ABSTRACT
Carrot (Daucus carota L.) is one of the most cultivated vegetable in the world and of great importance in the human diet. Its storage organs can accumulate large quantities of anthocyanins, metabolites that confer the purple pigmentation to carrot tissues and whose biosynthesis is well characterized. Long non-coding RNAs (lncRNAs) play critical roles in regulating gene expression of various biological processes in plants. In this study, we used a high throughput stranded RNA-seq to identify and analyze the expression profiles of lncRNAs in phloem and xylem root samples using two genotypes with a strong difference in anthocyanin production. We discovered and annotated 8484 new genes, including 2095 new protein-coding and 6373 non-coding transcripts. Moreover, we identified 639 differentially expressed lncRNAs between the phenotypically contrasted genotypes, including certain only detected in a particular tissue. We then established correlations between lncRNAs and anthocyanin biosynthesis genes in order to identify a molecular framework for the differential expression of the pathway between genotypes. A specific natural antisense transcript linked to the DcMYB7 key anthocyanin biosynthetic transcription factor suggested how the regulation of this pathway may have evolved between genotypes.
Subject(s)
Anthocyanins/metabolism , Daucus carota/metabolism , Plant Roots/metabolism , RNA, Long Noncoding/immunology , Anthocyanins/biosynthesis , Daucus carota/genetics , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Phloem/metabolism , Transcriptome , Xylem/metabolismABSTRACT
Pemphigus foliaceus (PF) is an autoimmune blistering disease of the skin, clinically characterized by erosions and, histopathologically, by acantholysis. PF is endemic in the Brazilian Central-Western region. Numerous single nucleotide polymorphisms (SNPs) have been shown to affect the susceptibility for PF, including SNPs at long non-coding RNA (lncRNA) genes, which are known to participate in many physiological and pathogenic processes, such as autoimmunity. Here, we investigated whether the genetic variation of immune-related lncRNA genes affects the risk for endemic and sporadic forms of PF. We analysed 692 novel SNPs for PF from 135 immune-related lncRNA genes in 227 endemic PF patients and 194 controls. The SNPs were genotyped by Illumina microarray and analysed by applying logistic regression at additive model, with correction for sex and population structure. Six associated SNPs were also evaluated in an independent German cohort of 76 sporadic PF patients and 150 controls. Further, we measured the expression levels of two associated lncRNA genes (LINC-PINT and LY86-AS1) by quantitative PCR, stratified by genotypes, in peripheral blood mononuclear cells of healthy subjects. We found 27 SNPs in 11 lncRNA genes associated with endemic PF (p < .05 without overlapping with protein-coding genes). Among them, the LINC-PINT SNP rs10228040*A (OR = 1.47, p = .012) was also associated with increased susceptibility for sporadic PF (OR = 2.28, p = .002). Moreover, the A+ carriers of LY86-AS1*rs12192707 mark lowest LY86-AS1 RNA levels, which might be associated with a decreasing autoimmune response. Our results suggest a critical role of lncRNA variants in immunopathogenesis of both PF endemic and sporadic forms.
Subject(s)
Antigens, Surface/genetics , Pemphigus/genetics , Polymorphism, Single Nucleotide/genetics , RNA, Long Noncoding/genetics , Antigens, Surface/immunology , Genetic Predisposition to Disease , Humans , Pemphigus/immunology , Polymorphism, Single Nucleotide/immunology , RNA, Long Noncoding/immunologyABSTRACT
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent immunosuppressive functions. They play major roles in cancer and many of the pathologic conditions associated with inflammation. Long non-coding RNAs (lncRNAs) are untranslated functional RNA molecules. The lncRNAs are involved in the control of a wide variety of cellular processes and are dysregulated in different diseases. They can participate in the modulation of immune function and activity of inflammatory cells, including MDSCs. This mini review focuses on the emerging role of lncRNAs in MDSC activity. We summarize how lncRNAs modulate the generation, recruitment, and immunosuppressive functions of MDSCs and the underlying mechanisms.
Subject(s)
Inflammation/immunology , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/immunology , RNA, Long Noncoding/physiology , Animals , CCAAT-Enhancer-Binding Protein-beta/physiology , Cell Lineage , Epigenesis, Genetic , Forecasting , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunotherapy , Mice , Myeloid-Derived Suppressor Cells/classification , Neoplasms/genetics , Neoplasms/therapy , Nitric Oxide/metabolism , Pseudogenes , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Neoplasm/immunology , RNA, Neoplasm/physiology , Reactive Oxygen Species/metabolism , Tumor Escape , Tumor MicroenvironmentABSTRACT
Understanding the mechanisms of vaccine-elicited protection contributes to the development of new vaccines. The emerging field of systems vaccinology provides detailed information on host responses to vaccination and has been successfully applied to study the molecular mechanisms of several vaccines. Long noncoding RNAs (lncRNAs) are crucially involved in multiple biological processes, but their role in vaccine-induced immunity has not been explored. We performed an analysis of over 2,000 blood transcriptome samples from 17 vaccine cohorts to identify lncRNAs potentially involved with antibody responses to influenza and yellow fever vaccines. We have created an online database where all results from this analysis can be accessed easily. We found that lncRNAs participate in distinct immunological pathways related to vaccine-elicited responses. Among them, we showed that the expression of lncRNA FAM30A was high in B cells and correlates with the expression of immunoglobulin genes located in its genomic vicinity. We also identified altered expression of these lncRNAs in RNA-sequencing (RNA-seq) data from a cohort of children following immunization with intranasal live attenuated influenza vaccine, suggesting a common role across several diverse vaccines. Taken together, these findings provide evidence that lncRNAs have a significant impact on immune responses induced by vaccination.
