and scavenging, photosynthesis and to sugar and lipid metabolism. Most differentially expressed transcripts revealed here are in accordance with a previous report on Q. ilex at the physiological and biochemical levels, even though the expression profiles were overall more striking than those found at the biochemical and physiological levels. CONCLUSIONS: We produced for the first time a reference transcriptome for Q. ilex, and performed gene expression analysis for this species when subjected to salt, ozone and a combination of the two. The comparison of gene expression between the combined salt + ozone treatment and salt or ozone alone showed that even though many differentially expressed genes overlap all treatments, combined stress triggered a unique response in terms of gene expression modification. The obtained results represent a useful tool for studies aiming to investigate the effects of environmental stresses in urban-adapted tree species.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Ozone/pharmacology , Quercus/genetics , Sodium Chloride/pharmacology , Stress, Physiological , Carbohydrate Metabolism/drug effects , Carbohydrate Metabolism/genetics , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Photosynthesis/drug effects , Photosynthesis/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Quercus/drug effects , Quercus/metabolism , RNA, Plant/chemistry , RNA, Plant/isolation & purification , RNA, Plant/metabolism , Sequence Analysis, RNA
13.
Sci Total Environ ; 636: 1455-1462, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29913605

ABSTRACT

The primary objective of this study was to describe parameters related to the leaf biochemical assimilation capacity of photosynthesis, such as the maximum rates of carboxylation (Vcmax) and electron transport (Jmax), as a function of the leaf nitrogen content throughout a canopy of Siebold's beech and Japanese oak grown under elevated ozone (O3) conditions during a growing season. To this end, we investigated the relationship between photosynthetic traits and leaf nitrogen content in various canopy positions of two tree species under free-air O3 exposure (60 nmol mol-1, during daylight hours) in June, August, and October 2012. We observed O3-induced reduction in Vcmax and Jmax without reduction of leaf nitrogen content in both tree species. In Siebold's beech, Vcmax and Jmax in leaves with higher Narea were largely decreased by O3 from August, while little effect of O3 was observed in leaves with lower Narea. On the other hand, there was no difference in the extent of O3-induced reduction in Vcmax and Jmax across the range of Narea in leaves of Japanese oak. Reduction of leaf nitrogen content under elevated O3 conditions was observed only in Siebold's beech in October. These results indicated that the decrease in the efficiency of photosynthetic nitrogen use is in an earlier step in O3-induced decline of photosynthesis in Siebold's beech and Japanese oak. Based on these results, we emphasize the importance of integration of O3 effects into the conventional estimation of Vcmax and Jmax from leaf nitrogen content for evaluating canopy photosynthesis under current and future elevated O3 conditions.


Subject(s)
Air Pollutants/toxicity , Fagus/physiology , Nitrogen/metabolism , Ozone/toxicity , Photosynthesis/drug effects , Plant Leaves/metabolism , Quercus/physiology , Fagus/drug effects , Photosynthesis/physiology , Quercus/drug effects
14.
Plant Biol (Stuttg) ; 20(1): 20-28, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28941031

ABSTRACT

Stomatal ozone flux is closely related to ozone injury to plants. Jarvis-type multiplicative model has been recommended for estimating stomatal ozone flux in forest trees. Ozone can change stomatal conductance by both stomatal closure and less efficient stomatal control (stomatal sluggishness). However, current Jarvis-type models do not account for these ozone effects on stomatal conductance in forest trees. We examined seasonal course of stomatal conductance in two common deciduous tree species native to northern Japan (white birch: Betula platyphylla var. japonica; deciduous oak: Quercus mongolica var. crispula) grown under free-air ozone exposure. We innovatively considered stomatal sluggishness in the Jarvis-type model using a simple parameter, s, relating to cumulative ozone uptake (defined as POD: phytotoxic ozone dose). We found that ozone decreased stomatal conductance of white birch leaves after full expansion (-28%). However, such a reduction of stomatal conductance by ozone fell in late summer (-10%). At the same time, ozone reduced stomatal sensitivity of white birch to VPD and increased stomatal conductance under low light conditions. In contrast, in deciduous oak, ozone did not clearly change the model parameters. The consideration of both ozone-induced stomatal closure and stomatal sluggishness improved the model performance to estimate stomatal conductance and to explain the dose-response relationship on ozone-induced decline of photosynthesis of white birch. Our results indicate that ozone effects on stomatal conductance (i.e. stomatal closure and stomatal sluggishness) are crucial for modelling studies to determine stomatal response in deciduous trees, especially in species sensitive to ozone.


