Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Nat Commun ; 15(1): 4143, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755134

ABSTRACT

The Ser/Leu-swapped genetic code can act as a genetic firewall, mitigating biohazard risks arising from horizontal gene transfer in genetically modified organisms. Our prior work demonstrated the orthogonality of this swapped code to the standard genetic code using a cell-free translation system comprised of 21 in vitro transcribed tRNAs. In this study, to advance this system for protein engineering, we introduce a natural/in vitro transcribed-hybrid tRNA set. This set combines natural tRNAs from Escherichia coli (excluding Ser, Leu, and Tyr) and in vitro transcribed tRNAs, encompassing anticodon-swapped tRNASerGAG and tRNALeuGGA. This approach reduces the number of in vitro transcribed tRNAs required from 21 to only 4. In this optimized system, the production of a model protein, superfolder green fluorescent protein, increases to 3.5-fold. With this hybrid tRNA set, the Ser/Leu-swapped cell-free translation system will stand as a potent tool for protein production with reduced biohazard concerns in future biological endeavors.


Subject(s)
Cell-Free System , Escherichia coli , Protein Biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , RNA, Transfer, Leu/genetics , RNA, Transfer, Leu/metabolism , RNA, Transfer, Ser/metabolism , RNA, Transfer, Ser/genetics , Genetic Code , RNA, Transfer/genetics , RNA, Transfer/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Protein Engineering/methods , Transcription, Genetic , Anticodon/genetics , Anticodon/metabolism
2.
Bioengineered ; 13(2): 2087-2098, 2022 02.
Article in English | MEDLINE | ID: mdl-35030975

ABSTRACT

Breast cancer (BC) is a serious threat to female health. tRNA-derived fragments (tRFs) are popular biomarkers for the diagnosis and treatment of cancer. The purpose of this study was to identify tRFs related to BC and to explore the function and regulatory mechanism of crucial tRFs in BC cells. Small RNA database was used to detect the tRF profiles from BC patients and controls. Differentially expressed tRFs were determined by quantitative reverse transcription PCR (RT-qPCR), and a crucial tRF was evaluated through silence and overexpression experiments, and the target gene was investigated by luciferase reporter gene assay, Western blot and rescue experiment. We screened tRF-19-W4PU732S, which was processed from the mature tRNA-Ser-AGA, and significantly highlyexpressed in BC tissues and cells. Inhibition of tRF-19-W4PU732S weakened MDA-MB-231 cell proliferation, migration and invasion, while enhanced apoptosis. On the contrary, overexpression of tRF-19-W4PU732S promoted MCF-7 cell proliferation, migration and invasion, whereasreduced apoptosis. Furthermore, tRF-19-W4PU732S induced BC cell epithelial-to-mesenchymal transition (EMT) and cancer stem-like cells (CSC) phenotypes, such as up-regulation of OCT-4A, SOX2 and Vimentin and down-regulation of E-cadherin. Ribosomal protein-L27A (RPL27A) was a downstream target of tRF-19-W4PU732S, which was lowly expressed in BC cells. The knockdown of RPL27A expression partially restored the promoting effects of tRF-19-W4PU732S on BC cell viability, invasion, migration, EMT and CSC phenotypes, and the suppression of apoptosis. In conclusion, our results manifested that tRF-19-W4PU732S promotes the malignant activity of BC cells by inhibiting RPL27A, which provides a new scientific basis for the treatment of BC.Abbreviations BC: breast cancer; tRNAs: transfer RNAs; tiRNAs: tRNA-derived stressinduced RNAs; tRFs: tRNA-derived fragments; CCK-8: Cell Counting Kit-8; PI: propidium iodide; EMT: epithelial-to-mesenchymal transition; CSC: cancer stem-like cells; RPL27A: ribosomal protein-L27A; RT-qPCR: quantitative reverse transcription PCR.


Subject(s)
Breast Neoplasms/metabolism , Neoplasm Proteins/metabolism , RNA, Neoplasm/metabolism , RNA, Transfer, Ser/metabolism , Ribosomal Proteins/metabolism , Breast Neoplasms/genetics , Female , HEK293 Cells , Humans , MCF-7 Cells , Neoplasm Proteins/genetics , RNA, Neoplasm/genetics , RNA, Transfer, Ser/genetics , Ribosomal Proteins/genetics
3.
Nat Commun ; 13(1): 209, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017528

ABSTRACT

Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m3C32 in the human mitochondrial (mt-)tRNAThr and mt-tRNASer(UCN). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U34G35 and t6A37/(ms2)i6A37, present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C32. Several lines of evidence demonstrate the influence of U34, G35, and the m3C32 and t6A37/(ms2)i6A37 modifications in mt-tRNAThr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNAThr/Ser(UCN) lacking METTL8-mediated m3C32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m3C32 within mt-tRNAs.


