Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 385
Filter
1.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38717338

ABSTRACT

Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.


Subject(s)
DNA Helicases , Multifunctional Enzymes , RNA Helicases , RNA, Untranslated , Humans , Cell Nucleolus/metabolism , Cell Nucleolus/genetics , DNA Damage , DNA Helicases/metabolism , DNA Helicases/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Protein Aggregates , Proteostasis , R-Loop Structures/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
2.
Nat Commun ; 15(1): 4126, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750051

ABSTRACT

Type I CRISPR-Cas systems employ multi-subunit effector Cascade and helicase-nuclease Cas3 to target and degrade foreign nucleic acids, representing the most abundant RNA-guided adaptive immune systems in prokaryotes. Their ability to cause long fragment deletions have led to increasing interests in eukaryotic genome editing. While the Cascade structures of all other six type I systems have been determined, the structure of the most evolutionarily conserved type I-B Cascade is still missing. Here, we present two cryo-EM structures of the Synechocystis sp. PCC 6714 (Syn) type I-B Cascade, revealing the molecular mechanisms that underlie RNA-directed Cascade assembly, target DNA recognition, and local conformational changes of the effector complex upon R-loop formation. Remarkably, a loop of Cas5 directly intercalated into the major groove of the PAM and facilitated PAM recognition. We further characterized the genome editing profiles of this I-B Cascade-Cas3 in human CD3+ T cells using mRNA-mediated delivery, which led to unidirectional 4.5 kb deletion in TRAC locus and achieved an editing efficiency up to 41.2%. Our study provides the structural basis for understanding target DNA recognition by type I-B Cascade and lays foundation for harnessing this system for long range genome editing in human T cells.


Subject(s)
CRISPR-Cas Systems , Cryoelectron Microscopy , Gene Editing , Synechocystis , Gene Editing/methods , Humans , Synechocystis/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , T-Lymphocytes/metabolism , R-Loop Structures/genetics
3.
Mol Cell ; 84(9): 1631-1632, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701738

ABSTRACT

In this issue of Molecular Cell, Hao et al.1 demonstrate that the RNA helicase DDX21 recruits the m6A methyltransferase complex to R-loops, ensuring proper transcription termination and genome stability.


Subject(s)
DEAD-box RNA Helicases , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Humans , R-Loop Structures , Methyltransferases/metabolism , Methyltransferases/genetics , Genomic Instability , Adenosine/metabolism , Adenosine/analogs & derivatives , Transcription Termination, Genetic
4.
Nat Commun ; 15(1): 3080, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594251

ABSTRACT

Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.


Subject(s)
Inflammatory Bowel Diseases , R-Loop Structures , Animals , Humans , Mice , DEAD-box RNA Helicases/metabolism , Epithelial Cells/metabolism , Homeostasis , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/metabolism , Neoplasm Proteins/metabolism , Paneth Cells/metabolism , Stem Cells/metabolism
5.
Mol Cancer ; 23(1): 84, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678239

ABSTRACT

The cell cycle is a crucial biological process that is involved in cell growth, development, and reproduction. It can be divided into G1, S, G2, and M phases, and each period is closely regulated to ensure the production of two similar daughter cells with the same genetic material. However, many obstacles influence the cell cycle, including the R-loop that is formed throughout this process. R-loop is a triple-stranded structure, composed of an RNA: DNA hybrid and a single DNA strand, which is ubiquitous in organisms from bacteria to mammals. The existence of the R-loop has important significance for the regulation of various physiological processes. However, aberrant accumulation of R-loop due to its limited resolving ability will be detrimental for cells. For example, DNA damage and genomic instability, caused by the R-loop, can activate checkpoints in the cell cycle, which in turn induce cell cycle arrest and cell death. At present, a growing number of factors have been proven to prevent or eliminate the accumulation of R-loop thereby avoiding DNA damage and mutations. Therefore, we need to gain detailed insight into the R-loop resolution factors at different stages of the cell cycle. In this review, we review the current knowledge of factors that play a role in resolving the R-loop at different stages of the cell cycle, as well as how mutations of these factors lead to the onset and progression of diseases.


