Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.076
Filter
1.
BMC Neurol ; 24(1): 147, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693483

ABSTRACT

BACKGROUND: Sleep disorders are a prevalent non-motor symptom of Parkinson's disease (PD), although reliable biological markers are presently lacking. OBJECTIVES: To explore the associations between sleep disorders and serum neurofilament light chain (NfL) levels in individuals with prodromal and early PD. METHODS: The study contained 1113 participants, including 585 early PD individuals, 353 prodromal PD individuals, and 175 healthy controls (HCs). The correlations between sleep disorders (including rapid eye movement sleep behavior disorder (RBD) and excessive daytime sleepiness (EDS)) and serum NfL levels were researched using multiple linear regression models and linear mixed-effects models. We further investigated the correlations between the rates of changes in daytime sleepiness and serum NfL levels using multiple linear regression models. RESULTS: In baseline analysis, early and prodromal PD individuals who manifested specific behaviors of RBD showed significantly higher levels of serum NfL. Specifically, early PD individuals who experienced nocturnal dream behaviors (ß = 0.033; P = 0.042) and movements of arms or legs during sleep (ß = 0.027; P = 0.049) showed significantly higher serum NfL levels. For prodromal PD individuals, serum NfL levels were significantly higher in individuals suffering from disturbed sleep (ß = 0.038; P = 0.026). Our longitudinal findings support these baseline associations. Serum NfL levels showed an upward trend in early PD individuals who had a higher total RBDSQ score (ß = 0.002; P = 0.011) or who were considered as probable RBD (ß = 0.012; P = 0.009) or who exhibited behaviors on several sub-items of the RBDSQ. In addition, early PD individuals who had a high total ESS score (ß = 0.001; P = 0.012) or who were regarded to have EDS (ß = 0.013; P = 0.007) or who exhibited daytime sleepiness in several conditions had a trend toward higher serum NfL levels. CONCLUSION: Sleep disorders correlate with higher serum NfL, suggesting a link to PD neuronal damage. Early identification of sleep disorders and NfL monitoring are pivotal in detecting at-risk PD patients promptly, allowing for timely intervention. Regular monitoring of NfL levels holds promise for tracking both sleep disorders and disease progression, potentially emerging as a biomarker for evaluating treatment outcomes.


Subject(s)
Biomarkers , Neurofilament Proteins , Parkinson Disease , Sleep Wake Disorders , Humans , Parkinson Disease/blood , Parkinson Disease/diagnosis , Parkinson Disease/complications , Male , Female , Neurofilament Proteins/blood , Middle Aged , Aged , Sleep Wake Disorders/blood , Sleep Wake Disorders/diagnosis , Sleep Wake Disorders/epidemiology , Biomarkers/blood , REM Sleep Behavior Disorder/blood , REM Sleep Behavior Disorder/diagnosis , Prodromal Symptoms
2.
J Parkinsons Dis ; 14(3): 545-556, 2024.
Article in English | MEDLINE | ID: mdl-38669560

ABSTRACT

Background: REM-sleep behavior disorder (RBD) and other non-motor symptoms such as hyposmia were proposed by the Movement Disorder Society as research criteria for prodromal Parkinson's disease (P-PD). Global cognitive deficit was later added. Objective: To compare non-motor symptoms, focusing on cognition, between a P-PD group and a matched control group. Methods: In this cross-sectional, case-control study, in a first set of analyses, we performed extensive cognitive testing on people with (n = 76) and a control group without (n = 195) probable RBD and hyposmia. Furthermore, we assessed motor and non-motor symptoms related to Parkinson's Disease (PD). After propensity score matching, we compared 62 P-PD with 62 age- and sex-matched controls. In addition, we performed regression analyses on the total sample (n = 271). In a second set of analyses, we used, a.o., the CUPRO to evaluate retrograde procedural memory and visuo-constructive functions. Results: People with P-PD showed significantly poorer performances in global cognition, visuo-constructive and executive functions, mainly in mental flexibility (p < 0.001; p = 0.004; p = 0.003), despite similar educational levels (p = 0.415). We observed significantly more motor and non-motor symptoms (p < 0.001; p = 0.004), higher scores for depression (p = 0.004) and apathy (p < 0.001) as well as lower quality of life (p < 0.001) in P-PD. CONCLUSIONS: Our findings confirm that global cognitive, executive, and visuo-constructive deficits define the P-PD group. In addition, depression, apathy, and lower quality of life were more prevalent in P-PD. If replicated in other samples, executive and visuo-constructive deficits should be considered in non-motor P-PD. Determining specific patterns will support early recognition of PD, secondary prevention of complications and the development of neuroprotective treatments.


