Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.930
Filter
1.
PLoS One ; 19(5): e0303373, 2024.
Article in English | MEDLINE | ID: mdl-38728271

ABSTRACT

BACKGROUND: Candida represents a prevalent fungal infection, notable for its substantial implications on morbidity and mortality rates. In the landscape of prospective treatments, quinoxaline derivatives emerge as a category of compact compounds exhibiting notable potential in addressing infections. These derivatives showcase promising antimicrobial efficacy coupled with favorable pharmacokinetic and safety characteristics. AIMS: The central aim of this investigation was to examine the antifungal characteristics of 2-Chloro-3-hydrazinylquinoxaline against diverse strains of Candida and Aspergillus in vitro. Additionally, we endeavored to assess the in vivo efficacy of 2-Chloro-3-hydrazinylquinoxaline using a murine model for oral candidiasis induced by C. albicans cells ATCC 10231. RESULTS: 2-Chloro-3-hydrazinylquinoxaline demonstrated noteworthy effectiveness when tested against various reference strains of Candida species. It exhibited heightened efficacy, particularly against Candida krusei isolates. However, its performance against Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, and Candida auris isolates exhibited variability. Notably, 2-Chloro-3-hydrazinylquinoxaline manifests variable efficacy against Aspergillus fumigatus, Aspergillus niger, Aspergillus terreus and Aspergillus flavus and no effect against Aspergillus brasiliensis. In a murine model, 2-Chloro-3-hydrazinylquinoxaline exhibited significant efficacy in combating the C. albicans cells ATCC 10231 strain, underscoring its potential as a viable treatment option. CONCLUSION: 2-Chloro-3-hydrazinylquinoxaline has demonstrated substantial potential in effectively addressing various Candida and Aspergillus species, showcasing dual attributes of antifungal and anti-inflammatory properties. However, to attain a more comprehensive understanding of its therapeutic capabilities, further investigations, incorporating additional tests and experiments, are imperative.


Subject(s)
Antifungal Agents , Candida , Microbial Sensitivity Tests , Quinoxalines , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Quinoxalines/pharmacology , Quinoxalines/chemistry , Animals , Candida/drug effects , Mice , Disease Models, Animal , Candidiasis/drug therapy , Candidiasis/microbiology , Female
2.
Eur J Med Chem ; 271: 116360, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38614060

ABSTRACT

Cancer is a leading cause of death and a major health problem worldwide. While many effective anticancer agents are available, most drugs currently on the market are not specific, raising issues like the common side effects of chemotherapy. However, recent research hold promises for the development of more efficient and safer anticancer drugs. Quinoxaline and its derivatives are becoming recognized as a novel class of chemotherapeutic agents with activity against different tumors. The present review compiles and discusses studies concerning the therapeutic potential of the anticancer activity of quinoxaline derivatives, covering articles published between January 2018 and January 2023.


Subject(s)
Antineoplastic Agents , Neoplasms , Quinoxalines , Quinoxalines/chemistry , Quinoxalines/pharmacology , Quinoxalines/chemical synthesis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Neoplasms/drug therapy , Animals , Molecular Structure , Drug Development , Cell Proliferation/drug effects , Drug Discovery , Drug Screening Assays, Antitumor , Structure-Activity Relationship
3.
Eur J Med Chem ; 270: 116377, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38581731

ABSTRACT

Evading the cellular apoptosis mechanism by modulating multiple pathways poses a sturdy barrier to effective chemotherapy. Cancer cell adeptly resists the apoptosis signaling pathway by regulating anti and pro-apoptotic proteins to escape cell death. Nevertheless, bypassing the apoptotic pathway through necroptosis, an alternative programmed cell death process, maybe a potential therapeutic modality for apoptosis-resistant cells. However, synthetic mono-quinoxaline-based intercalator-induced cellular necroptosis as an anti-cancer perspective remains under-explored. To address this concern, we undertook the design and synthesis of quinoxaline-based small molecules (3a-3l). Our approach involved enhancing the π-surface of the mandatory benzyl moiety to augment its ability to induce DNA structural alteration via intercalation, thereby promoting cytotoxicity across various cancer cell lines (HCT116, HT-29, and HeLa). Notably, the potent compound 3a demonstrated the capacity to induce DNA damage in cancer cells, leading to the induction of ZBP1-mediated necroptosis in the RIP3-expressed cell line (HT-29), where Z-VAD effectively blocked apoptosis-mediated cell death. Interestingly, we observed that 3a induced RIP3-driven necroptosis in combination with DNA hypomethylating agents, even in the RIP3-silenced cell lines (HeLa and HCT116). Overall, our synthesized compound 3a emerged as a promising candidate against various cancers, particularly in apoptosis-compromised cells, through the induction of necroptosis.