Subject(s)
Cell Cycle , DNA Damage , R-Loop Structures , Humans , Cell Cycle/genetics , Animals , Genomic Instability , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/genetics , Mutation
6.
Mol Cancer ; 23(1): 79, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658974

ABSTRACT

R-loops are prevalent three-stranded nucleic acid structures, comprising a DNA-RNA hybrid and a displaced single-stranded DNA, that frequently form during transcription and may be attributed to genomic stability and gene expression regulation. It was recently discovered that RNA modification contributes to maintain the stability of R-loops such as N6-methyladenosine (m6A). Yet, m6A-modified R-loops in regulating gene transcription remains poorly understood. Here, we demonstrated that insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) recognize R-loops in an m6A-dependent way. Consequently, IGF2BPs overexpression leads to increased overall R-loop levels, cell migration inhibition, and cell growth retardation in prostate cancer (PCa) via precluding the binding of DNA methyltransferase 1(DNMT1) to semaphorin 3 F (SEMA3F) promoters. Moreover, the K homology (KH) domains of IGF2BPs are required for their recognition of m6A-containing R-loops and are required for tumor suppressor functions. Overexpression of SEMA3F markedly enhanced docetaxel chemosensitivity in prostate cancer via regulating Hippo pathway. Our findings point to a distinct R-loop resolution pathway mediated by IGF2BPs, emphasizing the functional importance of IGF2BPs as epigenetic R-loop readers in transcriptional genetic regulation and cancer biology.The manuscript summarizes the new role of N6-methyladenosine in epigenetic regulation, we introduce the distinct R-loop resolution mediated by IGF2BP proteins in an m6A-dependent way, which probably lead to the growth retardation and docetaxel chemotherapy resistance in prostate cancer. Moreover, our findings first emphasized the functional importance of IGF2BPs as epigenetic R-loop readers in transcriptional genetic regulation and cancer biology. In addition, our research provides a novel RBM15/IGF2BPs/DNMT1 trans-omics regulation m6A axis, indicating the new crosstalk between RNA m6A methylation and DNA methylation in prostate cancer.


Subject(s)
Adenosine/analogs & derivatives , Docetaxel , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms , R-Loop Structures , Male , Humans , Docetaxel/pharmacology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Adenosine/metabolism , Adenosine/pharmacology , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Promoter Regions, Genetic , Antineoplastic Agents/pharmacology
7.
Nat Commun ; 15(1): 3016, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589367

ABSTRACT

Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.


Subject(s)
Myelodysplastic Syndromes , R-Loop Structures , Humans , Splicing Factor U2AF/genetics , Serine-Arginine Splicing Factors/genetics , RNA Splicing Factors/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Mutation , Transcription Factors/genetics , Phosphoproteins/genetics
8.
Curr Protoc ; 4(4): e1037, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38666626

ABSTRACT

R-loops are nucleic acid structures composed of a DNA:RNA hybrid with a displaced non-template single-stranded DNA. Current approaches to identify and map R-loop formation across the genome employ either an antibody targeted against R-loops (S9.6) or a catalytically inactivated form of RNase H1 (dRNH1), a nuclease that can bind and resolve DNA:RNA hybrids via RNA exonuclease activity. This overview article outlines several ways to map R-loops using either methodology, explaining the differences and similarities among the approaches. Bioinformatic analysis of R-loops involves several layers of quality control and processing before visualizing the data. This article provides resources and tools that can be used to accurately process R-loop mapping data and explains the advantages and disadvantages of the resources as compared to one another. © 2024 Wiley Periodicals LLC.