Subject(s)
Betula/physiology , Ozone/pharmacology , Plant Stomata/drug effects , Quercus/physiology , Betula/drug effects , Models, Biological , Plant Transpiration/drug effects , Plant Transpiration/physiology , Quercus/drug effects , Seasons
15.
Environ Sci Pollut Res Int ; 25(9): 8125-8136, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28748441

ABSTRACT

To derive ozone (O3) dose-response relationships for three European oak species (Quercus ilex, Quercus pubescens, and Quercus robur) under a range of soil water availability, an experiment was carried out with 2-year-old potted seedlings exposed to three levels of water availability in the soil and three levels of O3 pollution for one growing season in an ozone free-air controlled exposure (FACE) facility. Total biomass losses were estimated relative to a hypothetical clean air at the pre-industrial age, i.e., at 10 ppb as daily average (M24). A stomatal conductance model was parameterized with inputs from the three species for calculating the stomatal O3 flux. Exposure-based (M24, W126, and AOT40) and flux-based (phytotoxic O3 dose (POD)0-3) dose-response relationships were estimated and critical levels (CL) were calculated for a 5% decline of total biomass. Results show that water availability can significantly affect O3 risk assessment. In fact, dose-response relationships calculated per individual species at each water availability level resulted in very different CLs and best metrics. In a simplified approach where species were aggregated on the basis of their O3 sensitivity, the best metric was POD0.5, with a CL of 6.8 mmol m-2 for the less O3-sensitive species Q. ilex and Q. pubescens and of 3.5 mmol m-2 for the more O3-sensitive species Q. robur. The performance of POD0, however, was very similar to that of POD0.5, and thus a CL of 6.9 mmol m-2 POD0 and 3.6 mmol m-2 POD0 for the less and more O3-sensitive oak species may be also recommended. These CLs can be applied to oak ecosystems at variable water availability in the soil. We conclude that PODy is able to reconcile the effects of O3 and soil water availability on species-specific oak productivity.


Subject(s)
Ozone/analysis , Plant Leaves/chemistry , Quercus/drug effects , Seedlings/chemistry , Biomass , Ozone/chemistry , Risk Assessment , Seasons , Soil , Water
16.
Environ Sci Pollut Res Int ; 25(9): 8161-8173, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28616738

ABSTRACT

The predicted effects of global change (GC) will be exacerbated in the more densely populated cities of the future, especially in the Mediterranean basin where some environmental cues, such as drought and tropospheric ozone (O3) pollution, already mine seriously plant survival. Physiological and biochemical responses of a Mediterranean, evergreen, isohydric plant species (Quercus ilex) were compared to those of a sympatric, deciduous, anisohydric species (Q. pubescens) under severe drought (20% of the effective daily evapotranspiration) and/or chronic O3 exposure (80 ppb for 5 h day-1 for 28 consecutive days) to test which one was more successful in those highly limiting conditions. Results show that (i) the lower reduction of total leaf biomass of Q. ilex as compared to Q. pubescens when subjected to drought and drought × O3 (on average -59 vs -70%, respectively); (ii) the steeper decline of photosynthesis found in Q. pubescens under drought (-87 vs -81%) and drought × O3 (-69 vs -59%, respectively); (iii) the increments of malondialdehyde (MDA) by-products found only in drought-stressed Q. pubescens; (iv) the impact of O3, found only in Q. pubescens leaves and MDA, can be considered the best probes of the superiority of Q. ilex to counteract the effect of mild-severe drought and O3 stress. Also, an antagonistic effect was found when drought and O3 were applied simultaneously, as usually happens during typical Mediterranean summers. Our dataset suggests that on future, the urban greening should be wisely pondered on the ability of trees to cope the most impacting factors of GC, and in particular their simultaneity.


Subject(s)
Ozone/chemistry , Quercus/chemistry , Biomass , Cities , Droughts , Photosynthesis , Plant Leaves , Quercus/drug effects , Trees , Water
17.
Environ Toxicol Chem ; 37(4): 1071-1083, 2018 04.
Article in English | MEDLINE | ID: mdl-29120069

ABSTRACT

There has been increasing interest in the effects of neonicotinoid insecticides on wild bees. In solitary bee species the direct link between each individual female and reproductive success offers the opportunity to evaluate effects on individuals. The present study investigated effects of exposure to winter oilseed rape grown from thiamethoxam-treated seed on reproductive behavior and output of solitary red mason bees (Osmia bicornis) released in 6 pairs of fields over a 2-yr period and confined to tunnels in a single year. After adjustment to the number of females released, there was significantly lower production of cells and cocoons/female in tunnels than in open field conditions. This difference may be because of the lack of alternative forage within the tunnels. Under open field conditions, palynology of the pollen provisions within the nests demonstrated a maximum average of 31% oilseed rape pollen at any site, with Quercus (oak) contributing up to 86% of the pollen. There were no significant effects from exposure to oilseed rape grown from thiamethoxam-treated seed from nest establishment through cell production to emergence under tunnel or field conditions. Environ Toxicol Chem 2018;37:1071-1083. © 2017 SETAC.