Subject(s)
Necroptosis , Neoplasms , Humans , Quinoxalines/pharmacology , Apoptosis , HT29 Cells , DNA/pharmacology , Necrosis/chemically induced , Protein Kinases/metabolism
4.
J Mater Chem B ; 12(17): 4197-4207, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38595311

ABSTRACT

Second near-infrared (NIR-II) fluorescence imaging shows huge application prospects in clinical disease diagnosis and surgical navigation, while it is still a big challenge to exploit high performance NIR-II dyes with long-wavelength absorption and high fluorescence quantum yield. Herein, based on planar π-conjugated donor-acceptor-donor systems, three NIR-II dyes (TP-DBBT, TP-TQ1, and TP-TQ2) were synthesized with bulk steric hindrance, and the influence of acceptor engineering on absorption/emission wavelengths, fluorescence efficiency and photothermal properties was systematically investigated. Compared with TP-DBBT and TP-TQ2, the TP-TQ1 based on 6,7-diphenyl-[1,2,5]thiadiazoloquinoxaline can well balance absorption/emission wavelengths, NIR-II fluorescence brightness and photothermal effects. And the TP-TQ1 nanoparticles (NPs) possess high absorption ability at a peak absorption of 877 nm, with a high relative quantum yield of 0.69% for large steric hindrance hampering the close π-π stacking interactions. Furthermore, the TP-TQ1 NPs show a desirable photothermal conversion efficiency of 48% and good compatibility. In vivo experiments demonstrate that the TP-TQ1 NPs can serve as a versatile theranostic agent for NIR-II fluorescence/photoacoustic imaging-guided tumor phototherapy. The molecular planarization strategy provides an approach for designing efficient NIR-II fluorophores with extending absorption/emission wavelength, high fluorescence brightness, and outstanding phototheranostic performance.


Subject(s)
Fluorescent Dyes , Infrared Rays , Quinoxalines , Thiadiazoles , Quinoxalines/chemistry , Quinoxalines/chemical synthesis , Quinoxalines/pharmacology , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Mice , Humans , Thiadiazoles/chemistry , Theranostic Nanomedicine , Molecular Structure , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Optical Imaging , Mice, Inbred BALB C , Female , Phototherapy/methods , Cell Survival/drug effects , Nanoparticles/chemistry , Particle Size
5.
J Biochem Mol Toxicol ; 38(4): e23690, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493304

ABSTRACT

The cytotoxic activity, EGFR/VEGFR2 target inhibition, apoptotic activity, RT-PCR gene expression, in vivo employing a solid-Ehrlich carcinoma model, and in silico investigations for highlighting the binding affinity of eight quinoxaline derivatives were tested for anticancer activities. The results showed that compound 8 (N-allyl quinoxaline) had potent cytotoxicity against A594 and MCF-7 cancer cells with IC50 values of 0.86 and 1.06 µM, respectively, with noncytotoxic activity against WISH and MCF-10A cells having IC50 values more than 100 µM. Furthermore, it strongly induced apoptotic cell death in A549 and MCF-7 cells by 43.13% and 34.07%, respectively, stopping the cell cycle at S and G1-phases. For the molecular target, the results showed that compound 8 had a promising EGFR inhibition activity with an IC50 value of 0.088 µM compared to Sorafenib (IC50 = 0.056 µM), and it had a promising VEGFR2 inhibition activity with an IC50 value of 0.108 µM compared to Sorafenib (IC50 = 0.049 µM). Treatment with compound 8 ameliorated biochemical and histochemical parameters near normal in the in vivo investigation, with a tumor inhibition ratio of 68.19% compared to 64.8% for 5-FU treatment. Finally, the molecular docking study demonstrated the binding affinity through binding energy and interactive binding mode inside the EGFR/VEGFR2 proteins. Potent EGFR and VEGFR2 inhibition of compound 8 suggests its potential for development as a selective anticancer drug.