Subject(s)
Anticodon/chemistry , Methyltransferases/genetics , Mitochondria/genetics , RNA, Mitochondrial/chemistry , RNA, Transfer, Ser/chemistry , RNA, Transfer, Thr/chemistry , Anticodon/metabolism , Base Pairing , Cytosine/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Methylation , Methyltransferases/metabolism , Mitochondria/metabolism , Nucleic Acid Conformation , Protein Binding , Protein Biosynthesis , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Transfer, Ser/genetics , RNA, Transfer, Ser/metabolism , RNA, Transfer, Thr/genetics , RNA, Transfer, Thr/metabolism , Signal Transduction
4.
J Biomol Struct Dyn ; 40(18): 8538-8559, 2022 11.
Article in English | MEDLINE | ID: mdl-33896406

ABSTRACT

Aminoacylation reaction is the first step of protein biosynthesis. Transfer RNA (tRNA) is charged with an amino acid in this reaction and the reaction is catalyzed by aminoacyl tRNA synthetase enzyme (aaRS). In the present work, we use classical molecular dynamics simulation to show that the tRNA bound Mg2+ ions significantly influence the charging step of class I TtGluRS: Glu-AMP: tRNAGlu and class II dimeric TtSerRS: Ser-AMP: tRNASer. The CCA end of the acceptor terminal is disordered in the absence of coordinated Mg2+ ions and the CCA end can freely explore beyond the specific conformational space of the tRNA in its precharging state. A balance between the conformational disorder of the tRNA and the restriction imposed on the CCA terminal via coordination with the Mg2+ ions is needed for the placement of the CCA terminal in a precharging state organization. This result provides a molecular-level explanation of the experimental observation that the presence of Mg2+ ions is a necessary condition for a successful aminoacylation reaction.Communicated by Ramaswamy H. Sarma.


Subject(s)
Amino Acyl-tRNA Synthetases , Serine-tRNA Ligase , Adenosine Monophosphate/metabolism , Amino Acids/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Aminoacylation , Glutamate-tRNA Ligase/chemistry , Glutamate-tRNA Ligase/genetics , Glutamate-tRNA Ligase/metabolism , Ions , Ligases/metabolism , Magnesium , RNA, Transfer/metabolism , RNA, Transfer, Glu/metabolism , RNA, Transfer, Ser/metabolism , Serine-tRNA Ligase/chemistry
5.
Elife ; 92020 10 30.
Article in English | MEDLINE | ID: mdl-33124983

ABSTRACT

Organisms differ in the types and numbers of tRNA genes that they carry. While the evolutionary mechanisms behind tRNA gene set evolution have been investigated theoretically and computationally, direct observations of tRNA gene set evolution remain rare. Here, we report the evolution of a tRNA gene set in laboratory populations of the bacterium Pseudomonas fluorescens SBW25. The growth defect caused by deleting the single-copy tRNA gene, serCGA, is rapidly compensated by large-scale (45-290 kb) duplications in the chromosome. Each duplication encompasses a second, compensatory tRNA gene (serTGA) and is associated with a rise in tRNA-Ser(UGA) in the mature tRNA pool. We postulate that tRNA-Ser(CGA) elimination increases the translational demand for tRNA-Ser(UGA), a pressure relieved by increasing serTGA copy number. This work demonstrates that tRNA gene sets can evolve through duplication of existing tRNA genes, a phenomenon that may contribute to the presence of multiple, identical tRNA gene copies within genomes.


Subject(s)
DNA, Bacterial/genetics , Gene Duplication , Pseudomonas fluorescens/genetics , RNA, Transfer, Ser/genetics , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , DNA, Bacterial/metabolism , Evolution, Molecular , Pseudomonas fluorescens/metabolism , RNA, Transfer, Ser/metabolism
6.
Nucleic Acids Res ; 48(19): 11113-11129, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33045734

ABSTRACT

In this report, we investigated the molecular mechanism underlying a deafness-associated m.7516delA mutation affecting the 5' end processing sites of mitochondrial tRNAAsp and tRNASer(UCN). An in vitro processing experiment demonstrated that m.7516delA mutation caused the aberrant 5' end processing of tRNASer(UCN) and tRNAAsp precursors, catalyzed by RNase P. Using cytoplasmic hybrids (cybrids) derived from one hearing-impaired Chinese family bearing the m.7516delA mutation and control, we demonstrated the asymmetrical effects of m.7516delA mutation on the processing of tRNAs in the heavy (H)-strand and light (L)-strand polycistronic transcripts. Specially, the m.7516delA mutation caused the decreased levels of tRNASer(UCN) and downstream five tRNAs, including tRNATyr from the L-strand transcripts and tRNAAsp from the H-strand transcripts. Strikingly, mutant cybrids exhibited the lower level of COX2 mRNA and accumulation of longer and uncleaved precursors of COX2 from the H-strand transcripts. Aberrant RNA metabolisms yielded variable reductions in the mitochondrial proteins, especially marked reductions in the levels of ND4, ND5, CO1, CO2 and CO3. The impairment of mitochondrial translation caused the proteostasis stress and respiratory deficiency, diminished ATP production and membrane potential, increased production of reactive oxygen species and promoted apoptosis. Our findings provide new insights into the pathophysiology of deafness arising from mitochondrial tRNA processing defects.