Subject(s)
Anosmia , Cognitive Dysfunction , Parkinson Disease , REM Sleep Behavior Disorder , Humans , Parkinson Disease/complications , Parkinson Disease/physiopathology , REM Sleep Behavior Disorder/etiology , REM Sleep Behavior Disorder/physiopathology , Male , Female , Aged , Middle Aged , Cross-Sectional Studies , Case-Control Studies , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Anosmia/etiology , Anosmia/physiopathology , Prodromal Symptoms , Executive Function/physiology , Neuropsychological Tests , Cognition/physiology
3.
Neurology ; 102(9): e209271, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38630966

ABSTRACT

BACKGROUND AND OBJECTIVES: Clinical heterogeneity of patients with Parkinson disease (PD) is well recognized. PD with REM sleep behavior disorder (RBD) is a more malignant phenotype with faster motor progression and higher nonmotor symptom burden. However, the neural mechanisms underlying this clinical divergence concerning imbalances in neurotransmitter systems remain elusive. METHODS: Combining magnetic resonance (MR) spectroscopy and [11C]ABP688 PET on a PET/MR hybrid system, we simultaneously investigated two different mechanisms of glutamate signaling in patients with PD. Patients were grouped according to their RBD status in overnight video-polysomnography and compared with age-matched and sex-matched healthy control (HC) participants. Total volumes of distribution (VT) of [11C]ABP688 were estimated with metabolite-corrected plasma concentrations during steady-state conditions between 45 and 60 minutes of the scan following a bolus-infusion protocol. Glutamate, glutamine, and glutathione levels were investigated with single-voxel stimulated echo acquisition mode MR spectroscopy of the left basal ganglia. RESULTS: We measured globally elevated VT of [11C]ABP688 in 16 patients with PD and RBD compared with 17 patients without RBD and 15 HC participants (F(2,45) = 5.579, p = 0.007). Conversely, glutamatergic metabolites did not differ between groups and did not correlate with the regional VT of [11C]ABP688. VT of [11C]ABP688 correlated with the amount of REM sleep without atonia (F(1,42) = 5.600, p = 0.023) and with dopaminergic treatment response in patients with PD (F(1,30) = 5.823, p = 0.022). DISCUSSION: Our results suggest that patients with PD and RBD exhibit altered glutamatergic signaling indicated by higher VT of [11C]ABP688 despite unaffected glutamate levels. The imbalance of glutamate receptors and MR spectroscopy glutamate metabolite levels indicates a novel mechanism contributing to the heterogeneity of PD and warrants further investigation of drugs targeting mGluR5.


Subject(s)
Parkinson Disease , Pyridines , REM Sleep Behavior Disorder , Humans , Parkinson Disease/diagnosis , REM Sleep Behavior Disorder/diagnosis , Oximes , Glutamates
4.
Hum Brain Mapp ; 45(5): e26675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38590155

ABSTRACT

Isolated REM sleep behavior disorder (iRBD) is an early stage of synucleinopathy with most patients progressing to Parkinson's disease (PD) or related conditions. Quantitative susceptibility mapping (QSM) in PD has identified pathological iron accumulation in the substantia nigra (SN) and variably also in basal ganglia and cortex. Analyzing whole-brain QSM across iRBD, PD, and healthy controls (HC) may help to ascertain the extent of neurodegeneration in prodromal synucleinopathy. 70 de novo PD patients, 70 iRBD patients, and 60 HCs underwent 3 T MRI. T1 and susceptibility-weighted images were acquired and processed to space standardized QSM. Voxel-based analyses of grey matter magnetic susceptibility differences comparing all groups were performed on the whole brain and upper brainstem levels with the statistical threshold set at family-wise error-corrected p-values <.05. Whole-brain analysis showed increased susceptibility in the bilateral fronto-parietal cortex of iRBD patients compared to both PD and HC. This was not associated with cortical thinning according to the cortical thickness analysis. Compared to iRBD, PD patients had increased susceptibility in the left amygdala and hippocampal region. Upper brainstem analysis revealed increased susceptibility within the bilateral SN for both PD and iRBD compared to HC; changes were located predominantly in nigrosome 1 in the former and nigrosome 2 in the latter group. In the iRBD group, abnormal dopamine transporter SPECT was associated with increased susceptibility in nigrosome 1. iRBD patients display greater fronto-parietal cortex involvement than incidental early-stage PD cohort indicating more widespread subclinical neuropathology. Dopaminergic degeneration in the substantia nigra is paralleled by susceptibility increase, mainly in nigrosome 1.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Synucleinopathies/complications , Synucleinopathies/pathology , Brain/diagnostic imaging , Brain/pathology , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology , Parkinson Disease/complications , Iron
5.
J Parkinsons Dis ; 14(3): 399-414, 2024.
Article in English | MEDLINE | ID: mdl-38489198