Subject(s)
Antineoplastic Agents , Quinoxalines , Humans , Structure-Activity Relationship , Sorafenib/pharmacology , Molecular Docking Simulation , Quinoxalines/pharmacology , Apoptosis , Antineoplastic Agents/chemistry , ErbB Receptors/metabolism , Cell Proliferation , Molecular Structure , Drug Screening Assays, Antitumor , Protein Kinase Inhibitors/pharmacology
6.
Chem Biol Drug Des ; 103(3): e14499, 2024 03.
Article in English | MEDLINE | ID: mdl-38444047

ABSTRACT

In this paper, we report the synthesis of quinoxaline-isoxazole-piperazine conjugates. The anticancer activity was evaluated against three human cancer cell lines, including MCF-7 (breast), HepG-2 (liver), and HCT-116 (colorectal). The outcomes of the tested compounds 5d, 5e, and 5f have shown more potent activity when compared to the standard drug erlotinib. In a cell survivability test (MCF-10A), three potent compounds (5d, 5e, and 5f) were evaluated against the normal breast cell line, although neither of them displayed any significant cytotoxicity with IC50 values greater than 84 µM. Furthermore, the compounds 5d, 5e, and 5f were tested for tyrosine kinase EGFR inhibitory action using erlotinib as the reference drug and compound 5e was shown to be more potent in inhibiting the tyrosine kinase EGFR than sorafenib. In addition to this, molecular docking studies of compounds 5d, 5e, and 5f demonstrated that these compounds had more EGFR-binding interactions. The potent compounds 5d, 5e, and 5f were subjected to in silico pharmacokinetic assessment by SWISS, ADME, and pkCSM. While the compounds 5d, 5e, and 5f followed Lipinski, Veber, Egan, and Muegge rules without any deviation.


Subject(s)
Antineoplastic Agents , Quinoxalines , Humans , Molecular Docking Simulation , Erlotinib Hydrochloride/pharmacology , Quinoxalines/pharmacology , Antineoplastic Agents/pharmacology , Isoxazoles , Piperazine , Protein-Tyrosine Kinases , ErbB Receptors
7.
Chem Biol Drug Des ; 103(3): e14502, 2024 03.
Article in English | MEDLINE | ID: mdl-38453260

ABSTRACT

We designed and synthesized thirty novel quinoxaline aryl ethers as anticancer agents, and the structures of final compounds were confirmed with various analytical techniques like Mass, 1 H NMR, 13 C NMR, FTIR, and elemental analyses. The compounds were tested against three cancer cell lines: colon cancer (HCT-116), breast cancer (MDA-MB-231), prostate cancer (DU-145), and one normal cell line: human embryonic kidney cell line (HEK-293). The obtained results indicate that two compounds, FQ and MQ, with IC50 values < 16 µM, were the most active compounds. Molecular docking studies revealed the binding of FQ and MQ molecules in the active site of the c-Met kinase (PDB ID: 3F66, 1.40 Å). Furthermore, QikProp ADME prediction and the MDS analysis preserved those critical docking data of both compounds, FQ and MQ. Western blotting was used to confirm the impact of the compounds FQ and MQ on the inhibition of the c-Met kinase receptor. The apoptosis assays were performed to investigate the mechanism of cell death for the most active compounds, FQ and MQ. The Annexin V/7-AAD assay indicated apoptosis in MDA-MB-231 cells treated with FQ and MQ, with FQ (21.4%) showing a higher efficacy in killing MDA-MB-231 cells than MQ (14.25%). The Caspase 3/7 7-AAD assay further supported these findings, revealing higher percentages of apoptotic cells for FQ-treated MDA-MB-231 cells (41.8%). The results obtained from the apoptosis assay conclude that FQ exhibits better anticancer activity against MDA-MB-231 cells than MQ.