Subject(s)
DNA, Mitochondrial/genetics , Deafness/genetics , RNA, Messenger/metabolism , RNA, Transfer, Asp/metabolism , RNA, Transfer, Ser/metabolism , Apoptosis , Cell Line , Cell Respiration , Humans , Membrane Potential, Mitochondrial , Mitochondrial Proteins/metabolism , Mutation , RNA Processing, Post-Transcriptional , Reactive Oxygen Species/metabolism
7.
Genetics ; 213(3): 849-863, 2019 11.
Article in English | MEDLINE | ID: mdl-31484688

ABSTRACT

Transfer RNAs (tRNAs) read the genetic code, translating nucleic acid sequence into protein. For tRNASer the anticodon does not specify its aminoacylation. For this reason, mutations in the tRNASer anticodon can result in amino acid substitutions, a process called mistranslation. Previously, we found that tRNASer with a proline anticodon was lethal to cells. However, by incorporating secondary mutations into the tRNA, mistranslation was dampened to a nonlethal level. The goal of this work was to identify second-site substitutions in tRNASer that modulate mistranslation to different levels. Targeted changes to putative identity elements led to total loss of tRNA function or significantly impaired cell growth. However, through genetic selection, we identified 22 substitutions that allow nontoxic mistranslation. These secondary mutations are primarily in single-stranded regions or substitute G:U base pairs for Watson-Crick pairs. Many of the variants are more toxic at low temperature and upon impairing the rapid tRNA decay pathway. We suggest that the majority of the secondary mutations affect the stability of the tRNA in cells. The temperature sensitivity of the tRNAs allows conditional mistranslation. Proteomic analysis demonstrated that tRNASer variants mistranslate to different extents with diminished growth correlating with increased mistranslation. When combined with a secondary mutation, other anticodon substitutions allow serine mistranslation at additional nonserine codons. These mistranslating tRNAs have applications in synthetic biology, by creating "statistical proteins," which may display a wider range of activities or substrate specificities than the homogenous form.


Subject(s)
Loss of Function Mutation , RNA, Transfer, Ser/genetics , Base Pairing , Protein Biosynthesis , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Transfer, Ser/metabolism , Saccharomyces cerevisiae
8.
RNA ; 25(5): 645-655, 2019 05.
Article in English | MEDLINE | ID: mdl-30803999

ABSTRACT

External guide sequences (EGSs) signify the short RNAs that induce ribonuclease P (RNase P), an enzyme responsible for processing the 5' termini of tRNA, to specifically cleave a target mRNA by forming a precursor tRNA-like complex. Hence, the EGS technology may serve as a potential strategy for gene-targeting therapy. Our previous studies have revealed that engineered EGS variants induced RNase P to efficiently hydrolyze target mRNAs. In the present research, an EGS variant was designed to be complementary to the mRNA coding for human cytomegalovirus (HCMV) major capsid protein (MCP), which is vital to form the viral capsid. In vitro, the EGS variant was about 80-fold more efficient in inducing human RNase P-mediated cleavage of the target mRNA than a natural tRNA-derived EGS. Moreover, the expressed variant and natural tRNA-originated EGSs led to a decrease of MCP expression by 98% and 73%-74% and a decrease of viral growth by about 10,000- and 200-fold in cells infected with HCMV, respectively. These results reveal direct evidence that the engineered EGS variant has higher efficiency in blocking the expression of HCMV genes and viral growth than the natural tRNA-originated EGS. Therefore, our findings imply that the EGS variant can be a potent candidate agent for the treatment of infections caused by HCMV.