ABSTRACT

 The movement toward prevention trials in people at-risk for Parkinson's disease (PD) is rapidly becoming a reality. The authors of this article include a genetically at-risk advocate with the LRRK2 G2019 S variant and two patients with rapid eye movement sleep behavior disorder (RBD), one of whom has now been diagnosed with PD. These authors participated as speakers, panelists, and moderators in the "Planning for Prevention of Parkinson's: A Trial Design Forum" hosted by Massachusetts General Hospital in 2021 and 2022. Other authors include a young onset person with Parkinson's (PwP) and retired family physician, an expert in patient engagement in Parkinson's, and early career and veteran movement disorders clinician researchers. Several themes emerged from the at-risk participant voice concerning the importance of early intervention, the legitimacy of their input in decision-making, and the desire for transparent communication and feedback throughout the entire research study process. Challenges and opportunities in the current environment include lack of awareness among primary care physicians and general neurologists about PD risk, legal and psychological implications of risk disclosure, limited return of individual research study results, and undefined engagement and integration of individuals at-risk into the broader Parkinson's community. Incorporating the perspectives of individuals at-risk as well as those living with PD at this early stage of prevention trial development is crucial to success.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/prevention & control , REM Sleep Behavior Disorder/etiology , REM Sleep Behavior Disorder/prevention & control , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Genetic Predisposition to Disease , Male , Biomedical Research
6.
Brain Behav ; 14(3): e3460, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494747

ABSTRACT

Rapid eye movement behavior disorder (RBD) is a parasomnia characterized by the loss of skeletal muscle atonia during the rapid eye movement (REM) sleep phase. On the other hand, idiopathic RDB (iRBD) is considered the prelude of the various α-synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy. Consequently, over 40% of patients eventually develop PD. Recent neuroimaging studies utilizing structural magnetic resonance imaging (s-MRI), diffusion-weighted imaging (DWI), and functional magnetic resonance imaging (fMRI) with graph theoretical analysis have demonstrated that patients with iRBD and Parkinson's disease have extensive brain abnormalities. Thus, it is crucial to identify new biomarkers that aid in determining the underlying physiopathology of iRBD group. This review was conducted systematically on the included full-text articles of s-MRI, DWI, and fMRI studies using graph theoretical analysis on patients with iRBD, per the procedures recommended by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The literature search was conducted through the PubMed and Google scholar databases concentrating on studies from September to January 2022. Based on the three perspectives of integration, segregation, and centrality, the reviewed articles demonstrated that iRBD is associated with segregation disorders in frontal and limbic brain regions. Moreover, this study highlighted the need for additional longitudinal and multicenter studies to better understand the potential of graph metrics as brain biomarkers for identifying the underlying physiopathology of iRBD group.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , REM Sleep Behavior Disorder/diagnostic imaging , REM Sleep Behavior Disorder/complications , Parkinson Disease/complications , Brain , Biomarkers
7.
Neurology ; 102(7): e209220, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38489578

ABSTRACT

BACKGROUND AND OBJECTIVES: Cognitive impairments are common in idiopathic REM sleep behavior disorder (iRBD), in which the cholinergic degeneration of nucleus basalis of Meynert (NBM) may play an important role. However, the progressive changes of NBM, the relationship between progressive NBM degeneration and progression of cognitive impairments, and whether degeneration of the NBM can predict cognitive decline in patients with iRBD remain unclear. This study aimed to investigate the cross-sectional and longitudinal microstructural alterations in the NBM of patients with iRBD using free-water imaging and whether free water in the NBM is related to cognitive, mood, and autonomic function. METHODS: We compared the baseline free-water values in the NBM between 59 healthy controls (HCs), 57 patients with iRBD, 57 patients with Parkinson disease (PD) with normal cognition (PD-NC), and 64 patients with PD with cognitive impairment (PD-CI). Thirty patients with iRBD and 40 HCs had one longitudinal data. In patients with iRBD, we explored the associations between baseline and longitudinal changes of free-water values in the NBM and clinical characteristics and whether baseline free-water values in the NBM could predict cognitive decline. RESULTS: IRBD, PD-NC, and PD-CI groups had significantly increased free-water values in the NBM compared with HCs, whereas PD-CI had higher free-water values compared with iRBD and PD-NC. In patients with iRBD, free-water values in the NBM were progressively elevated over follow-up and correlated with the progression of cognitive impairment and depression. Free-water values in the NBM could predict cognitive decline in the iRBD group. Furthermore, we found that patients with iRBD with cognitive impairment had higher relative change of free-water value in the NBM compared with patients with iRBD with normal cognition over follow-up. DISCUSSION: This study proves that free-water values in the NBM are elevated cross-sectionally and longitudinally and are associated with the progression of cognitive impairment and depression in patients with iRBD. Moreover, the free-water value in the NBM can predict cognitive decline in patients with iRBD. Whether free-water imaging of the NBM has the potential to be a marker for monitoring progressive cognitive impairment and predicting the conversion to dementia in synucleinopathies needs further investigation.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , REM Sleep Behavior Disorder , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , REM Sleep Behavior Disorder/complications , Basal Nucleus of Meynert , Cross-Sectional Studies , Water
8.
Sleep Med ; 117: 162-168, 2024 May.
Article in English | MEDLINE | ID: mdl-38547593