Subject(s)
Bees/physiology , Brassica napus/growth & development , Environmental Exposure/analysis , Seasons , Seeds/drug effects , Thiamethoxam/toxicity , Animals , Crops, Agricultural/drug effects , Female , Insecticides/toxicity , Male , Nesting Behavior/drug effects , Plant Nectar , Pollen/drug effects , Quercus/drug effects , Reproduction/drug effects
18.
PLoS One ; 12(10): e0185836, 2017.
Article in English | MEDLINE | ID: mdl-28973038

ABSTRACT

The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments.


Subject(s)
Fraxinus/physiology , Nitrogen/pharmacology , Ozone/pharmacology , Photosynthesis/physiology , Quercus/physiology , Fraxinus/drug effects , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/physiology , Quercus/drug effects , Reactive Oxygen Species/metabolism
19.
PLoS One ; 12(5): e0177002, 2017.
Article in English | MEDLINE | ID: mdl-28545103

ABSTRACT

Artificial excision of the distal part of acorns in order to promote germination is well researched in oak seedling cultivation studies. However, studies of combined effects of cotyledon excision and nursery fertilization on container seedlings are lacking, especially for seedling root growth and outplanting performance. This study aimed to explore the main effects of cotyledon excision on Quercus variabilis seedling emergence characteristics and demonstrated the combined effects of cotyledon excision and nursery fertilization on seedling quality to improve Quercus variabilis seedling outplanting performance. Four cotyledon excision treatments and two classes of nursery fertilization were implemented. Seedling emergence was noted every week after sowing. Seedling dry mass, morphology, and nutrient status were assessed at the end of the nursery season. After the first outplanting season, the aforementioned measurements along with seedling survival were determined once again. The results showed that cotyledon excision generally induced greater and more rapid seedling emergence, but did not affect shoot emergence synchronicity. The highest total emergence and emergence rate occurred with Intermediate excision (1/2 of the distal end of acorn was excised). Effects of nutrient loss due to cotyledon excision on seedling quality and outplanting performance were somewhat compensated by nursery fertilization. Nursery fertilization promoted dry mass increment (the net increment from T0 to T2 for dry mass) for excised seedlings after outplanting, resulting in better performance for Slight (1/3 of the distal end of acorn was excised) and Intermediate excision treatments in the field. Thus we conclude Intermediate excision combined with reasonable nursery fertilization can be recommended for production of nursery grown seedlings for afforestation.


Subject(s)
Cotyledon/growth & development , Fertilizers , Plant Roots/growth & development , Quercus/drug effects , Quercus/growth & development , Seedlings/growth & development , Biomass , Cotyledon/drug effects , Cotyledon/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Quercus/metabolism , Seedlings/drug effects , Seedlings/metabolism
20.
Environ Pollut ; 226: 452-462, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28431762

ABSTRACT

Chemical contamination of aquatic systems often co-occurs with dramatic changes in surrounding terrestrial vegetation. Plant leaf litter serves as a crucial resource input to many freshwater systems, and changes in litter species composition can alter the attributes of freshwater communities. However, little is known how variation in litter inputs interacts with chemical contaminants. We investigated the ecological effects resulting from changes in tree leaf litter inputs to freshwater communities, and how those changes might interact with the timing of insecticide contamination. Using the common insecticide malathion, we hypothesized that inputs of nutrient-rich and labile leaf litter (e.g., elm [Ulmus spp.] or maple [Acer spp.]) would reduce the negative effects of insecticides on wetland communities relative to inputs of recalcitrant litter (e.g., oak [Quercus spp.]). We exposed artificial wetland communities to a factorial combination of three litter species treatments (elm, maple, and oak) and four insecticide treatments (no insecticide, small weekly doses of 10 µg L-1, and either early or late large doses of 50 µg L-1). Communities consisted of microbes, algae, snails, amphipods, zooplankton, and two species of tadpoles. After two months, we found that maple and elm litter generally induced greater primary and secondary production. Insecticides induced a reduction in the abundance of amphipods and some zooplankton species, and increased phytoplankton. In addition, we found interactive effects of litter species and insecticide treatments on amphibian responses, although specific effects depended on application regime. Specifically, with the addition of insecticide, elm and maple litter induced a reduction in gray tree frog survival, oak and elm litter delayed tree frog metamorphosis, and oak and maple litter reduced green frog tadpole mass. Our results suggest that attention to local forest composition, as well as the timing of pesticide application might help ameliorate the harmful effects of pesticides observed in freshwater systems.


Subject(s)
Environmental Monitoring , Insecticides/analysis , Wetlands , Acer/drug effects , Animals , Anura , Ecology , Ecosystem , Fresh Water , Larva/drug effects , Malathion/toxicity , Phytoplankton/drug effects , Plant Leaves/chemistry , Plants/drug effects , Quercus/drug effects , Zooplankton/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...