Subject(s)
Capsid Proteins/genetics , Cytomegalovirus/genetics , RNA, Guide, Kinetoplastida/genetics , RNA, Messenger/genetics , RNA, Transfer, Ser/genetics , RNA, Viral/genetics , Ribonuclease P/metabolism , Base Pairing , Capsid Proteins/biosynthesis , Cell Line, Transformed , Cell Line, Tumor , Cytomegalovirus/metabolism , Fibroblasts/metabolism , Fibroblasts/virology , Gene Expression Regulation, Viral , Gene Targeting/methods , Genetic Engineering/methods , Host-Pathogen Interactions/genetics , Humans , Molecular Targeted Therapy , Neuroglia/metabolism , Neuroglia/virology , Nucleic Acid Conformation , Primary Cell Culture , RNA Cleavage , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA, Transfer, Ser/chemistry , RNA, Transfer, Ser/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , Ribonuclease P/chemistry , Ribonuclease P/genetics , Virus Replication/physiology
9.
FEBS Lett ; 592(22): 3759-3768, 2018 11.
Article in English | MEDLINE | ID: mdl-30317559

ABSTRACT

Selenocysteine (Sec) lacks a cognate aminoacyl-tRNA synthetase. Instead, seryl-tRNA synthetase (SerRS) produces Ser-tRNASec , which is subsequently converted by selenocysteine synthase to Sec-tRNASec . Escherichia coli SerRS serylates tRNASec poorly; this may hinder efficient production of designer selenoproteins in vivo. Guided by structural modelling and selection for chloramphenicol acetyltransferase activity, we evolved three SerRS variants capable of improved Ser-tRNASec synthesis. They display 10-, 8-, and 4-fold increased kcat /KM values compared to wild-type SerRS using synthetic tRNASec species as substrates. The enzyme variants also facilitate in vivo read-through of a UAG codon in the position of the critical serine146 of chloramphenicol acetyltransferase. These results indicate that the naturally evolved SerRS is capable of further evolution for increased recognition of a specific tRNA isoacceptor.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , RNA, Transfer, Amino Acid-Specific/genetics , RNA, Transfer, Ser/genetics , Serine-tRNA Ligase/genetics , Base Sequence , Codon, Terminator/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Kinetics , Models, Molecular , Mutation , Nucleic Acid Conformation , Protein Domains , RNA, Transfer, Amino Acid-Specific/chemistry , RNA, Transfer, Amino Acid-Specific/metabolism , RNA, Transfer, Ser/chemistry , RNA, Transfer, Ser/metabolism , Selenoproteins/genetics , Selenoproteins/metabolism , Serine/genetics , Serine/metabolism , Serine-tRNA Ligase/chemistry , Serine-tRNA Ligase/metabolism , Substrate Specificity
10.
Curr Biol ; 28(13): 2046-2057.e5, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29910077

ABSTRACT

Although the "universal" genetic code is now known not to be universal, and stop codons can have multiple meanings, one regularity remains, namely that for a given sense codon there is a unique translation. Examining CUG usage in yeasts that have transferred CUG away from leucine, we here report the first example of dual coding: Ascoidea asiatica stochastically encodes CUG as both serine and leucine in approximately equal proportions. This is deleterious, as evidenced by CUG codons being rare, never at conserved serine or leucine residues, and predominantly in lowly expressed genes. Related yeasts solve the problem by loss of function of one of the two tRNAs. This dual coding is consistent with the tRNA-loss-driven codon reassignment hypothesis, and provides a unique example of a proteome that cannot be deterministically predicted. VIDEO ABSTRACT.


Subject(s)
Codon, Terminator/metabolism , RNA, Transfer, Leu/genetics , RNA, Transfer, Ser/genetics , Saccharomycetales/genetics , RNA, Transfer, Leu/metabolism , RNA, Transfer, Ser/metabolism , Saccharomycetales/metabolism
11.
Nat Commun ; 9(1): 1887, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29760453

ABSTRACT

The genetic code used in nuclear genes is almost universal, but here we report that it changed three times in parallel during the evolution of budding yeasts. All three changes were reassignments of the codon CUG, which is translated as serine (in 2 yeast clades), alanine (1 clade), or the 'universal' leucine (2 clades). The newly discovered Ser2 clade is in the final stages of a genetic code transition. Most species in this clade have genes for both a novel tRNASer(CAG) and an ancestral tRNALeu(CAG) to read CUG, but only tRNASer(CAG) is used in standard growth conditions. The coexistence of these alloacceptor tRNA genes indicates that the genetic code transition occurred via an ambiguous translation phase. We propose that the three parallel reassignments of CUG were not driven by natural selection in favor of their effects on the proteome, but by selection to eliminate the ancestral tRNALeu(CAG).