ABSTRACT

BACKGROUND AND OBJECTIVE: Rumination, a common factor of chronic insomnia disorder (CID) caused by cognitive-emotional arousal, is associated with an increased amount of rapid eye movement (REM) sleep. However, the specific subtypes, such as phasic REM and tonic REM, that contribute to the increased REM sleep have not been reported. This study aimed to determine the association between rumination and different REM sleep subtypes in patients with CID. METHODS: This study enrolled 35 patients with CID and 27 age- and sex-matched healthy controls. The Immersion-Rumination Questionnaire evaluated participants' rumination, and the Insomnia Severity Index was used to assess insomnia severity. Finally, polysomnography was used to monitor objective sleep quality and quantification of different types of REM. RESULTS: The CID patients had higher rumination scores than the healthy controls. They had a shorter REM sleep duration, less phasic REM, a lower percentage of phasic REM time, and a higher percentage of tonic REM time. Spectral analysis revealed that the patients affected by insomnia had higher ß power during REM sleep, higher ß and σ power during phasic REM sleep, and higher ß, and γ power during tonic REM sleep. Partial correlation analysis showed that rumination in the CID patients correlated negatively with the duration of phasic REM sleep. Additionally, rumination correlated negatively with δ power in REM sleep and positively with ß power in REM sleep, tonic REM sleep, phasic REM sleep, N3and N2 sleep in the patients with CID. CONCLUSION: The CID patients had stronger rumination, reduced total and phasic REM sleep, and the stronger rumination was, the shorter phasic REM was and the higher fast (ß) wave power in REM sleep.


Subject(s)
REM Sleep Behavior Disorder , Sleep Initiation and Maintenance Disorders , Humans , Sleep, REM , Sleep Initiation and Maintenance Disorders/complications , Polysomnography , Arousal , REM Sleep Behavior Disorder/complications
9.
Sleep Med ; 117: 184-191, 2024 May.
Article in English | MEDLINE | ID: mdl-38555837

ABSTRACT

BACKGROUND: Isolated rapid-eye-movement behavior disorder (iRBD) often precedes the development of alpha-synucleinopathies such as Parkinson's disease (PD). Magnetic resonance imaging (MRI) studies have revealed structural brain alterations in iRBD partially resembling those observed in PD. However, relatively little is known about whole-brain functional brain alterations in iRBD. Here, we characterize the functional brain connectome of iRBD compared with PD patients and healthy controls (HC) using resting-state functional MRI (rs-fMRI). METHODS: Eighteen iRBD subjects (67.3 ± 6.6 years), 18 subjects with PD (65.4 ± 5.8 years), and 39 age- and sex-matched HC (64.4 ± 9.2 years) underwent rs-fMRI at 3 T. We applied a graph theoretical approach to analyze the brain functional connectome at the global and regional levels. Data were analyzed using both frequentist and Bayesian statistics. RESULTS: Global connectivity was largely preserved in iRBD and PD individuals. In contrast, both disease groups displayed altered local connectivity mainly in the motor network, temporal cortical regions including the limbic system, and the visual system. There were some group specific alterations, and connectivity changes were pronounced in PD individuals. Overall, however, there was a good agreement of the connectome changes observed in both disease groups. CONCLUSIONS: This study provides evidence for widespread functional brain connectivity alterations in iRBD, including motor circuitry, despite normal motor function. Connectome alterations showed substantial resemblance with those observed in PD, underlining a close pathophysiological relationship of iRBD and PD.