Subject(s)
R-Loop Structures , Ribonuclease H , Ribonuclease H/metabolism , Ribonuclease H/chemistry , Computational Biology/methods , DNA/chemistry , RNA/chemistry , RNA/metabolism , RNA/genetics , Humans
9.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38569554

ABSTRACT

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , DEAD-box RNA Helicases , Exoribonucleases , Genomic Instability , Methyltransferases , R-Loop Structures , RNA Polymerase II , Transcription Termination, Genetic , Humans , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Adenosine/metabolism , Adenosine/genetics , Exoribonucleases/metabolism , Exoribonucleases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , HEK293 Cells , Chromatin/metabolism , Chromatin/genetics , DNA Damage , HeLa Cells , RNA/metabolism , RNA/genetics , Transcription, Genetic , RNA Methylation
10.
Sci Rep ; 14(1): 7885, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570698

ABSTRACT

SbtB is a PII-like protein that regulates the carbon-concentrating mechanism (CCM) in cyanobacteria. SbtB proteins can bind many adenyl nucleotides and possess a characteristic C-terminal redox sensitive loop (R-loop) that forms a disulfide bridge in response to the diurnal state of the cell. SbtBs also possess an ATPase/ADPase activity that is modulated by the redox-state of the R-loop. To investigate the R-loop in the cyanobacterium Synechocystis sp. PCC 6803, site-specific mutants, unable to form the hairpin and permanently in the reduced state, and a R-loop truncation mutant, were characterized under different inorganic carbon (Ci) and light regimes. Growth under diurnal rhythm showed a role of the R-loop as sensor for acclimation to changing light conditions. The redox-state of the R-loop was found to impact the binding of the adenyl-nucleotides to SbtB, its membrane association and thereby the CCM regulation, while these phenotypes disappeared after truncation of the R-loop. Collectively, our data imply that the redox-sensitive R-loop provides an additional regulatory layer to SbtB, linking the CO2-related signaling activity of SbtB with the redox state of cells, mainly reporting the actual light conditions. This regulation not only coordinates CCM activity in the diurnal rhythm but also affects the primary carbon metabolism.


Subject(s)
Carbon , Synechocystis , Carbon/metabolism , R-Loop Structures , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Nucleotides/metabolism , Oxidation-Reduction , Carbon Dioxide/metabolism , Photosynthesis
11.
Proc Natl Acad Sci U S A ; 121(13): e2306814121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38513102

ABSTRACT

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with aggressive behavior and poor prognosis. Current therapeutic options available for TNBC patients are primarily chemotherapy. With our evolving understanding of this disease, novel targeted therapies, including poly ADP-ribose polymerase (PARP) inhibitors, antibody-drug conjugates, and immune-checkpoint inhibitors, have been developed for clinical use. Previous reports have demonstrated the essential role of estrogen receptor ß (ERß) in TNBC, but the detailed molecular mechanisms downstream ERß activation in TNBC are still far from elucidated. In this study, we demonstrated that a specific ERß agonist, LY500307, potently induces R-loop formation and DNA damage in TNBC cells. Subsequent interactome experiments indicated that the residues 151 to 165 of U2 small nuclear RNA auxiliary factor 1 (U2AF1) and the Trp439 and Lys443 of ERß were critical for the binding between U2AF1 and ERß. Combined RNA sequencing and ribosome sequencing analysis demonstrated that U2AF1-regulated downstream RNA splicing of 5-oxoprolinase (OPLAH) could affect its enzymatic activity and is essential for ERß-induced R-loop formation and DNA damage. In clinical samples including 115 patients from The Cancer Genome Atlas (TCGA) and 32 patients from an in-house cohort, we found a close correlation in the expression of ESR2 and U2AF1 in TNBC patients. Collectively, our study has unraveled the molecular mechanisms that explain the therapeutic effects of ERß activation in TNBC, which provides rationale for ERß activation-based single or combined therapy for patients with TNBC.