Subject(s)
Antineoplastic Agents , Ethers , Humans , Cell Line, Tumor , Molecular Docking Simulation , Quinoxalines/pharmacology , HEK293 Cells , Cell Proliferation , Drug Screening Assays, Antitumor , Antineoplastic Agents/chemistry , Apoptosis , Molecular Structure , Structure-Activity Relationship
8.
Int J Biol Macromol ; 263(Pt 1): 130175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360242

ABSTRACT

Diabetes mellitus is a multifactorial disease and its effective therapy often demands several drugs with different modes of action. Herein, we report a rational design and synthesis of multi-targeting novel molecular hybrids comprised of EGCG and quinoxaline derivatives that can effectively inhibit α-glucosidase, α-amylase as well as control oxidative stress by scavenging ROS. The hybrids showed superior inhibition of α-glucosidase along with similar α-amylase inhibition as compared to standard drug, acarbose. Most potent compound, 15c showed an IC50 of 0.50 µM (IC50 of acarbose 190 µM) against α-glucosidase. Kinetics studies with 15c revealed a competitive inhibition against α-glucosidase. Binding affinity of 15c (-9.5 kcal/mol) towards α-glucosidase was significantly higher than acarbose (-7.7 kcal/mol). 15c exhibited remarkably high antioxidant activity (IC50 = 18.84 µM), much better than vitamin C (IC50 = 33.04 µM). Of note, acarbose shows no antioxidant activity. Furthermore, α-amylase activity was effectively inhibited by 15c with an IC50 value of 16.35 µM. No cytotoxicity was observed for 15c (up to 40 µM) in MCF-7 cells. Taken together, we report a series of multi-targeting molecular hybrids capable of inhibiting carbohydrate hydrolysing enzymes as well as reducing oxidative stress, thus representing an advancement towards effective and novel therapeutic approaches for diabetes.


Subject(s)
Diabetes Mellitus , Hypoglycemic Agents , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Acarbose/pharmacology , Acarbose/chemistry , alpha-Glucosidases/metabolism , alpha-Amylases/chemistry , Quinoxalines/pharmacology , Antioxidants/chemistry , Oxidative Stress , Molecular Docking Simulation , Glycoside Hydrolase Inhibitors/chemistry
9.
J Med Chem ; 67(5): 3571-3589, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38385264

ABSTRACT

PAR4 is a promising antithrombotic target with potential for separation of efficacy from bleeding risk relative to current antiplatelet therapies. In an effort to discover a novel PAR4 antagonist chemotype, a quinoxaline-based HTS hit 3 with low µM potency was identified. Optimization of the HTS hit through the use of positional SAR scanning and the design of conformationally constrained cores led to the discovery of a quinoxaline-benzothiazole series as potent and selective PAR4 antagonists. The lead compound 48, possessing a 2 nM IC50 against PAR4 activation by γ-thrombin in platelet-rich plasma (PRP) and greater than 2500-fold selectivity versus PAR1, demonstrated robust antithrombotic efficacy and minimal bleeding in the cynomolgus monkey models.


Subject(s)
Fibrinolytic Agents , Thrombosis , Animals , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Macaca fascicularis , Quinoxalines/pharmacology , Quinoxalines/therapeutic use , Receptors, Thrombin , Thrombin , Hemorrhage , Thrombosis/drug therapy , Thrombosis/prevention & control , Receptor, PAR-1 , Blood Platelets , Platelet Aggregation
10.
Bioorg Chem ; 143: 107102, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211551

ABSTRACT

Monoamine oxidases (MAOs) and vascular endothelial growth factor receptor-2 (VEGFR-2) are promoters of colorectal cancer (CRC) and central signaling nodes in epithelial-mesenchymal transition (EMT) induced by activating hypoxia-inducible factors (HIFs). Herein, a novel series of rationally designed triazole-tethered quinoxalines were synthesized and evaluated against HCT-116 CRC cells. The tailored scaffolds combine the pharmacophoric themes of both VEGFR-2 inhibitors and MAO inhibitors. All the synthesized derivatives were screened utilizing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay for their possible cytotoxic effects on normal human colonocytes, then evaluated for their anticancer activities against HCT-116 cells overexpressing MAOs. The hit derivatives 11 and 14 exhibited IC50 = 18.04 and 7.850 µM, respectively, against HCT-116cells within their EC100 doses on normal human colonocytes. Wound healing assay revealed their efficient CRC antimetastatic activities recording HCT-116 cell migration inhibition exceeding 75 %. In vitro enzymatic assays demonstrated that both 11 and 14 efficiently inhibited VEGFR-2 (IC50 = 88.79 and 9.910 nM), MAO-A (IC50 = 0.763 and 629.1 nM) and MAO-B (IC50 = 0.488 and 209.6 nM) with observed MAO-B over MAO-A selectivity (SI = 1.546 and 3.001), respectively. Enzyme kinetics studies were performed for both compounds to identify their mode of MAO-B inhibition. Furthermore, qRT-PCR analysis showed that the hits efficiently downregulated HIF-1α in HCT-116cells by 3.420 and 16.96 folds relative to untreated cells. Docking studies simulated their possible binding modes within the active sites of VEGFR-2 and MAO-B to highlight their essential structural determinants of activities. Finally, they recorded in silico drug-like absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles as well as ligand efficiency metrics.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Molecular Structure , Monoamine Oxidase/metabolism , Protein Kinase Inhibitors/pharmacology , Quinoxalines/pharmacology , Structure-Activity Relationship , Triazoles/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Colorectal Neoplasms/drug therapy
11.
Molecules ; 29(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38257377