Subject(s)
Connectome , Parkinson Disease , REM Sleep Behavior Disorder , Humans , Bayes Theorem , Brain
10.
EBioMedicine ; 102: 105065, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502973

ABSTRACT

BACKGROUND: Idiopathic rapid eye movement (REM) sleep behaviour disorder (IRBD) represents the prodromal stage of Lewy body disorders (Parkinson's disease (PD) and dementia with Lewy bodies (DLB)) which are linked to variations in circulating cell-free mitochondrial DNA (cf-mtDNA). Here, we assessed whether altered cf-mtDNA release and integrity are already present in IRBD. METHODS: We used multiplex digital PCR (dPCR) to quantify cf-mtDNA copies and deletion ratio in cerebrospinal fluid (CSF) and serum in a cohort of 71 participants, including 1) 17 patients with IRBD who remained disease-free (non-converters), 2) 34 patients initially diagnosed with IRBD who later developed either PD or DLB (converters), and 3) 20 age-matched controls without IRBD or Parkinsonism. In addition, we investigated whether CD9-positive extracellular vesicles (CD9-EVs) from CSF and serum samples contained cf-mtDNA. FINDINGS: Patients with IRBD, both converters and non-converters, exhibited more cf-mtDNA with deletions in the CSF than controls. This finding was confirmed in CD9-EVs. The high levels of deleted cf-mtDNA in CSF corresponded to a significant decrease in cf-mtDNA copies in CD9-EVs in both IRBD non-converters and converters. Conversely, a significant increase in cf-mtDNA copies was found in serum and CD9-EVs from the serum of patients with IRBD who later converted to a Lewy body disorder. INTERPRETATION: Alterations in cf-mtDNA copy number and deletion ratio known to occur in Lewy body disorders are already present in IRBD and are not a consequence of Lewy body disease conversion. This suggests that mtDNA dysfunction is a primary molecular mechanism of the pathophysiological cascade that precedes the full clinical motor and cognitive manifestation of Lewy body disorders. FUNDING: Funded by Michael J. Fox Foundation research grant MJFF-001111. Funded by MICIU/AEI/10.13039/501100011033 "ERDF A way of making Europe", grants PID2020-115091RB-I00 (RT) and PID2022-143279OB-I00 (ACo). Funded by Instituto de Salud Carlos III and European Union NextGenerationEU/PRTR, grant PMP22/00100 (RT and ACo). Funded by AGAUR/Generalitat de Catalunya, grant SGR00490 (RT and ACo). MP has an FPI fellowship, PRE2018-083297, funded by MICIU/AEI/10.13039/501100011033 "ESF Investing in your future".


Subject(s)
Parkinson Disease , Parkinsonian Disorders , REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/diagnosis , REM Sleep Behavior Disorder/genetics , Parkinson Disease/genetics , Forecasting , DNA, Mitochondrial/genetics
11.
Magn Reson Imaging ; 109: 158-164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520943

ABSTRACT

INTRODUCTION: Idiopathic rapid eye movement sleep behavior disorder (iRBD) and Parkinson's disease (PD) have been found to have changes in cerebral perfusion and overlap of some of the lesioned brain areas. However, a consensus regarding the specific location and diagnostic significance of these cerebral blood perfusion alternations remains elusive in both iRBD and PD. The present study evaluated the patterns of cerebral blood flow changes in iRBD and PD. MATERIAL AND METHODS: A total of 59 right-handed subjects were enrolled, including 15 patients with iRBD, 20 patients with PD, and 24 healthy controls (HC). They were randomly divided into groups at a ratio of 4 to 1 for training and testing. A PASL sequence was employed to obtain quantitative cerebral blood flow (CBF) maps. The CBF values were calculated from these acquired maps. In addition, AutoGluon was employed to construct a classifier for CBF features selection and classification. An independent t-test was performed for CBF variations, with age and sex as nuisance variables. The performance of the feature was evaluated using receiver operating characteristic (ROC) curves. A significance level of P < 0.05 was considered significant. CBF in several brain regions, including the left median cingulate and paracingulate gyri and the right middle occipital gyrus (MOG), showed significant differences between PD and HC, demonstrating good classification performance. The combined model that integrates all features achieved even higher performance with an AUC of 0.9380. Additionally, CBF values in multiple brain regions, including the right MOG and the left angular gyrus, displayed significant differences between PD and iRBD. Particularly, CBF values in the left angular gyrus exhibited good performance in classifying PD and iRBD. The combined model achieved improved performance, with an AUC of 0.8533. No significant differences were found in brain regions when comparing CBF values between iRBD and HC subjects. CONCLUSIONS: ASL-based quantitative CBF change features can offer reliable biomarkers to assist in the diagnosis of PD. Regarding the characteristic of CBF in the right MOG, it is anticipated to serve as an imaging biomarker for predicting the progression of iRBD to PD.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/diagnostic imaging , Parkinson Disease/diagnostic imaging , Spin Labels , Cerebrovascular Circulation , Arteries
13.
Neurobiol Dis ; 194: 106472, 2024 May.
Article in English | MEDLINE | ID: mdl-38479482