Subject(s)
Alternative Splicing , Benzopyrans , Estrogen Receptor beta , R-Loop Structures , Splicing Factor U2AF , Triple Negative Breast Neoplasms , Humans , Estrogen Receptor beta/agonists , Estrogen Receptor beta/metabolism , Splicing Factor U2AF/chemistry , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Combined Modality Therapy , MDA-MB-231 Cells , Alternative Splicing/drug effects , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Protein Binding , Binding Sites
12.
J Biol Chem ; 300(4): 107162, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484800

ABSTRACT

Kinetoplastid parasites are "living bridges" in the evolution from prokaryotes to higher eukaryotes. The near-intronless genome of the kinetoplastid Leishmania exhibits polycistronic transcription which can facilitate R-loop formation. Therefore, to prevent such DNA-RNA hybrids, Leishmania has retained prokaryotic-like DNA Topoisomerase IA (LdTOPIA) in the course of evolution. LdTOPIA is an essential enzyme that is expressed ubiquitously and is adapted for the compartmentalized eukaryotic form in harboring functional bipartite nuclear localization signals. Although exhibiting greater homology to mycobacterial TOPIA, LdTOPIA could functionally complement the growth lethality of Escherichia coli TOPIA null GyrB ts strain at non-permissive temperatures. Purified LdTOPIA exhibits Mg2+-dependent relaxation of only negatively supercoiled DNA and preference towards single-stranded DNA substrates. LdTOPIA prevents nuclear R-loops as conditional LdTOPIA downregulated parasites exhibit R-loop formation and thereby parasite killing. The clinically used tricyclic antidepressant, norclomipramine could specifically inhibit LdTOPIA and lead to R-loop formation and parasite elimination. This comprehensive study therefore paves an avenue for drug repurposing against Leishmania.


Subject(s)
DNA Topoisomerases, Type I , R-Loop Structures , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type I/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Leishmania/enzymology , Leishmania/genetics , Animals , Escherichia coli/genetics , Escherichia coli/metabolism
13.
Cancer Res ; 84(6): 793-795, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486481

ABSTRACT

High-grade serous ovarian carcinoma (HGSOC) is the deadliest subtype of ovarian cancer. While PARP inhibitors (PARPi) have transformed the care of advanced HGSOC, PARPi resistance poses a major limitation to their clinical utility. DNA damage checkpoint signaling via ATR kinase can counteract PARPi-induced replication stress, making ATR an attractive therapeutic target in PARPi-resistant tumors. However, ATR inhibitor (ATRi) efficacy in the clinic is low, emphasizing the need for suitable combination treatments. In this issue of Cancer Research, Huang and colleagues uncovered cytotoxic synergism between inhibition of the PI3K/AKT pathway and ATR based on high-throughput screening for ATRi drug combinations in PARPi-resistant HGSOC cells. Dual inhibition of ATR and AKT resulted in aberrant replication stress and cell death, which was attributed in part to impaired resolution of replication-stalling RNA:DNA hybrids (R loops). The authors identified the DNA/RNA helicase DHX9 as a clinically relevant candidate effector of R loop resolution in HGSOC. AKT interacted with and recruited DHX9 to R loops, where it complemented ATR in facilitating their removal. Underlining the therapeutic potential relevance of these findings, combined inhibition of ATR and AKT caused near complete tumor regression in HGSOC xenograft models, and elevated AKT/DHX9 levels correlated with poor survival in patients with HGSOC. Of note, the genotoxic consequences of dual ATRi/AKTi treatment extended beyond PARPi-resistant tumors and are likely to affect genome integrity beyond R loops. The work by Huang and colleagues thus provides compelling rationale for the exploration of combined targeting of the AKT and ATR pathways as a potentially broadly applicable treatment of advanced HGSOC. See related article by Huang et al., p. 887.