Subject(s)
Codon , Genetic Code , Genome, Fungal , RNA, Transfer, Ala/genetics , RNA, Transfer, Leu/genetics , RNA, Transfer, Ser/genetics , Saccharomycetales/genetics , Alanine/genetics , Alanine/metabolism , Evolution, Molecular , Leucine/genetics , Leucine/metabolism , Nucleic Acid Conformation , Phylogeny , Protein Biosynthesis , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Transfer, Ala/metabolism , RNA, Transfer, Leu/metabolism , RNA, Transfer, Ser/metabolism , Saccharomycetales/classification , Saccharomycetales/metabolism , Selection, Genetic , Serine/genetics , Serine/metabolism
12.
RNA ; 23(11): 1685-1699, 2017 11.
Article in English | MEDLINE | ID: mdl-28808125

ABSTRACT

Seryl-tRNA synthetase (SerRS) attaches L-serine to the cognate serine tRNA (tRNASer) and the noncognate selenocysteine tRNA (tRNASec). The latter activity initiates the anabolic cycle of selenocysteine (Sec), proper decoding of an in-frame Sec UGA codon, and synthesis of selenoproteins across all domains of life. While the accuracy of SerRS is important for overall proteome integrity, it is its substrate promiscuity that is vital for the integrity of the selenoproteome. This raises a question as to what elements in the two tRNA species, harboring different anticodon sequences and adopting distinct folds, facilitate aminoacylation by a common aminoacyl-tRNA synthetase. We sought to answer this question by analyzing the ability of human cytosolic SerRS to bind and act on tRNASer, tRNASec, and 10 mutant and chimeric constructs in which elements of tRNASer were transposed onto tRNASec We show that human SerRS only subtly prefers tRNASer to tRNASec, and that discrimination occurs at the level of the serylation reaction. Surprisingly, the tRNA mutants predicted to adopt either the 7/5 or 8/5 fold are poor SerRS substrates. In contrast, shortening of the acceptor arm of tRNASec by a single base pair yields an improved SerRS substrate that adopts an 8/4 fold. We suggest that an optimal tertiary arrangement of structural elements within tRNASec and tRNASer dictate their utility for serylation. We also speculate that the extended acceptor-TΨC arm of tRNASec evolved as a compromise for productive binding to SerRS while remaining the major recognition element for other enzymes involved in Sec and selenoprotein synthesis.


Subject(s)
RNA, Transfer, Amino Acid-Specific/metabolism , RNA, Transfer, Ser/metabolism , Serine-tRNA Ligase/metabolism , Base Sequence , Binding Sites , Cytosol/enzymology , Humans , Kinetics , Models, Molecular , Mutagenesis , Nucleic Acid Conformation , RNA Folding , RNA, Transfer, Amino Acid-Specific/chemistry , RNA, Transfer, Amino Acid-Specific/genetics , RNA, Transfer, Ser/chemistry , RNA, Transfer, Ser/genetics , Substrate Specificity
13.
J Biol Chem ; 292(35): 14695-14703, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28655767

ABSTRACT

Chemical RNA modifications are central features of epitranscriptomics, highlighted by the discovery of modified ribonucleosides in mRNA and exemplified by the critical roles of RNA modifications in normal physiology and disease. Despite a resurgent interest in these modifications, the biochemistry of 3-methylcytidine (m3C) formation in mammalian RNAs is still poorly understood. However, the recent discovery of trm141 as the second gene responsible for m3C presence in RNA in fission yeast raises the possibility that multiple enzymes are involved in m3C formation in mammals as well. Here, we report the discovery and characterization of three distinct m3C-contributing enzymes in mice and humans. We found that methyltransferase-like (METTL) 2 and 6 contribute m3C in specific tRNAs and that METTL8 only contributes m3C to mRNA. MS analysis revealed that there is an ∼30-40% and ∼10-15% reduction, respectively, in METTL2 and -6 null-mutant cells, of m3C in total tRNA, and primer extension analysis located METTL2-modified m3C at position 32 of tRNAThr isoacceptors and tRNAArg(CCU) We also noted that METTL6 interacts with seryl-tRNA synthetase in an RNA-dependent manner, suggesting a role for METTL6 in modifying serine tRNA isoacceptors. METTL8, however, modified only mRNA, as determined by biochemical and genetic analyses in Mettl8 null-mutant mice and two human METTL8 mutant cell lines. Our findings provide the first evidence of the existence of m3C modification in mRNA, and the discovery of METTL8 as an mRNA m3C writer enzyme opens the door to future studies of other m3C epitranscriptomic reader and eraser functions.