ABSTRACT

BACKGROUND: Whether there is hypothalamic degeneration in Parkinson's disease (PD) and its association with clinical symptoms and pathophysiological changes remains controversial. OBJECTIVES: We aimed to quantify microstructural changes in hypothalamus using a novel deep learning-based tool in patients with PD and those with probable rapid-eye-movement sleep behavior disorder (pRBD). We further assessed whether these microstructural changes associated with clinical symptoms and free thyroxine (FT4) levels. METHODS: This study included 186 PD, 67 pRBD, and 179 healthy controls. Multi-shell diffusion MRI were scanned and mean kurtosis (MK) in hypothalamic subunits were calculated. Participants were assessed using Unified Parkinson's Disease Rating Scale (UPDRS), RBD Questionnaire-Hong Kong (RBDQ-HK), Hamilton Depression Rating Scale (HAMD), and Activity of Daily Living (ADL) Scale. Additionally, a subgroup of PD (n = 31) underwent assessment of FT4. RESULTS: PD showed significant decreases of MK in anterior-superior (a-sHyp), anterior-inferior (a-iHyp), superior tubular (supTub), and inferior tubular hypothalamus when compared with healthy controls. Similarly, pRBD exhibited decreases of MK in a-iHyp and supTub. In PD group, MK in above four subunits were significantly correlated with UPDRS-I, HAMD, and ADL. Moreover, MK in a-iHyp and a-sHyp were significantly correlated with FT4 level. In pRBD group, correlations were observed between MK in a-iHyp and UPDRS-I. CONCLUSIONS: Our study reveals that microstructural changes in the hypothalamus are already significant at the early neurodegenerative stage. These changes are associated with emotional alterations, daily activity levels, and thyroid hormone levels.


Subject(s)
Parkinson Disease , Pindolol/analogs & derivatives , REM Sleep Behavior Disorder , Humans , Parkinson Disease/complications , Surveys and Questionnaires
14.
Parkinsonism Relat Disord ; 122: 106072, 2024 May.
Article in English | MEDLINE | ID: mdl-38430690

ABSTRACT

INTRODUCTION: Olfactory dysfunction and REM sleep behavior disorder (RBD) are associated with distinct cognitive trajectories in the course of Parkinson's disease (PD). The underlying neurobiology for this relationship remains unclear but may involve distinct patterns of neurodegeneration. This study aimed to examine longitudinal cortical atrophy and thinning in early-stage PD with severe olfactory deficit (anosmia) without and with concurrent probable RBD. METHODS: Longitudinal MRI data over four years of 134 de novo PD and 49 healthy controls (HC) from the Parkinson Progression Marker Initiative (PPMI) cohort were analyzed using a linear mixed-effects model. Patients were categorized into those with anosmia by the University of Pennsylvania Smell Identification Test (UPSIT) score ≤ 18 (AO+) and those without (UPSIT score > 18, AO-). The AO+ group was further subdivided into AO+ with probable RBD (AO+RBD+) and without (AO+RBD-) for subanalysis. RESULTS: Compared to subjects without baseline anosmia, the AO+ group exhibited greater longitudinal declines in both volume and thickness in the bilateral parahippocampal gyri and right transverse temporal gyrus. Patients with concurrent anosmia and RBD showed more extensive longitudinal declines in cortical volume and thickness, involving additional brain regions including the bilateral precuneus, left inferior temporal gyrus, right paracentral gyrus, and right precentral gyrus. CONCLUSIONS: The atrophy/thinning patterns in early-stage PD with severe olfactory dysfunction include regions that are critical for cognitive function and could provide a structural basis for previously reported associations between severe olfactory deficit and cognitive decline in PD. Concurrent RBD might enhance the dynamics of cortical changes.


Subject(s)
Magnetic Resonance Imaging , Olfaction Disorders , Parkinson Disease , REM Sleep Behavior Disorder , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Parkinson Disease/pathology , Male , Female , Aged , Middle Aged , Longitudinal Studies , REM Sleep Behavior Disorder/diagnostic imaging , REM Sleep Behavior Disorder/physiopathology , REM Sleep Behavior Disorder/etiology , REM Sleep Behavior Disorder/pathology , Olfaction Disorders/etiology , Olfaction Disorders/diagnostic imaging , Olfaction Disorders/physiopathology , Atrophy/pathology , Anosmia/etiology , Anosmia/physiopathology , Anosmia/diagnostic imaging , Disease Progression , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology
15.
Neurol Sci ; 45(5): 2347-2351, 2024 May.
Article in English | MEDLINE | ID: mdl-38353846