Subject(s)
Ovarian Neoplasms , R-Loop Structures , Humans , Female , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Ovarian Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , DNA
14.
Methods Enzymol ; 695: 103-118, 2024.
Article in English | MEDLINE | ID: mdl-38521582

ABSTRACT

A large variety of non-B secondary structures can be formed between DNA and RNA. In this chapter, we focus on G-quadruplexes (G4) and R-loops, which can have a close structural interplay. In recent years, increasing evidence pointed to the fact that they can strongly influence each other in vivo, both having physiological and pathological roles in normal and cancer cells. Here, we detail specific and accurate methods for purification of BG4 and S9.6 antibodies, and their subsequent use in immunofluorescence microscopy, enabling single-cell analysis of extent and localization of G4s and R-loops.


Subject(s)
G-Quadruplexes , R-Loop Structures , DNA/chemistry , RNA/chemistry , Microscopy, Fluorescence
15.
Methods Enzymol ; 695: 71-88, 2024.
Article in English | MEDLINE | ID: mdl-38521591

ABSTRACT

Potential G-quadruplex forming sequences (PQS) are enriched in cancer-related genes and immunoglobulin class-switch recombination. They are prevalent in the 5'UTR of transcriptionally active genes, thereby contributing to the regulation of gene expression. We and others previously demonstrated that the PQS located in the non-template strand leads to an R-loop formation followed by a G-quadruplex (G4) formation during transcription. These structural changes increase mRNA production. Here, we present how single-molecule technique was used to observe cotranscriptional G4 and R-loop formation and to examine the impact on transcription, particularly for the initiation and elongation stages.


Subject(s)
G-Quadruplexes , R-Loop Structures , Gene Expression Regulation , RNA, Messenger/genetics
16.
Nat Commun ; 15(1): 2165, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461301

ABSTRACT

The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.


Subject(s)
Neoplasms , R-Loop Structures , RNA, Long Noncoding , Telomere Homeostasis , Histone Demethylases/genetics , Histone Demethylases/metabolism , Phase Separation , RNA, Long Noncoding/genetics , Telomere/genetics , Telomere/metabolism , Telomere Homeostasis/genetics , Humans
17.
Nucleic Acids Res ; 52(9): 5088-5106, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38412240

ABSTRACT

Exploring the connection between ubiquitin-like modifiers (ULMs) and the DNA damage response (DDR), we employed several advanced DNA damage and repair assay techniques and identified a crucial role for LC3B. Notably, its RNA recognition motif (RRM) plays a pivotal role in the context of transcription-associated homologous recombination (HR) repair (TA-HRR), a particular subset of HRR pathways. Surprisingly, independent of autophagy flux, LC3B interacts directly with R-loops at DNA lesions within transcriptionally active sites via its RRM, promoting TA-HRR. Using native RNA immunoprecipitation (nRIP) coupled with high-throughput sequencing (nRIP-seq), we discovered that LC3B also directly interacts with the 3'UTR AU-rich elements (AREs) of BRCA1 via its RRM, influencing its stability. This suggests that LC3B regulates TA-HRR both proximal to and distal from DNA lesions. Data from our LC3B depletion experiments showed that LC3B knockdown disrupts end-resection for TA-HRR, redirecting it towards the non-homologous end joining (NHEJ) pathway and leading to chromosomal instability, as evidenced by alterations in sister chromatid exchange (SCE) and interchromosomal fusion (ICF). Thus, our findings unveil autophagy-independent functions of LC3B in DNA damage and repair pathways, highlighting its importance. This could reshape our understanding of TA-HRR and the interaction between autophagy and DDR.