Subject(s)
Cytidine/analogs & derivatives , Liver/metabolism , Methyltransferases/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , RNA, Transfer/metabolism , Animals , Cell Line , Cytidine/metabolism , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Liver/enzymology , Methylation , Methyltransferases/antagonists & inhibitors , Methyltransferases/chemistry , Methyltransferases/genetics , Mice , Mice, Knockout , Mice, Mutant Strains , Mutation , RNA Interference , RNA, Transfer, Arg/metabolism , RNA, Transfer, Ser/metabolism , RNA, Transfer, Thr/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Serine-tRNA Ligase/chemistry , Serine-tRNA Ligase/metabolism , Substrate Specificity
14.
Nucleic Acids Res ; 45(12): 7441-7454, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28499021

ABSTRACT

The RNase P family comprises structurally diverse endoribonucleases ranging from complex ribonucleoproteins to single polypeptides. We show that the organellar (AtPRORP1) and the two nuclear (AtPRORP2,3) single-polypeptide RNase P isoenzymes from Arabidopsis thaliana confer viability to Escherichia coli cells with a lethal knockdown of its endogenous RNA-based RNase P. RNA-Seq revealed that AtPRORP1, compared with bacterial RNase P or AtPRORP3, cleaves several precursor tRNAs (pre-tRNAs) aberrantly in E. coli. Aberrant cleavage by AtPRORP1 was mainly observed for pre-tRNAs that can form short acceptor-stem extensions involving G:C base pairs, including tRNAAsp(GUC), tRNASer(CGA) and tRNAHis. However, both AtPRORP1 and 3 were defective in processing of E. coli pre-tRNASec carrying an acceptor stem expanded by three G:C base pairs. Instead, pre-tRNASec was degraded, suggesting that tRNASec is dispensable for E. coli under laboratory conditions. AtPRORP1, 2 and 3 are also essentially unable to process the primary transcript of 4.5S RNA, a hairpin-like non-tRNA substrate processed by E. coli RNase P, indicating that PRORP enzymes have a narrower, more tRNA-centric substrate spectrum than bacterial RNA-based RNase P enzymes. The cells' viability also suggests that the essential function of the signal recognition particle can be maintained with a 5΄-extended 4.5S RNA.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , RNA Precursors/genetics , Ribonuclease P/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Base Pairing , Base Sequence , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Genetic Complementation Test , Microbial Viability , Nucleic Acid Conformation , RNA Precursors/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Transfer, Asp/genetics , RNA, Transfer, Asp/metabolism , RNA, Transfer, His/genetics , RNA, Transfer, His/metabolism , RNA, Transfer, Ser/genetics , RNA, Transfer, Ser/metabolism , Ribonuclease P/deficiency , Ribonuclease P/metabolism , Transgenes
15.
RNA ; 23(3): 406-419, 2017 03.
Article in English | MEDLINE | ID: mdl-28003514

ABSTRACT

The 3-methylcytidine (m3C) modification is ubiquitous in eukaryotic tRNA, widely found at C32 in the anticodon loop of tRNAThr, tRNASer, and some tRNAArg species, as well as in the variable loop (V-loop) of certain tRNASer species. In the yeast Saccharomyces cerevisiae, formation of m3C32 requires Trm140 for six tRNA substrates, including three tRNAThr species and three tRNASer species, whereas in Schizosaccharomyces pombe, two Trm140 homologs are used, one for tRNAThr and one for tRNASer The occurrence of a single Trm140 homolog is conserved broadly among Ascomycota, whereas multiple Trm140-related homologs are found in metazoans and other fungi. We investigate here how S. cerevisiae Trm140 protein recognizes its six tRNA substrates. We show that Trm140 has two modes of tRNA substrate recognition. Trm140 recognizes G35-U36-t6A37 of the anticodon loop of tRNAThr substrates, and this sequence is an identity element because it can be used to direct m3C modification of tRNAPhe However, Trm140 recognition of tRNASer substrates is different, since their anticodons do not share G35-U36 and do not have any nucleotides in common. Rather, specificity of Trm140 for tRNASer is achieved by seryl-tRNA synthetase and the distinctive tRNASer V-loop, as well as by t6A37 and i6A37 We provide evidence that all of these components are important in vivo and that seryl-tRNA synthetase greatly stimulates m3C modification of tRNASer(CGA) and tRNASer(UGA) in vitro. In addition, our results show that Trm140 binding is a significant driving force for tRNA modification and suggest separate contributions from each recognition element for the modification.


Subject(s)
Anticodon/chemistry , Cytidine/analogs & derivatives , Microfilament Proteins/metabolism , RNA, Transfer, Ser/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , tRNA Methyltransferases/metabolism , Anticodon/metabolism , Base Sequence , Binding Sites , Cloning, Molecular , Cytidine/genetics , Cytidine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Microfilament Proteins/genetics , Nucleic Acid Conformation , Protein Binding , Protein Biosynthesis , Protein Domains , RNA, Transfer, Phe/chemistry , RNA, Transfer, Phe/genetics , RNA, Transfer, Phe/metabolism , RNA, Transfer, Ser/genetics , RNA, Transfer, Ser/metabolism , RNA, Transfer, Thr/chemistry , RNA, Transfer, Thr/genetics , RNA, Transfer, Thr/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity , tRNA Methyltransferases/genetics
16.
PLoS One ; 11(8): e0160246, 2016.
Article in English | MEDLINE | ID: mdl-27494328