ABSTRACT

Usually, positive neurological symptoms are considered as the consequence of a mere, afinalistic and abnormal increase in function of specific brain areas. However, according to the Theory of Active Inference, which argues that action and perception constitute a loop that updates expectations according to a Bayesian model, the brain is rather an explorer that formulates hypotheses and tests them to assess the correspondence between internal models and reality. Moreover, the cerebral cortex is characterised by a continuous "conflict" between different brain areas, which constantly attempt to expand in order to acquire more of the limited available computational resources, by means of their dopamine-induced neuroplasticity. Thus, it has recently been suggested that dreams, during rapid eye movement sleep (REMS), protect visual brain areas (deprived of their stimuli during rest) from being conquered by other normally stimulated ones. It is therefore conceivable that positive symptoms also have a functional importance for the brain. We evaluate supporting literature data of a 'defensive' role of positive symptoms and the relevance of dopamine-induced neuroplasticity in the context of neurodegenerative and psychiatric diseases. Furthermore, the possible functional significance of idiopathic REMS-related behavioural disorder as well as phantom limb syndrome is examined. We suggest that positive neurological symptoms are not merely a passive expression of a damage, but active efforts, related to dopamine-induced plasticity, to maintain a correct relationship between the external world and its brain representation, thus preventing healthy cortical areas from ousting injured ones.


Subject(s)
Dopamine , REM Sleep Behavior Disorder , Humans , Bayes Theorem , Brain/physiology , Sleep, REM/physiology
16.
Mov Disord ; 39(4): 728-733, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38390630

ABSTRACT

BACKGROUND: Rapid eye movement (REM) sleep behavior disorder (RBD) is an early feature of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Damaging coding variants in Glucocerebrosidase (GBA1) are a genetic risk factor for RBD. Recently, a population-specific non-coding risk variant (rs3115534) was found to be associated with PD risk and earlier onset in individuals of African ancestry. OBJECTIVES: We aimed to investigate whether the GBA1 rs3115534 PD risk variant is associated with RBD in persons with PD. METHODS: We studied 709 persons with PD and 776 neurologically healthy controls from Nigeria. All DNA samples were genotyped and imputed, and the GBA1 rs3115534 risk variant was extracted. The RBD screening questionnaire (RBDSQ) was used to assess symptoms of possible RBD. RESULTS: RBD was present in 200 PD (28.2%) and 51 (6.6%) controls. We identified that the non-coding GBA1 rs3115534 risk variant is associated with possible RBD in individuals of Nigerian origin (ß, 0.3640; standard error [SE], 0.103, P = 4.093e-04), as well as in all samples after adjusting for PD status (ß, 0.2542; SE, 0.108; P = 0.019) suggesting that although non-coding, this variant may have the same downstream consequences as GBA1 coding variants. CONCLUSIONS: Our results indicate that the non-coding GBA1 rs3115534 risk variant is associated with an increasing number of RBD symptoms in persons with PD of Nigerian origin. Further research is needed to assess if this variant is also associated with polysomnography-defined RBD and with RBD symptoms in DLB. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Glucosylceramidase , Parkinson Disease , REM Sleep Behavior Disorder , West African People , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Genetic Predisposition to Disease , Genotype , Glucosylceramidase/genetics , Nigeria , Parkinson Disease/genetics , Parkinson Disease/complications , Polymorphism, Single Nucleotide , REM Sleep Behavior Disorder/genetics , Young Adult , Adult
17.
Sleep Med Rev ; 74: 101898, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364685

ABSTRACT

This review critically analyzes the forensic application of the Parasomnia Defense in homicidal incidents, drawing from medical literature on disorders of arousal (DOA) and rapid-eye-movement sleep behavior disorder (RBD). A systematic search of PubMed, Scopus, Embase, and Cochrane databases was conducted until October 16, 2022. We screened English-language articles in peer-reviewed journals discussing murders committed during sleep with a Parasomnia Defense. We followed PRISMA guidelines, extracting event details, diagnosis methods, factors influencing the acts, perpetrator behavior, timing, motives, concealment, mental experiences, victim demographics, and court verdicts. Three sleep experts evaluated each case. We selected ten homicides, four attempted homicides, and one homicide/attempted homicide that met inclusion/exclusion criteria. Most cases were suspected DOA as unanimously confirmed by experts. RBD cases were absent. Among aggressors, a minority reported dream-like experiences. Victims were primarily female family members killed in or near the bed by hands and/or with sharp objects. Objective sleep data and important crime scene details were often missing. Verdicts were ununiform. Homicides during DOA episodes, though rare, are documented, validating the Parasomnia Defense's use in forensics. RBD-related fatal aggression seems very uncommon. However, cases often lack diagnostic clarity. We propose updated guidelines to enhance future reporting and understanding of such incidents.