ABSTRACT

A facile methodology for the construction of a complex heterocycle indazolo-fused quinoxalinone has been developed via an Ugi four-component reaction (U-4CR) followed by an intramolecular Ullmann reaction. The expeditious process features an operationally simple approach, time efficiency, and a broad substrate scope. Biological activity was evaluated and demonstrated that compound 6e inhibits human colon cancer cell HCT116 proliferation with an IC50 of 2.1 µM, suggesting potential applications for developing a drug lead in medicinal chemistry.


Subject(s)
Colonic Neoplasms , Quinoxalines , Humans , Quinoxalines/pharmacology , Cell Proliferation , Chemistry, Pharmaceutical
12.
Arch Pharm (Weinheim) ; 357(1): e2300301, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37847883

ABSTRACT

A new series of quinoxaline derivatives possessing the hydrazone moiety were designed, synthesized, and screened for in-vitro anti-inflammatory activity by the bovine serum albumin (BSA) denaturation technique, and for antioxidant activity, by the (2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The synthesized compounds were also tested for p38α mitogen-activated protein (MAP) kinase inhibition. The in-vivo anti-inflammatory activity was assessed by the carrageenan-induced rat paw edema inhibition method. All the compounds (4a-n) exhibited moderate to high in-vitro anti-inflammatory activity. Compound 4a displayed the highest inhibitory activity in the BSA assay (83.42%) in comparison to the standard drug diclofenac sodium (82.90%), while 4d exhibited comparable activity (81.87%). The DPPH assay revealed that compounds 4a and 4d have free radical scavenging potential (74.70% and 74.34%, respectively) comparable to the standard butylated hydroxyanisole (74.09%). Furthermore, the p38α MAP kinase inhibition assay demonstrated that compound 4a is highly selective against p38α MAP kinase (IC50 = 0.042) in comparison to the standard SB203580 (IC50 = 0.044). The five most active compounds (4a-4d and 4f) with good in-vitro profiles were selected for in-vivo anti-inflammatory studies. Compounds 4a and 4d were found to display the highest activity (83.61% and 82.92% inhibition, respectively) in comparison to the standard drug diclofenac sodium (82.65% inhibition). These compounds (4a and 4d) also exhibited better ulcerogenic and lipid peroxidation profiles than diclofenac sodium. The molecular docking and molecular dynamics simulation studies were also performed and found to be in agreement with the p38α MAP kinase inhibitory activity.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Mitogen-Activated Protein Kinase 14 , Rats , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Diclofenac/pharmacology , Molecular Structure , Structure-Activity Relationship , Molecular Docking Simulation , Quinoxalines/pharmacology , Anti-Inflammatory Agents/pharmacology , Protein Kinase Inhibitors/chemistry , Drug Design
13.
Eur J Med Chem ; 265: 116059, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38134744