ABSTRACT

Two broad classes of RNase P trim the 5' leader of precursor tRNAs (pre-tRNAs): ribonucleoprotein (RNP)- and proteinaceous (PRORP)-variants. These two RNase P types, which use different scaffolds for catalysis, reflect independent evolutionary paths. While the catalytic RNA-based RNP form is present in all three domains of life, the PRORP family is restricted to eukaryotes. To obtain insights on substrate recognition by PRORPs, we examined the 5' processing ability of recombinant Arabidopsis thaliana PRORP1 (AtPRORP1) using a panel of pre-tRNASer variants and model hairpin-loop derivatives (pATSer type) that consist of the acceptor-T-stem stack and the T-/D-loop. Our data indicate the importance of the identity of N-1 (the residue immediately 5' to the cleavage site) and the N-1:N+73 base pair for cleavage rate and site selection of pre-tRNASer and pATSer. The nucleobase preferences that we observed mirror the frequency of occurrence in the complete suite of organellar pre-tRNAs in eight algae/plants that we analyzed. The importance of the T-/D-loop in pre-tRNASer for tight binding to AtPRORP1 is indicated by the 200-fold weaker binding of pATSer compared to pre-tRNASer, while the essentiality of the T-loop for cleavage is reflected by the near-complete loss of activity when a GAAA-tetraloop replaced the T-loop in pATSer. Substituting the 2'-OH at N-1 with 2'-H also resulted in no detectable cleavage, hinting at the possible role of this 2'-OH in coordinating Mg2+ ions critical for catalysis. Collectively, our results indicate similarities but also key differences in substrate recognition by the bacterial RNase P RNP and AtPRORP1: while both forms exploit the acceptor-T-stem stack and the elbow region in the pre-tRNA, the RNP form appears to require more recognition determinants for cleavage-site selection.


Subject(s)
Arabidopsis Proteins/metabolism , Ribonuclease P/metabolism , Arabidopsis Proteins/genetics , Escherichia coli/genetics , Fluorescence Polarization , Magnesium/chemistry , Magnesium/metabolism , Nucleic Acid Conformation , RNA Precursors/chemistry , RNA Precursors/metabolism , RNA, Plant/chemistry , RNA, Plant/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , RNA, Transfer, Ser/chemistry , RNA, Transfer, Ser/metabolism , Ribonuclease P/genetics , Substrate Specificity
17.
RNA ; 22(9): 1400-10, 2016 09.
Article in English | MEDLINE | ID: mdl-27354703

ABSTRACT

Post-transcriptional modifications of anticodon loop (ACL) nucleotides impact tRNA structure, affinity for the ribosome, and decoding activity, and these activities can be fine-tuned by interactions between nucleobases on either side of the anticodon. A recently discovered ACL modification circuit involving positions 32, 34, and 37 is disrupted by a human disease-associated mutation to the gene encoding a tRNA modification enzyme. We used tRNA-HydroSeq (-HySeq) to examine (3)methyl-cytidine-32 (m(3)C32), which is found in yeast only in the ACLs of tRNAs(Ser) and tRNAs(Thr) In contrast to that reported for Saccharomyces cerevisiae in which all m(3)C32 depends on a single gene, TRM140, the m(3)C32 of tRNAs(Ser) and tRNAs(Thr) of the fission yeast S. pombe, are each dependent on one of two related genes, trm140(+) and trm141(+), homologs of which are found in higher eukaryotes. Interestingly, mammals and other vertebrates contain a third homolog and also contain m(3)C at new sites, positions 32 on tRNAs(Arg) and C47:3 in the variable arm of tRNAs(Ser) More significantly, by examining S. pombe mutants deficient for other modifications, we found that m(3)C32 on the three tRNAs(Ser) that contain anticodon base A36, requires N(6)-isopentenyl modification of A37 (i(6)A37). This new C32-A37 ACL circuitry indicates that i(6)A37 is a pre- or corequisite for m(3)C32 on these tRNAs. Examination of the tRNA database suggests that such circuitry may be more expansive than observed here. The results emphasize two contemporary themes, that tRNA modifications are interconnected, and that some specific modifications on tRNAs of the same anticodon identity are species-specific.