Subject(s)
B-Lymphocytes/immunology , Gene Expression Regulation/drug effects , Influenza Vaccines/administration & dosage , RNA, Long Noncoding/immunology , Vaccination , Administration, Intranasal , Child, Preschool , Cohort Studies , Female , Gene Expression Profiling , Gene Expression Regulation/immunology , Humans , Influenza Vaccines/immunology , Male , Sequence Analysis, RNAABSTRACT
BACKGROUND: Rubber tree (Hevea brasiliensis) acts as an important tropic economic crop and rubber tree anthracnose, mainly caused by Colletotrichum gloeosporioides, is one of the most common fungal disease, which leads to serious loss of rubber production. Therefore, the investigation on disease resistance is of great worldwide significance. In the past decades, substantial progress has been made on coding gene families related with plant disease resistance. However, in rubber tree, whether the disease resistance mechanism involves noncoding RNAs, especially long noncoding RNAs (lncRNAs), still remains poorly understood. RESULTS: Here, we modeled the development of H. brasiliensis leaf samples inoculated with C. gloeosporioides at divergent stages, explored to identify the expressed ncRNAs by RNA-seq, and investigated the dominant lncRNAs responding to the infection, through constructing a co-expressed network systematically. On the dominant lncRNAs, we explored the potential functional role of lncRNA11254 recruiting the transcription factor, and that lncRNA11041 and lncRNA11205 probably stimulate the accumulation of corresponding disease responsive miRNAs, and further modulate the expressions of target genes, accompanying with experimental examination. CONCLUSIONS: Take together, computational analyses in silico and experimental evidences in our research collectively revealed the responsive roles of dominant lncRNAs to the pathogen. The results will provide new perspectives to unveil the plant disease resistance mechanisms, and will presumably provide a new theoretical basis and candidate prognostic markers for the optimization and innovation of genetic breeding for rubber tree. REVIEWERS: This article was reviewed by Ryan McGinty and Roland Huber.
Subject(s)
Colletotrichum/physiology , Hevea/genetics , Hevea/immunology , Plant Diseases/immunology , Plant Immunity/drug effects , RNA, Long Noncoding/genetics , RNA, Plant/genetics , Disease Resistance/drug effects , Hevea/microbiology , Models, Biological , Plant Diseases/microbiology , Plant Leaves/immunology , Plant Leaves/microbiology , RNA, Long Noncoding/immunology , RNA, Plant/immunologyABSTRACT
The genomic era has increased the research effort to uncover how the genome of an organism, and specifically the transcriptome, is modulated after interplaying with pathogenic microorganisms and ectoparasites. However, the ever-increasing accessibility of sequencing technology has also evidenced regulatory roles of long non-coding RNAs (lncRNAs) related to several biological processes including immune response. This study reports a high-confidence annotation and a comparative transcriptome analysis of lncRNAs from several tissues of Salmo salar infected with the most prevalent pathogens in the Chilean salmon aquaculture such as the infectious salmon anemia (ISA) virus, the intracellular bacterium Piscirickettsia salmonis and the ectoparasite copepod Caligus rogercresseyi. Our analyses showed that lncRNAs are widely modulated during infection. However, this modulation is pathogen-specific and highly correlated with immuno-related genes associated with innate immune response. These findings represent the first discovery for the widespread differential expression of lncRNAs in response to infections with different types of pathogens in Atlantic salmon, suggesting that lncRNAs are pivotal player during the fish immune response.
Subject(s)
Immunity, Innate/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Salmo salar/genetics , Salmo salar/immunology , Animals , Fish Diseases/genetics , Fish Diseases/immunology , Immunity, Innate/immunologyABSTRACT
BACKGROUND: Long noncoding RNAs (lncRNAs) represent a class of RNA molecules that are implicated in regulation of gene expression in both mammals and plants. While much progress has been made in determining the biological functions of lncRNAs in mammals, the functional roles of lncRNAs in plants are still poorly understood. Specifically, the roles of long intergenic nocoding RNAs (lincRNAs) in plant defence responses are yet to be fully explored. RESULTS: In this study, we used strand-specific RNA sequencing to identify 1113 lincRNAs in potato (Solanum tuberosum) from stem tissues. The lincRNAs are expressed from all 12 potato chromosomes and generally smaller in size compared to protein-coding genes. Like in other plants, most potato lincRNAs possess single exons. A time-course RNA-seq analysis between a tolerant and a susceptible potato cultivar showed that 559 lincRNAs are responsive to Pectobacterium carotovorum subsp. brasiliense challenge compared to mock-inoculated controls. Moreover, coexpression analysis revealed that 17 of these lincRNAs are highly associated with 12 potato defence-related genes. CONCLUSIONS: Together, these results suggest that lincRNAs have potential functional roles in potato defence responses. Furthermore, this work provides the first library of potato lincRNAs and a set of novel lincRNAs implicated in potato defences against P. carotovorum subsp. brasiliense, a member of the soft rot Enterobacteriaceae phytopathogens.