ABSTRACT

Most photosensitizers (PSs) for photodynamic therapy (PDT) can generate singlet oxygen through transferring energy with oxygen, called Type-II PSs. However, the microenvironment of solid tumor is usually anoxic. Type-I PSs can generate reactive oxygen species (ROS) through transferring electron to substrate, showing more efficient in PDT. But pure Type-I PSs are very rare. The relationship between PSs' chemical structure and Type-I mechanism has not been explicitly stated. In this study, two thiadiazolo [3,4-g]quinoxaline (TQ) PSs (PsCBz-1 and PsCBz-2) are synthesized through introducing carbazole groups to the 4,9-position of TQ backbone. Comparing with their prototype PS, 4,9-dibrominated TQ (TQs-4), the introduction of carbazole groups reverses the reaction mechanism of PSs from pure Type-II to pure Type-I. Excitingly, the water-dispersible nanoparticles (NPs) of PsCBz-1 can achieve strong phototoxicity in vitro under both normoxia and hypoxia through Type-I mechanism. In addition, PsCBz-1 NPs also exhibits remarkable PDT antitumor effect in vivo. This study provides a feasible design strategy for pure Type-I PSs.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/chemistry , Quinoxalines/pharmacology , Quinoxalines/therapeutic use , Neoplasms/drug therapy , Reactive Oxygen Species , Carbazoles , Tumor Microenvironment
14.
Eur J Med Chem ; 265: 116052, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38134745

ABSTRACT

The bromodomain and extraterminal domain (BET) family proteins recognize acetyl-lysine (Kac) at the histone tail through two tandem bromodomains, i.e., BD1 and BD2, to regulate gene expression. BET proteins are attractive therapeutic targets in cancer due to their involvement in oncogenic transcriptional activation, and bromodomains have defined Kac-binding pockets. Here, we present DW-71177, a potent BET inhibitor that selectively interacts with BD1 and exhibits strong antileukemic activity. X-ray crystallography, isothermal titration calorimetry, and molecular dynamic studies have revealed the robust and specific binding of DW-71177 to the Kac-binding pocket of BD1. DW-71177 effectively inhibits oncogenes comparable to the pan-BET inhibitor OTX-015, but with a milder impact on housekeeping genes. It efficiently blocks cancer-associated transcriptional changes by targeting genes that are highly enriched with BRD4 and histone acetylation marks, suggesting that BD1-selective targeting could be an effective and safe therapeutic strategy against leukemia.


Subject(s)
Leukemia, Myeloid, Acute , Transcription Factors , Humans , Transcription Factors/metabolism , Histones , Nuclear Proteins , Quinoxalines/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Cell Cycle Proteins/metabolism , Bromodomain Containing Proteins
15.
Pharmacol Biochem Behav ; 235: 173702, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154590

ABSTRACT

Smoking is the leading cause of preventable death worldwide, with <7 % of smoking cessation attempts being met with success. Nicotine, the main addictive agent in cigarettes, enhances the reinforcing value of other environmental rewards. Under some circumstances, this reward enhancement maintains nicotine consumption. Varenicline (i.e., cessation aid Chantix™) also has reward-enhancement effects via nicotinic acetylcholine receptor agonism (nAChRs) - albeit less robust than nicotine. Cotinine is the major metabolite of nicotine. Recent studies suggest that cotinine is a positive allosteric modulator (PAM) and/or a weak agonist at nAChRs. Thus, cotinine may enhance the behavioral effects of nAChR compounds such as varenicline and/or exert some behavioral effects alone. We used 20 (10M, 10F) Sprague-Dawley rats to assess reward-enhancement within-subjects by examining responding maintained by a reinforcing visual stimulus on a Variable Ratio 2 schedule of reinforcement. To assess the reward-enhancing effects of cotinine, rats received one injection of cotinine (saline, 0.1, 0.3, 1.0, 3.0, 6.0 mg/kg) before each 1 h session. To assess cotinine and varenicline interactions, rats received an injection of cotinine (saline, 0.1, 1.0, or 6.0 mg/kg) and of varenicline (saline, 0.1, 0.3, 1.0, or 3.0 mg/kg) before the session. While we replicated prior work identifying reward-enhancement by 0.1, 0.3, and 1.0 mg/kg varenicline, cotinine alone did not produce reward-enhancement nor augment the reward-enhancing effects of varenicline. Future studies may consider examining the reward-enhancing effects of cotinine with other reinforcers or co-administered with other smoking cessation aids such as bupropion.