Subject(s)
Parasomnias , REM Sleep Behavior Disorder , Humans , Female , Sleep , REM Sleep Behavior Disorder/diagnosis , Homicide , Aggression
18.
Alzheimers Dement ; 20(4): 2485-2496, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38329197

ABSTRACT

INTRODUCTION: Patients with dementia with Lewy bodies (DLB) may have Alzheimers disease (AD) pathology that can be detected by plasma biomarkers. Our objective was to evaluate plasma biomarkers of AD and their association with positron emission tomography (PET) biomarkers of amyloid and tau deposition in the continuum of DLB, starting from prodromal stages of the disease. METHODS: The cohort included patients with isolated rapid eye movement (REM) sleep behavior disorder (iRBD), mild cognitive impairment with Lewy bodies (MCI-LB), or DLB, with a concurrent blood draw and PET scans. RESULTS: Abnormal levels of plasma glial fibrillary acidic protein (GFAP) were found at the prodromal stage of MCI-LB in association with increased amyloid PET. Abnormal levels of plasma phosphorylated tau (p-tau)-181 and neurofilament light (NfL) were found at the DLB stage. Plasma p-tau-181 showed the highest accuracy in detecting abnormal amyloid and tau PET in patients with DLB. DISCUSSION: The range of AD co-pathology can be detected with plasma biomarkers in the DLB continuum, particularly with plasma p-tau-181 and GFAP.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , REM Sleep Behavior Disorder , Humans , Alzheimer Disease/diagnosis , Lewy Body Disease/diagnosis , Amyloid beta-Peptides , tau Proteins , Biomarkers/metabolism , Cognitive Dysfunction/diagnosis
19.
Ned Tijdschr Geneeskd ; 1682024 02 08.
Article in Dutch | MEDLINE | ID: mdl-38375860

ABSTRACT

Rapid eye movement (REM) sleep behavior disorder is characterized by dream enactment during REM sleep. Due to different treatment requirements, it is important to distinguish REM sleep behavior disorder from other causes of nocturnal restlessness, including sleep apnea, non-REM parasomnia and sleep-related hypermotor epilepsy. In addition, a diagnosis of isolated REM sleep behavior disorder is impactful, because it carries a greatly increased risk for the later development of Parkinson's disease and related synucleinopathies. In this clinical lesson we describe three patients with abnormal nocturnal movements and vocalizations. The history can provide important clues towards the diagnosis, but a video-polysomnography is required before REM sleep behavior disorder can be diagnosed.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Humans , REM Sleep Behavior Disorder/diagnosis , REM Sleep Behavior Disorder/etiology , Parkinson Disease/complications , Parkinson Disease/diagnosis , Sleep, REM , Polysomnography/adverse effects
20.
Sleep Med ; 115: 155-161, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367357

ABSTRACT

BACKGROUND: Growing evidence supports the potential role of sleep in the motor progression of Parkinson's disease (PD). Slow-wave sleep (SWS) and rapid eye movement (REM) sleep without atonia (RWA) are important sleep parameters. The association between SWS and RWA with PD motor progression and their predictive value have not yet been elucidated. METHODS: We retro-prospectively analyzed clinical and polysomnographic data of 136 patients with PD. The motor symptoms were assessed using Unified Parkinson's Disease Rating Scale Part III (UPDRS III) at baseline and follow-up to determine its progression. Partial correlation analysis was used to explore the cross-sectional associations between slow-wave energy (SWE), RWA and clinical symptoms. Longitudinal analyses were performed using Cox regression and linear mixed-effects models. RESULTS: Among 136 PD participants, cross-sectional partial correlation analysis showed SWE decreased with the prolongation of the disease course (P = 0.046), RWA density was positively correlated with Hoehn & Yahr (H-Y) stage (tonic RWA, P < 0.001; phasic RWA, P = 0.002). Cox regression analysis confirmed that low SWE (HR = 1.739, 95% CI = 1.038-2.914; P = 0.036; FDR-P = 0.036) and high tonic RWA (HR = 0.575, 95% CI = 0.343-0.963; P = 0.032; FDR-P = 0.036) were predictors of motor symptom progression. Furthermore, we found that lower SWE predicted faster rate of axial motor progression (P < 0.001; FDR-P < 0.001) while higher tonic RWA density was associated with faster rate of rigidity progression (P = 0.006; FDR-P = 0.024) using linear mixed-effects models. CONCLUSIONS: These findings suggest that SWS and RWA might represent markers of different motor subtypes progression in PD.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Sleep, Slow-Wave , Humans , Parkinson Disease/complications , Sleep, REM , REM Sleep Behavior Disorder/diagnosis , REM Sleep Behavior Disorder/complications , Cross-Sectional Studies , Polysomnography , Muscle Hypotonia , Caffeine , Disease Progression
SELECTION OF CITATIONS
SEARCH DETAIL
...