Subject(s)
BRCA1 Protein , Microtubule-Associated Proteins , R-Loop Structures , Recombinational DNA Repair , Transcription, Genetic , Humans , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , DNA Damage , DNA End-Joining Repair , 3' Untranslated Regions , Homologous Recombination , Cell Line, Tumor , Sister Chromatid Exchange
18.
Cell Rep ; 43(2): 113779, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38358891

ABSTRACT

R-loops are three-stranded structures that can pose threats to genome stability. RNase H1 precisely recognizes R-loops to drive their resolution within the genome, but the underlying mechanism is unclear. Here, we report that ARID1A recognizes R-loops with high affinity in an ATM-dependent manner. ARID1A recruits METTL3 and METTL14 to the R-loop, leading to the m6A methylation of R-loop RNA. This m6A modification facilitates the recruitment of RNase H1 to the R-loop, driving its resolution and promoting DNA end resection at DSBs, thereby ensuring genome stability. Depletion of ARID1A, METTL3, or METTL14 leads to R-loop accumulation and reduced cell survival upon exposure to cytotoxic agents. Therefore, ARID1A, METTL3, and METTL14 function in a coordinated, temporal order at DSB sites to recruit RNase H1 and to ensure efficient R-loop resolution. Given the association of high ARID1A levels with resistance to genotoxic therapies in patients, these findings open avenues for exploring potential therapeutic strategies for cancers with ARID1A abnormalities.


Subject(s)
Adenine/analogs & derivatives , R-Loop Structures , RNA , Ribonuclease H , Humans , Genomic Instability , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Methyltransferases/genetics
19.
Sci Adv ; 10(6): eadk2685, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38324687

ABSTRACT

Transcription-replication conflicts (TRCs) induce formation of cotranscriptional RNA:DNA hybrids (R-loops) stabilized by G-quadruplexes (G4s) on the displaced DNA strand, which can cause fork stalling. Although it is known that these stalled forks can resume DNA synthesis in a process initiated by MUS81 endonuclease, how TRC-associated G4/R-loops are removed to allow fork passage remains unclear. Here, we identify the mismatch repair protein MutSß, an MLH1-PMS1 heterodimer termed MutLß, and the G4-resolving helicase FANCJ as factors that are required for MUS81-initiated restart of DNA replication at TRC sites in human cells. This DNA repair process depends on the G4-binding activity of MutSß, the helicase activity of FANCJ, and the binding of FANCJ to MLH1. Furthermore, we show that MutSß, MutLß, and MLH1-FANCJ interaction mediate FANCJ recruitment to G4s. These data suggest that MutSß, MutLß, and FANCJ act in conjunction to eliminate G4/R-loops at TRC sites, allowing replication restart.


Subject(s)
Fanconi Anemia Complementation Group Proteins , R-Loop Structures , Humans , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Replication , DNA/genetics
20.
Nat Commun ; 15(1): 1568, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383600

ABSTRACT

Drugs targeting the DNA damage response (DDR) are widely used in cancer therapy, but resistance to these drugs remains a major clinical challenge. Here, we show that SYCP2, a meiotic protein in the synaptonemal complex, is aberrantly and commonly expressed in breast and ovarian cancers and associated with broad resistance to DDR drugs. Mechanistically, SYCP2 enhances the repair of DNA double-strand breaks (DSBs) through transcription-coupled homologous recombination (TC-HR). SYCP2 promotes R-loop formation at DSBs and facilitates RAD51 recruitment independently of BRCA1. SYCP2 loss impairs RAD51 localization, reduces TC-HR, and renders tumors sensitive to PARP and topoisomerase I (TOP1) inhibitors. Furthermore, our studies of two clinical cohorts find that SYCP2 overexpression correlates with breast cancer resistance to antibody-conjugated TOP1 inhibitor and ovarian cancer resistance to platinum treatment. Collectively, our data suggest that SYCP2 confers cancer cell resistance to DNA-damaging agents by stimulating R-loop-mediated DSB repair, offering opportunities to improve DDR therapy.


Subject(s)
DNA Repair , R-Loop Structures , DNA Breaks, Double-Stranded , Homologous Recombination , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , DNA , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Recombinational DNA Repair
SELECTION OF CITATIONS
SEARCH DETAIL
...