Subject(s)
Nicotine , Receptors, Nicotinic , Humans , Rats , Animals , Varenicline/pharmacology , Nicotine/pharmacology , Cotinine/pharmacology , Rats, Sprague-Dawley , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/metabolism , Benzazepines/pharmacology , Quinoxalines/pharmacology
16.
Sci Rep ; 13(1): 18136, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875605

ABSTRACT

Neglected tropical diseases, such as leishmaniasis, lead to serious limitations to the affected societies. In this work, a structure-activity relationship (SAR) study was developed with a series of quinoxaline derivatives, active against the promastigote forms of Leishmania amazonensis. As a result, a new quinoxaline derivative was designed and synthesized. In addition, a quantitative structure-activity relationship (QSAR) model was obtained [pIC50 = - 1.51 - 0.96 (EHOMO) + 0.02 (PSA); N = 17, R2 = 0.980, R2Adj = 0.977, s = 0.103, and LOO-cv-R2 (Q2) = 0.971]. The activity of the new synthesized compound was estimated (pIC50 = 5.88) and compared with the experimental result (pIC50 = 5.70), which allowed to evaluate the good predictive capacity of the model.


Subject(s)
Antiprotozoal Agents , Leishmania mexicana , Quantitative Structure-Activity Relationship , Quinoxalines/pharmacology , Structure-Activity Relationship , Antiprotozoal Agents/pharmacology
17.
Molecules ; 28(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37836742

ABSTRACT

Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could be exerted by inhibiting the PAF-induced aggregation in washed rabbit platelets (WRPs), which internationally is a well-accepted methodology. Herein, a series of mononuclear (mer-[Cr(pqx)Cl3(H2O]) (1), [Co(pqx)Cl2(DMF)] (2) (DMF = N,N'-dimethyl formamide), [Cu(pqx)Cl2(DMSO)] (3) (DMSO = dimethyl sulfoxide), [Zn(pqx)Cl2] (4)) and dinuclear complexes ([Mn(pqx)(H2O)2Cl2]2 (5), [Fe(pqx)Cl2]2 (6) and [Ni(pqx)Cl2]2 (7)) incorporating the 2-(2'-pyridyl)quinoxaline ligand (pqx), were biologically evaluated as inhibitors of the PAF- and thrombin-induced aggregation in washed rabbit platelets (WRPs). The molecular structure of the five-co-ordinate analog (3) has been elucidated by single-crystal X-ray diffraction revealing a trigonal bipyramidal geometry. All complexes are potent inhibitors of the PAF-induced aggregation in WRPs in the micromolar range. Complex (6) displayed a remarkable in vitro dual inhibition against PAF and thrombin, with IC50 values of 1.79 µM and 0.46 µM, respectively. Within the series, complex (5) was less effective (IC50 = 39 µM) while complex (1) was almost 12-fold more potent against PAF, as opposed to thrombin-induced aggregation. The biological behavior of complexes 1, 6 and 7 on PAF's basic metabolic enzymatic pathways reveals that they affect key biosynthetic and catabolic enzymes of PAF underlying the anti-inflammatory properties of the relevant complexes. The in vitro cytotoxic activities of all complexes in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) are described via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results reveal that complex 3 is the most potent within the series.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Transition Elements , Animals , Humans , Rabbits , Platelet Aggregation , Platelet Activating Factor/pharmacology , Platelet Activating Factor/metabolism , Blood Platelets/metabolism , Thrombin/metabolism , Coordination Complexes/pharmacology , Coordination Complexes/metabolism , Ligands , Inflammation Mediators/metabolism , Dimethyl Sulfoxide/pharmacology , Quinoxalines/pharmacology , HEK293 Cells , HeLa Cells , Antineoplastic Agents/pharmacology , Transition Elements/metabolism
18.
Drug Dev Res ; 84(8): 1724-1738, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37756467