Subject(s)
RNA Processing, Post-Transcriptional , RNA, Transfer, Ser/metabolism , Schizosaccharomyces/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , RNA, Transfer, Ser/genetics , Schizosaccharomyces/genetics , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
18.
J Biol Chem ; 291(7): 3613-25, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26677220

ABSTRACT

Leucyl-tRNA synthetase (LeuRS) is a multidomain enzyme that catalyzes Leu-tRNA(Leu) formation and is classified into bacterial and archaeal/eukaryotic types with significant diversity in the C-terminal domain (CTD). CTDs of both bacterial and archaeal LeuRSs have been reported to recognize tRNA(Leu) through different modes of interaction. In the human pathogen Candida albicans, the cytoplasmic LeuRS (CaLeuRS) is distinguished by its capacity to recognize a uniquely evolved chimeric tRNA(Ser) (CatRNA(Ser)(CAG)) in addition to its cognate CatRNA(Leu), leading to CUG codon reassignment. Our previous study showed that eukaryotic but not archaeal LeuRSs recognize this peculiar tRNA(Ser), suggesting the significance of their highly divergent CTDs in tRNA(Ser) recognition. The results of this study provided the first evidence of the indispensable function of the CTD of eukaryotic LeuRS in recognizing non-cognate CatRNA(Ser) and cognate CatRNA(Leu). Three lysine residues were identified as involved in mediating enzyme-tRNA interaction in the leucylation process: mutation of all three sites totally ablated the leucylation activity. The importance of the three lysine residues was further verified by gel mobility shift assays and complementation of a yeast leuS gene knock-out strain.


Subject(s)
Candida albicans/enzymology , Fungal Proteins/metabolism , Leucine-tRNA Ligase/metabolism , Models, Molecular , RNA, Fungal/metabolism , RNA, Transfer, Leu/metabolism , RNA, Transfer, Ser/metabolism , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Candida albicans/metabolism , Conserved Sequence , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gene Knockout Techniques , Leucine-tRNA Ligase/chemistry , Leucine-tRNA Ligase/genetics , Lysine/chemistry , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Nucleic Acid Conformation , Phylogeny , Protein Conformation , Protein Interaction Domains and Motifs , RNA, Fungal/chemistry , RNA, Transfer, Leu/chemistry , RNA, Transfer, Ser/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Substrate Specificity
19.
ACS Synth Biol ; 5(2): 163-71, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26544153

ABSTRACT

Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli.


Subject(s)
Codon , Escherichia coli , RNA, Transfer, Ser , Serine/metabolism , Codon/genetics , Codon/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , RNA, Transfer, Ser/genetics , RNA, Transfer, Ser/metabolism
20.
Hum Mol Genet ; 24(10): 2841-7, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25652405

ABSTRACT

Addition of the trinucleotide cytosine/cytosine/adenine (CCA) to the 3' end of transfer RNAs (tRNAs) is essential for translation and is catalyzed by the enzyme TRNT1 (tRNA nucleotidyl transferase), which functions in both the cytoplasm and mitochondria. Exome sequencing revealed TRNT1 mutations in two unrelated subjects with different clinical features. The first presented with acute lactic acidosis at 3 weeks of age and developed severe developmental delay, hypotonia, microcephaly, seizures, progressive cortical atrophy, neurosensorial deafness, sideroblastic anemia and renal Fanconi syndrome, dying at 21 months. The second presented at 3.5 years with gait ataxia, dysarthria, gross motor regression, hypotonia, ptosis and ophthalmoplegia and had abnormal signals in brainstem and dentate nucleus. In subject 1, muscle biopsy showed combined oxidative phosphorylation (OXPHOS) defects, but there was no OXPHOS deficiency in fibroblasts from either subject, despite a 10-fold-reduction in TRNT1 protein levels in fibroblasts of the first subject. Furthermore, in normal controls, TRNT1 protein levels are 10-fold lower in muscle than in fibroblasts. High resolution northern blots of subject fibroblast RNA suggested incomplete CCA addition to the non-canonical mitochondrial tRNA(Ser(AGY)), but no obvious qualitative differences in other mitochondrial or cytoplasmic tRNAs. Complete knockdown of TRNT1 in patient fibroblasts rendered mitochondrial tRNA(Ser(AGY)) undetectable, and markedly reduced mitochondrial translation, except polypeptides lacking Ser(AGY) codons. These data suggest that the clinical phenotypes associated with TRNT1 mutations are largely due to impaired mitochondrial translation, resulting from defective CCA addition to mitochondrial tRNA(Ser(AGY)), and that the severity of this biochemical phenotype determines the severity and tissue distribution of clinical features.


Subject(s)
Mitochondria/genetics , Mitochondrial Diseases/genetics , Mutation , Protein Biosynthesis/genetics , RNA Nucleotidyltransferases/genetics , RNA, Transfer, Ser/metabolism , Child , Child, Preschool , Exome , Female , Humans , Infant , Infant, Newborn , Male , Mitochondria/metabolism , RNA Nucleotidyltransferases/metabolism , Sequence Analysis, DNA , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...