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) and STAT5 are the transcription factors that have been studied extensively in relevance to the development of cancers in humans. Suppression of either STAT3 or STAT5-mediated signaling events has been demonstrated to be effective in inducing cytotoxicity in cancer cells. Herein, new hybrids of triazolyl-indolo-quinoxaline are synthesized and examined for their effect on the activation of STAT3 and STAT5 pathways in gastric cancer (GC) cells. Among the newly synthesized compounds, 2,3-difluoro-6-((1-(3-fluorophenyl)-1H-1,2,3-triazol-5-yl)methyl)-6H-indolo[2,3-b]quinoxaline (DTI) displayed selective cytotoxicity against GC cells over their normal counterpart. Flow cytometric analysis, annexin-V-fluorescein isothiocyanate staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, live and dead assay, and caspase activation experiments suggested DTI as a potent inducer of apoptosis. The mechanistic approach revealed that DTI imparts cytotoxicity via downregulating the phosphorylation of STAT3Y705 and STAT5Y694/699 . DTI significantly reduced the nuclear pool of STAT3/STAT5 and reduced the DNA interaction ability of STAT3/STAT5 as evidenced by immunofluorescence and electrophoretic mobility shift assay. Further investigation revealed that inhibitory effects towards STAT proteins were mediated through the suppression of upstream kinases such as JAK1, JAK2, and Src. Treatment of GC cells with pervanadate counteracted the DTI-driven STAT3/STAT5 inhibition suggesting the involvement of tyrosine phosphatase. Upon DTI exposure, there was a significant upregulation in the mRNA and protein expression of PTPεC, which is a negative regulator of the JAK-STAT pathway. Knockdown of PTPεC suppressed the DTI-induced STATs inhibition in GC cells. Taken together, triazolyl-indolo-quinoxaline is presented as a new inhibitor of the STAT3/STAT5 pathway in GC cells.


Subject(s)
Signal Transduction , Stomach Neoplasms , Humans , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/pharmacology , STAT3 Transcription Factor/metabolism , DNA-Binding Proteins/metabolism , Trans-Activators , Up-Regulation , Quinoxalines/pharmacology , Janus Kinases/metabolism , Janus Kinases/pharmacology , STAT Transcription Factors/metabolism , STAT Transcription Factors/pharmacology , Phosphorylation , Apoptosis
19.
Bioorg Chem ; 141: 106816, 2023 12.
Article in English | MEDLINE | ID: mdl-37716274

ABSTRACT

Pentamethinium indolium salts are promising fluorescence probes and anticancer agents with high mitochondrial selectivity. We synthesized two indolium pentamethinium salts: a cyclic form with quinoxaline directly incorporated in the pentamethinium chain (cPMS) and an open form with quinoxaline substitution in the γ-position (oPMS). To better understand their properties, we studied their interaction with mitochondrial phospholipids (cardiolipin and phosphatidylcholine) by spectroscopic methods (UV-Vis, fluorescence, and NMR spectroscopy). Both compounds displayed significant affinity for cardiolipin and phosphatidylcholine, which was associated with a strong change in their UV-Vis spectra. Nevertheless, we surprisingly observed that fluorescence properties of cPMS changed in complex with both cardiolipin and phosphatidylcholine, whereas those of oPMS only changed in complex with cardiolipin. Both salts, especially cPMS, display high usability in mitochondrial imaging and are cytotoxic for cancer cells. The above clearly indicates that conjugates of pentamethinium and quinoxaline group, especially cPMS, represent promising structural motifs for designing mitochondrial-specific agents.


Subject(s)
Antineoplastic Agents , Cardiolipins , Quinoxalines/pharmacology , Salts , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Phosphatidylcholines
20.
J Mater Chem B ; 11(37): 8985-8993, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37702077

ABSTRACT

Donor-acceptor (D-A) conjugated polymers can favor the nonradiative thermal dissipation process, due to the formation of an intramolecular charge transfer (ICT) state resulting from the electron cloud delocalization of the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital). Thus, to realize a high extinction coefficient and excellent photothermal conversion ability for a single photothermal agent, donor-acceptor type conjugated polymers PBDT-QTz and PCDT-QTz, comprising a new electron-deficient unit 2-(2-decyltetradecyl)-6,7-dimethyl-2H-[1,2,3]triazolo [4,5-g] quinoxaline (QTz) as the acceptor and 4,8-di(thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (BDT) or 4H-cyclopenta[2,1-b:3,4-b'] dithiophene (CDT) as the donor, are designed and synthesized by manipulating intramolecular motion. The high extinction coefficient of 28.5 L g-1 cm-1 at 850 nm and the optimal photothermal conversion efficiency of 64.3% under an 808 nm laser are achieved based on PBDT-QTz. Consequently, PBDT-QTz nanoparticles can be successfully used for both in vitro and in vivo experiments. After intravenous administration and 808 nm laser irradiation, HeLa tumor-bearing mice achieve complete tumor remission without recurrence. The results provide an efficient photothermal agent by manipulating molecular motion.


Subject(s)
Nanoparticles , Photothermal Therapy , Humans , Animals , Mice , Polymers , Quinoxalines/pharmacology , HeLa Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...